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ABSTRACT 
Influenza viruses cause acute respiratory infections responsible for significant mortality 
and morbidity around the world. Various factors, such as antigenic drift, allow influenza 
strains to avoid being fully suppressed by seasonal vaccines. This has led to the increased 
scrutiny of antivirals as treatment and prophylaxis options for seasonal outbreaks and 
potential pandemics. Unfortunately, many influenza antivirals suffer from a lack of 
adequate clinical trials, as well as a lack of toxicity data. This is especially true of 
umifenovir (arbidol), a drug popularly used for the prevention and treatment of influenza 
strains in China and Russia. Neuraminidase inhibitors, though widely prescribed, display 
a potential for future resistance. Adamantanes, while proven to be effective in treating 
influenza A, are already encountering rapid and widespread cross-resistance and are 
effectively obsolete. Baloxavir marboxil, a newer antiviral, shows promise in treating acute 
uncomplicated influenza and may avoid the development of resistance when co-
administered with other antiviral drugs. Indeed, the low genetic barrier to resistance 
associated with influenza antivirals could potentially be overcome by co-administration 
with other antivirals. This review explores the most widely prescribed antivirals for 
influenza treatment, their mechanisms of action, and the data currently available about their 
susceptibility to resistance and efficacy. 
Keywords: adamantanes, antivirals, cap-dependent endonuclease inhibitors, influenza, 
neuraminidase inhibitors, umifenovir  
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1. INTRODUCTION 

Influenza viruses belong to the 
Orthomyxoviridae family. Among these, 
influenza A, B, and C, are known to infect 
human hosts and cause acute respiratory 
infections [1]. Influenza A is prone to 
antigenic variation and is capable of 
interspecies transmission. Moreover, this 
variant is often the cause of major flu 

pandemics [2–4]. Influenza viruses have 
the glycoproteins hemagglutinin (HA) and 
neuraminidase (NA) on their surface, as 
well as Matrix-2 (M2) proton channels 
(Figure 1). The presence of HA and NA 
gives influenza viruses their ability to adapt 
to and evade host immune responses, which 
necessitates the invention of new 
preventative vaccines each flu season. 

 
Figure 1. Structure of an Influenza Virus 

The prominent viral coat structures are 
emphasized, including the two 
glycoproteins hemagglutinin and 
neuraminidase. The M2 proton channel is 
also displayed. Near the bottom of the 
figure is the surface of the respiratory tract. 
Made with BioRender.com. 

A viral life cycle is composed of five 
(5) stages: viral entry, viral uncoating, viral 
replication, assembly and budding, and 

viral release from the host cell [5]. HA is a 
sialic acid receptor-binding molecule that 
mediates the entry of the influenza virus 
into the target cell and is, therefore, the 
main target for a host body’s neutralizing 
enzymes [6]. NA enzymes are then 
responsible for cleaving the glycosidic 
linkages of viral neuraminic acids, which 
allows the release of these new influenza 
particles to spread throughout the infected 
organism [7]. These unique surface 
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proteins, as well as each viral life stage, 
provide influenza antivirals with different 
targets for therapeutic action. 

There are various influenza antiviral 
drugs currently in the developmental 
pipeline. However, very few have been 
approved for use by human patients. 
Currently, for the treatment, prevention, 
and management of post-influenza 
complications, there are a handful of drug 
classes to choose from. This review 
explores the uses, mechanisms, emerging 
resistance, and current efficacy data of the 
most widely prescribed antivirals including 
umifenovir, the three most widely used NA 
inhibitors (oseltamivir, zanamivir, and 
peramivir), the M2 inhibitors, and the cap-
dependent endonuclease inhibitor baloxavir 
marboxil. Other influenza antiviral drugs 
exist but are not as widely prescribed. 
These include laninamivir and favipiravir, 
which were approved for influenza 
treatment in Japan in 2010 [8] and 2014 [9], 
respectively. These, and others like them, 
have limited efficacy data, and clinical 
studies lack information about the potential 
for viral resistance, which currently 
prevents their widespread use. As such, 
they, and others like them, are not discussed 
in this research. 

