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Saba Mahboob, Kalsoom Tahir, Sikander Ali*, and Muhammad Nauman Aftab 

Government College University Lahore, Pakistan 
ABSTRACT 
Background: Viral diseases pose a serious health hazard to human population, worldwide. 
A perfect illustration of how a viral infection could pose a serious threat to public health 
and economic sectors is the current COVID-19 outbreak brought on by SARS-CoV-2 in 
2019. Consequently, obtaining a prompt and accurate diagnosis is the first step in treating 
infections. For effective treatment, epidemic control, and prevention, early and precise 
identification of microbial presence in patient samples is essential. 
Methods: This study lists some of the molecular and immunological diagnostic methods 
that can be used to find infections in human beings. Rapid viral detection in patient samples 
is possible by the use of molecular diagnostic techniques. These techniques are also 
reasonably cheap, quite sensitive, and very targeted. Infections in human beings have been 
detected and the epidemiology of these illnesses has been widely studied using 
immunologically based methods.  

Results: In clinical samples, these methods can identify viral antigens or antiviral 
antibodies. Many commercially accessible molecular and immunological diagnostic kits 
make it easier to employ these techniques in most clinical laboratories around the world.  

Conclusion: This review offers a new perspective on molecular techniques employed in 
the application of the clinical diagnostics of microbes. 

Keywords: molecular diagnostic, nucleic acid amplification techniques, PCR, post 
amplification techniques, sequence-based techniques 

Highlights 

1. Molecular diagnostic techniques offer improved sensitivity and specificity as 
compared to traditional methods. 
2. Common techniques include PCR, isothermal amplification, DNA/RNA 
probe and high-throughput sequencing. 
3. Modern techniques are helpful to detect multiple pathogens in humans.
1. INTRODUCTION 

The healthcare system is highly 
dependent on diagnostic techniques. The 
use of these techniques is essential for the 
right treatment and decision-making in 
healthcare systems. At every stage, medical 
diagnostic techniques provide critical 
insights regarding treatment, detection, 

 
*Corresponding Author:  dr.sikanderali@gcu.edu.pk  

diagnosis, and better management of health 
conditions [1]. There are many 
conventional methods used in diagnostics 
for the diagnosis of diseases caused by 
pathogens. However, many pathogens are 
difficult to grow in the laboratory using 
conventional methods of cultivation. 
Studies have indicated that the cultivation 
ability of bacteria from natural samples is 
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less than 1% [2]. There are many different 
factors affecting cultivation, such as lack of 
nutrients required for microbial growth, 
culture medium toxicity towards the 
desired organisms in a mixed population, 
production of harmful substances which 
inhibit the growth of desired 
microorganisms, and metabolic 
dependence of desired strain on other 
organisms for growth [3]. Many rapid 
immunological detection techniques can 
also be utilized for either direct 
identification of microorganisms or with 
the help of the immune responses of the 
host. In this scenario, enzyme assays such 
as enzyme-linked immune sorbent assay 
(ELISA) remains the most commonly used 
diagnostic technique. This technique is 
quick, cheap, and easy to standardize, 
although its sensitivity is very low, with 
almost 104 cells needed to produce results. 
The specificity of the process is varied and 
depends upon the antibody type used and 
the dead and live microorganisms [1]. Due 
to the underlying issues, rapid diagnostic 
techniques based on genetic material, such 
as RNA, DNA, and antibodies have been 
formulated for the identification of disease-
causing microbes. Ideally, pathogen 
detection methods must be accurate, robust, 
less costly, sensitive, reproducible, and 
easy to operate. The hybridization methods 
for nucleic acids and polymerase chain 
reaction (PCR) assay exhibit these 
properties for the better identification of 
pathogens [4]. 

 Molecular diagnostic techniques 
are advantageous over conventional 
diagnostic protocols as the former are 
highly insensitive, specific, and less costly 
for microbial identification, as compared to 
traditional methods. Better identification 
and discrimination of pathogens is carried 
out currently based on the high specificity 
of molecular diagnostic methods. These 

methods detect disease-causing 
microorganisms due to their high 
sensitivity directly from the clinical and 
environmental samples without the need for 
cultivation [5].  