2. UMIFENOVIR 

Umifenovir (Arbidol) is a broad-
spectrum antiviral that acts against viral 
HA, specifically [10]. Developed in the 
1970s by the collaborative efforts of the 
Chemical–Pharmaceutical Scientific 
Research Institute of Russia, the Scientific 
Research Institute of Medical Radiology in 
Obninsk, and the Leningrad-Pasteur 
Scientific Research Institute for 
Epidemiology and Microbiology, 
Umifenovir is currently approved only in 

Russia and China for the treatment of 
influenza A and B, prophylaxis, and post-
influenza complications [11–13], though it 
does exhibit anti-influenza C activity as 
well [10]. Umifenovir is a controversial 
drug; due to a lack of reproducible lab 
results [14] and limited toxicity data 
outside of Russia, it has yet to gain global 
use and remains unapproved for influenza 
treatment in many countries. Information 
on umifenovir is difficult to find in the 
West, largely due to the language barrier, as 
key information including early clinical 
trial designs and results is often available 
only in Russian [13]. There are, however, 
many Russian reports describing 
umifenovir’s anti-influenza activity against 
various strains, such as influenza A (H5N1) 
and the 2009 A (H1N1) variant [15–17]. 

Umifenovir is considered an inhibitor 
of various enveloped and non-enveloped 
RNA viruses based on its insertion into 
membrane lipids, leading to the inhibition 
of membrane fusion between virus particles 
and plasma membranes, as well as 
interfering with the fusion between virus 
particles and the membranes of endosomes 
(Figure 2) [10, 14, 18]. In influenza strains, 
umifenovir interacts with HA, causing an 
increase in HA stability and preventing its 
transition into the fusing state [19–21]. 
Umifenovir may also be 
immunomodulatory, which would allow it 
to interfere with induction and macrophage 
activation [11]. Umifenovir shows 
antioxidant activity, which presumably 
counteracts virus activity [22]. As this drug 
is not well known outside of Russia and 
China, this section examines the recent and 
notable in vitro, in vivo, and clinical studies 
about umifenovir’s efficacy as influenza 
treatment. 



Ley 

77 Department of Life Sciences 
 Volume 5 Issue 2, 2023 

 
Figure 2. Proposed Umifenovir Mechanism 

The current understanding of 
umifenovir’s method of action is based on 
its insertion into membrane lipids, leading 
to the inhibition of membrane fusion 
between virus particles and plasma 
membranes, as well as interfering with the 
fusion between virus particles and the 
membranes of endosomes. Made with 
BioRender.com. 

Russian in vitro studies are plentiful 
and report IC50s for umifenovir in the 2.5–
16 μM range [13, 15, 16, 23–25]. One of the 
best sources of information on this drug 
currently is the I.I. Mechnikov Research 
Institute of Vaccines and Sera, Russian 
Academy of Medical Sciences, Moscow, 
Russia, and its affiliates. Most notably, 
these labs have performed tests in vivo [25, 
26], in vitro [17, 21, 23, 27–29], and 
clinical trials [30, 31] gauging the 
effectiveness of umifenovir against 
influenza strains, as well as other types of 
viruses. A recent in vitro study showed, 
using an MDCK cell-based enzyme-linked 
immunosorbent assay, that influenza A and 
B viruses from the 2012-2014 flu seasons 

were inhibited by umifenovir. Moreover, 
no markers of resistance were found in 
viruses isolated from umifenovir-treated 
patients [25]. Another in vitro study 
examined nasal swabs from 57 umifenovir-
treated patients, with influenza A(H1N1), 
A(H3N2), and influenza B strains and 
found no sign of resistance [26]. An in vivo 
study also showed that umifenovir was 
effective against influenza A(H3N2) in 
orally treated mice at the daily doses of 15 
mg/kg or 20 mg/kg [30]. Another notable in 
vivo study explored the effectiveness of 
umifenovir in post-influenza 
complications, specifically Staphylococcus 
aureus pneumonia, following the infection 
of the California 2009 A(H1N1) strain in 
mice. This study showed that oral 40 or 60 
mg/kg/day doses increased the survival rate 
in mice from 0% to 90%. Furthermore, after 
dissection, the lungs of the treated mice 
displayed less severe histopathologic 
lesions as compared to the control group 
[26]. 

Two clinical studies also examined 
patients with either influenza or acute 
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respiratory tract infection. The first clinical 
trial enrolled 215 patients aged 18-74 years 
and split them into placebo (n=106) and 
treatment (n=109) groups. The treatment 
group received umifenovir 200 mg four 
times a day for 5 days [31]. The second 
clinical trial enrolled 359 patients aged 18-
65 years and split them into treatment 
(n=181) and placebo (n=178) groups. The 
treatment group received 800 mg/day for 5 
days [30]. In both trials, both the influenza 
and acute respiratory tract infection patients 
were grouped. The patients in the 
umifenovir treatment group in both trials 
recovered faster and displayed fewer 
complications. Still, it is difficult to parse 
out what the results mean for umifenovir’s 
efficacy against influenza alone [30]. These 
studies reported no adverse effects 
attributed to umifenovir. 

Umifenovir efficacy testing has been 
performed in labs in other countries as well, 
though such studies remain scarce. Studies 
out of China reported the efficacy of 
umifenovir against influenza A variants. 
An in vivo study from Wuhan University 
showed that 24 hours before virus 
exposure, at doses of 50 or 100 mg/kg/day 
for 6 days, umifenovir significantly 
reduced the rate of infection and mortality 
in mice infected with an influenza A strain 
[18]. An in vitro study also conducted at 
Wuhan University showed that umifenovir 
was effective against two influenza 
A(H1N1) strains, responsible for both 
seasonal and pandemic influenza, in 
MDCK cells via an MTT assay [32]. 
Afterward, an in vivo study on mice found 
that umifenovir treatment at oral doses of 
90-180 mg/kg/day reduced viral lung titers 
and lesions. Additionally, the secretion of 
lung and macrophage cytokines was 
downregulated [32]. A more recent in vitro 
study from the First Affiliated Hospital of 
Guangzhou Medical University, 

Guangzhou, China showed that umifenovir 
inhibited other local influenza A(H1N1) 
variants, including A(H3N2) and 
A(H9N2), with IC50s ranging from 4.4 to 
12.1μM [33]. The in vitro experiment 
performed shortly after on mice and ferrets 
showed that the survival rates of influenza-
infected mice, given 25 mg/ml and 45 
mg/ml umifenovir, were 40% and 50%, 
respectively. Moreover, these mice 
displayed reduced viral lung titers. The 
ferret data also showed a decrease in fever 
symptoms duration in umifenovir treatment 
groups as compared to controls [33]. A 
clinical trial conducted by the Department 
of Respiratory Diseases, in Beijing, China 
tested the efficacy of umifenovir on 
influenza on 125 influenza-infected 
patients. Of these patients, 59 were in the 
treatment group and 66 were in the placebo 
group. This clinical study reported that at a 
dose of 200 mg, administered orally 3 times 
per day for 5 days, the treatment group saw 
a significant reduction in symptoms and a 
median duration of illness of around 72 
hours, compared to the placebo group’s 96 
hours. Adverse effects were not attributed 
to umifenovir [34].  

At the Department of Biotechnology 
and Environmental Biology, RMIT 
University, Bundoora, Victoria, Australia, 
both in vivo and in vitro testing revealed 
that umifenovir neither reduced lung viral 
titers nor caused a significant reduction of 
lung consolidation in mice after oral and 
intraperitoneal administration and 
intranasal challenge with a local influenza 
A(H3N2) strain. In cells, the therapeutic 
indices for influenza A and B were in the 
range of 1.9-8.5 and umifenovir was more 
effective against influenza A(H3N2) than 
rimantadine or amantadine [14]. Overall, 
the available studies indicate that 
umifenovir is an effective and broad-
spectrum antiviral that works against 



Ley 

79 Department of Life Sciences 
 Volume 5 Issue 2, 2023 

several human pathogenic respiratory 
viruses, although its actual effectiveness 
remains in question until lab results are 
reproducible, globally. 

3. NEURAMINIDASE INHIBITORS 

NA inhibitors target the viral enzyme 
neuraminidase to inhibit viral release and 
are effective against influenza A and B 
[35]. NA inhibitors, as their name suggests, 
are a class of drugs that inhibit the actions 
of NA enzymes [35]. NA cleaves the 
terminal sialic acid from the carbohydrate 

residue on the surface of host cells, which 
influenza virus envelopes. This promotes 
the release of the virus from the infected 
cells which, in turn, allows the virus to 
spread [35]. NA inhibitors block the active 
site of this enzyme, which reduces viral 
shedding [5, 35]. In this way, replication 
can be blocked by NA inhibitors, which 
prevent virions from being released from 
the surface of the infected host cells (Figure 
3) [7].  

 
Figure 3. Neuraminidase Inhibitors 

These antivirals prevent 
neuraminidase from acting on terminal 
sialic acid from the carbohydrate residue 
on the surface of the host cells, thereby 
inhibiting viral release and further 
replication. Made with BioRender.com. 

As of the time of writing, of the four 
antivirals approved for the treatment of 
influenza in the United States, three, 

including oseltamivir (Tamiflu), zanamivir 
(Relenza Diskhaler), and peramivir 
(Rapivab), are NA inhibitors [36]. The 
recommended oseltamivir dosage for the 
treatment of acute influenza infection in 
adults, beginning within 2 days of symptom 
onset, is 75 mg taken orally twice daily for 
5 days [37]. For prophylaxis, oseltamivir 
can be taken once daily for up to 42 days 
[38, 39]. Oseltamivir is taken as a prodrug 
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(oseltamivir phosphate) and converted by 
hepatic esterases into its active metabolite 
oseltamivir carboxylate, which has high 
bioavailability [38]. The recommended 
zanamivir dosage for the treatment of acute 
influenza in adults, beginning within 2 days 
after symptom onset, is 10 mg via oral 
inhalation twice daily for 5 days [40]. For 
prophylaxis, zanamivir can be taken once 
daily for up to 28 days [40]. Up to 15% of 
the dose is absorbed in the lungs [7, 40]. 
The recommended dosage of peramivir for 
the treatment of acute influenza in adults, 
beginning within 2 days after symptom 
onset, is a single dose of 600 mg taken 
intravenously [41]. Peramivir displays a 
low binding affinity to human plasma 
(<30%) [41]. However, in healthy adult 
volunteers, the peak concentration of 
peramivir in both pharyngeal and bronchial 
epithelial lining fluid samples was greater 
than the IC50 value for influenza [42]. 

Whether NA inhibitors are genuinely 
effective treatments for influenza A and B 
has been questioned in the past due to the 
sloppy clinical trials involving the drugs 
[43]. One large meta-analysis found that 
many of the clinical trials contained bias, 
and several (possibly) had an active 
substance as their placebo [43]. Several 
studies concluded that NA inhibitors 
shorten the duration of influenza 
symptoms, although not in all patients [43–
49]. While using NA inhibitors for 
prophylaxis is effective, the use of 
oseltamivir increases the chance of adverse 
effects, such as nausea, vomiting, 
psychiatric effects, and renal events in 
adults, along with vomiting in children 
[43]. Zanamivir produces fewer adverse 
effects than the other two drugs in this 
class, possibly due to its lower 
bioavailability and inhalation route, while 
peramivir produces the most adverse 
effects, possibly due to its intravenous route 

of administration [43]. The balance 
between their potential adverse effects and 
their potential benefits should be carefully 
weighed before drug administration. 

Resistance to NA inhibitors is drug-
specific; however, given the similar 
structure shared by the drugs in this class, 
resistance to one can affect the activity of 
others. Amino acid substitutions in either 
the NA catalytic site or the HA receptor 
binding site of influenza viruses can cause 
resistance to NA inhibitors to arise [50]. 
The H275Y amino acid substitution of the 
neuraminidase gene found in various 
influenza A viruses provides resistance 
towards oseltamivir and peramivir. 
Similarly, E119E/V (found in influenza 
A(H3N2) and A(H7N9)) causes resistance 
to oseltamivir and R292K causes resistance 
to all three NA inhibitors, though lower 
resistance rates are observed for zanamivir 
[50–52]. While resistance to NA inhibitors 
can crop up in circulating strains, it is 
generally seen as rare [53–55], especially 
for zanamivir [56]. Regardless of its rarity, 
close monitoring for global NA inhibitor 
susceptibility is still required [50]. 

4. M2 INHIBITORS 
(ADAMANTANES)  

Adamantanes are a class of anti-
influenza antivirals used specifically for 
treating type A influenza infections, 
although mass viral resistance has limited 
their recent use. There are only two 
members of this class, namely amantadine 
hydrochloride (Symmetrel) and 
rimantadine hydrochloride (flumadine), or 
simply amantadine and rimantadine, both 
of which are symmetric tricyclic amines 
[57]. Adamantanes are also called M2 
inhibitors or M2 ion-channel inhibitors 
based on their mechanism of action [58]. 
M2 ion-channel inhibitors target the stage 
of viral uncoating. M2 proteins are 
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responsible for forming the proton channels 
that lower the pH of the viral interior right 
before the dissociation of the matrix 
protein, which eventually leads to the 
uncoating of the viral genome during 

replication [5, 59]. By inhibiting these ion 
channels, amantadine and rimantadine 
specifically inhibit the replication of 
influenza A strains (Figure 4) [60]. 

 
Figure 4. M2 Ion-Channel Inhibitors 

These antivirals target the stage of 
viral uncoating and prevent it from 
happening altogether. This stops the virus 
from proceeding to the replication stage. 
Made with BioRender.com. 

Amantadine and rimantadine are given 
in similar dosages administered orally, that 
is, 100 mg tablets and a syrup formulation 
of 50 mg/5ml [60]. The dosage for adults, 
for the treatment and prevention of 
influenza A, is 100 mg every 12 hours. Both 
drugs achieve peak levels within the body 
at around 3-5 hours after dosing. 
Amantadine is excreted unchanged by the 
kidneys but rimantadine undergoes 
extensive hepatic metabolism before renal 
excretion [61, 62]. Common side effects of 
adamantanes are minor central nervous 
system complaints, such as anxiety, 
difficulty concentrating, insomnia, 
dizziness, and headaches, as well as 
gastrointestinal upset. Rarer but well-

documented side effects include 
antimuscarinic effects, orthostatic 
hypotension, and congestive heart failure. 
Drug–drug interactions can occur within a 
large number of drug classes, including 
antihistamines and anticholinergic drugs, 
which further limits their usage [60, 63, 
64]. 

Rimantadine is the structural analog of 
amantadine and is seen as the superior drug 
due to its larger volume of distribution, 
higher concentration in respiratory 
secretion, and more extensive metabolism 
that results in fewer central nervous system 
side effects [60, 65]. However, rimantadine 
shares its specificity, mechanism of action, 
and potential for resistance with 
amantadine [66]. Cross-resistance to both 
drugs occurs when a single amino acid is 
substituted in the transmembrane portion of 
the M2 protein. Resistance has been noted 
to emerge as early as 2–4 days after the start 
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of the therapy in up to 30% of the patients 
infected with strains that showed 
susceptibility to either drug [60]. Many 
studies have demonstrated influenza 
resistance to this drug class [67–75]. Due to 
the widespread resistance to M2 inhibitors 
exhibited by influenza A strains, these 
drugs are not currently recommended for 
the prevention or treatment of influenza in 
the United States [60, 72, 73]. 

5. CAP-DEPENDENT 
ENDONUCLEASE INHIBITORS 

The cap-dependent endonuclease, 
found within the RNA polymerase subunit 
of influenza viruses, plays a crucial role in 
facilitating the cap-snatching process 
during the creation of viral mRNA. This 
process is essential for the replication of the 
virus [76]. Baloxavir marboxil (xofluza), or 
baloxavir, was approved for the treatment 
of uncomplicated influenza first in Japan 

and then in the United States in 2018, 
followed shortly thereafter by several other 
countries [77, 78], making it the sole 
approved member of the antiviral class 
known as cap-dependent endonuclease 
inhibitors [5]. Baloxavir is a prodrug 
metabolized via hydrolysis into its active 
metabolite, baloxavir acid [79]. Baloxavir 
acid targets the replication stage of the viral 
life cycle and selectively inhibits the 
endonuclease activity of the polymerase 
acidic protein, one of the subunits of RNA 
polymerase [80]. The targeted 
endonuclease is a virus-specific enzyme 
required for viral gene transcription [81] 
which provides baloxavir its specificity. 
Through the inhibition of cap-dependent 
endonuclease, baloxavir can inhibit viral 
replication for both influenza A and B 
viruses [5, 79] (Figure 5). 

 
Figure 5. Cap-Dependent Endonuclease Inhibitors 

These antivirals target the replication 
stage of the viral life cycle and selectively 
inhibit the endonuclease activity of the 

polymerase acidic protein, one of the 
subunits of RNA polymerase. Through 
inhibition of cap-dependent endonuclease, 
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these antivirals inhibit influenza viral 
replication. Made with BioRender.com. 

Baloxavir is metabolized in the liver 
mainly by the enzyme UGT1A3, with 
minor contributions by CYP3A4. To date, 
no serious drug-drug interactions have been 
documented, even with co-administered 
CYP3A and UGT inhibitors, such as 
probenecid [5, 82]. Co-administration with 
medicines containing polyvalent cations, 
such as antacids, lowers the bioavailability 
of baloxavir. Baloxavir is mainly excreted 
in the feces, with minor excretions in the 
urine. Moreover, in patients with renal and 
hepatic impairments, baloxavir showed no 
altered pharmacokinetic properties [5, 82]. 
Baloxavir is suggested for use in patients 12 
years of age and older who have been 
symptomatic for a maximum of 48 hours 
and only for acute uncomplicated influenza 
[5, 82]. In this regard, it is an inferior 
alternative to other antivirals that are also 
generally suggested for prophylaxis as well 
as influenza treatment. Baloxavir, however, 
is the preferred choice in patients where the 
use of NA inhibitors is contraindicated. 
Since it has a half-life of about 79 hours, 
baloxavir is given in a single-dose regimen 
[5, 82]. In this regard, it is a superior 
treatment to other multi-dose regimens, as 
patient compliance is an issue with 
multiple-dose treatment plans. 

While baloxavir can treat viruses 
resistant to NA inhibitors, the main 
problem in using baloxavir alone is the 
speed by which influenza viruses develop 
resistance towards it. Both influenza A and 
B can develop resistance, though A more so 
than B [5]. In an in vitro study, it was found 
that viruses substituted at I38 in the 
polymerase acidic protein, which resulted 
in reduced susceptibility to baloxavir [83]. 
Indeed, one clinical study that used this 
drug to treat influenza A(H3N2) reported 
that even after a single dose, a small subset 

of influenza patients developed resistance 
to it, with an overall rate of 19.5% 
resistance [77], while another clinical study 
showed resistance appearing between 8%-
10% [84]. Interestingly, previous results 
reported a resistance rate of only 2.2%, 
however, the patients treated previously 
had contracted the 2009 A(H1N1) variant, 
the strain responsible for the 2009 
pandemic [77]. 

In recent years, baloxavir resistance 
was only observed at the rates of 0.5% and 
0.1% during the 2018-2019 and 2019-2020 
flu seasons, respectively [85]. These results 
imply that baloxavir resistance varies 
across influenza strains and the drug 
remains a valid choice for treatment [86]. 
Additionally, when co-administered with 
oseltamivir, synergistic properties were 
shown between the two drugs. Moreover, 
resistance and drug-drug interactions were 
avoided [87–89]. Additionally, a recent 
study showed a lack of drug-drug 
interactions between baloxavir and NA 
inhibitors, though it failed to report 
improved clinical outcomes when 
compared to treatment plans consisting of a 
single antiviral [90]. These results suggest 
that if widespread viral resistance to 
baloxavir, NA inhibitors, or both occur in 
the future, co-administering baloxavir with 
an NA inhibitor may be the most effective 
treatment regimen to bypass resistance. 

6. CONCLUSION 

Antigenic drift in influenza strains 
allows these viruses to circumvent seasonal 
vaccines. Due to this fact, recent public 
interest, as well as recent scientific interest, 
has led to the reevaluation of older anti-
influenza antivirals, as well as the 
development of new anti-influenza 
antivirals. Unfortunately, low genetic 
barriers to resistance will continue to be a 
problem for existing antivirals in the future. 



Popular Influenza Antiviral Drugs… 

84 BioScientific Review 
Volume 5 Issue 2, 2023 

 

Even now, adamantanes are not 
recommended for widespread use due to 
the speed of resistance seen even after a 
single dose. Careful global monitoring of 
antiviral susceptibility to resistance is 
needed to ensure that the few antivirals 
currently available for the treatment of 
influenza do not end up obsolete in the 
same manner. Considering the low genetic 
barriers to resistance when given 
individually, combination therapy utilizing 
two or more antivirals may be a way to 
circumvent viral resistance, at least in the 
short term. As each class of antivirals has a 
unique mechanism of action, using a 
variety of anti-influenza antivirals may help 
to prevent resistance from cropping up 
quickly among influenza strains. In 
conclusion, the development of new 
antivirals, innovative combinations of 
existing treatments, and strategic co-
administration with preventive measures, 
like vaccines, stand as our most effective 
strategies against the persistent threat of 
influenza. 
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