The term ''molecular disease'' was 
invented in 1949 by Pauling and his 
colleagues by observing diseases such as 
sickle cell anemia caused due to alternation 
in the β-globin chain. Their findings led to 
the foundations of molecular diagnostics, 
although during the course of years several 
big transformations have occurred in this 
field. New and advanced molecular 
diagnostic methods have revolutionized the 
field of practical clinical microbiology. 
There are many molecular diagnostic 
methods being used for the diagnosis of 
infections since the 1980s. Furthermore, 
Koch's postulates have been applied to 
identify the pathogenicity of bacteria at the 
gene level, instead of the whole organism 
level [6].  

This brief review gives an 
understanding of advanced diagnostic 
techniques used for the identification of the 
pathogens in clinical microbiology. 
Molecular diagnostic methods used for the 
diagnosis of diseases might be categorized 
into numerous major groups [7]. These 
involve PCRbased techniques (such as 
traditional PCR, real-time PCR, RT-PCR, 
nested PCR, and broad range 16S rRNA 
gene PCR), RNA/DNA probe-based 
methods (including blotting techniques and 
direct hybridization techniques, such as in-
situation hybridization, fluorescent in situ 
hybridization, PNA FISH), amplification-
based techniques (included array-based 
techniques, loop-mediated isothermal 
amplification (LAP)) [1] sequence-based 
methods (included Sanger based bideoxy 
sequencing, pyrosequencing, multilocus 
sequencing typing (MLST), MALDI-TOF 
MS, nanopore technology), and other 
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diagnostic methods for post-amplification 
[8]. Each molecular method has its 
advantages and limitations, illustrated in 
Table 1. 

In this review article, advancements in 
molecular techniques used for the diagnosis 

of microbial pathogens in human beings are 
discussed, as shown in Figure 3. The focus 
remains on the emerging molecular 
techniques used for the identification of 
microbial pathogens to monitor human 
diseases. 

Table 1. Advantages and Limitations of Molecular Techniques for the Diagnosis of 
Microbial Pathogens in Human Beings [9]. 

Techniques Advantages Limitations 
Conventional 

PCR 
Precise and rapid results when 

use specific primer Much cost and labor required 

RT-PCR Provide quantitative date, more 
subtle than traditional PCR Time consuming and costly 

Nested PCR 
Two primer sets used to 

increase the specificity and 
yield of amplified target DNA 

Due to two amplification 
cycles, risk of contamination  

occurs 

Real-time PCR Automated, no requirement of 
the post amplification analysis 

Complexity and cost due to 
instantaneous thermal cycling 
and the fluorescence detection 

Northern blotting For detection of the RNA size Used for small gene sample 

FISH Used for the non-dividing cells Difficult probe preparing 
method 

In-situ 
hybridization 

Extreme use of short-supply 
tissue 

Hard to identifying targets 
which have low RNA and DNA 

copies 

RNA-Seq Amplified sensitivity and 
specificity 

Costly, bioinformatics 
information necessary for the 

data analysis 

LAMP Sensitive, rapid, and specific 
Complex primer design, risk of 
contamination, recognize only 

definite pathogen 

Microarray 
 

Used easily because it has not 
required large scale DNA 

sequencing 

Huge amount of the mRNA has 
been required 

2. CATEGORIZATION OF 
MOLECULAR TECHNIQUES  
2.1. PCR-based Diagnostic Methods 

The invention of polymerase chain 
reaction (PCR) has revolutionized the field 
of molecular diagnostics in terms of the 
identification, differentiation, and 
characterization of microorganisms, 
especially pathogens. PCR-based 
techniques have been highly specific and 

sensitive in their function and produce 
multiple copies from a single specific 
fragment of DNA. During the last 2 
decades, many varieties of the standard 
PCR technique have been introduced. 
However, those mostly used for the 
identification of microbial pathogen 
detection are conventional PCR, nested 
PCR, real-time PCR, and broad range 16S 
rRNA gene PCR. 
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2.1.1. Conventional PCR. This 
amplification process runs with the help of 
specific primers via alternate cycles of 
denaturation, annealing, and elongation, as 
shown in Figure 1. This technique depends 
upon the efficiency of DNA extraction and 
concentration of deoxynucleoside 
triphosphate. At the beginning, PCR was 
only used for the detection of bacterial and 
viral diseases, although it is now used also 
for the detection of plant pathogens [10]. 
Sometimes, the function of PCR is 

compromised due to inhibitors present in 
the tested sample. However, PCR-specific 
primers designing is needed for the 
replication of DNA, which hinders its 
practical application in field sampling. 
Sometimes, a single primer pair is 
insufficient and produces faulty results. 
DNA primers and probes are widely used to 
limit this problem [11]. This is a much more 
specific technique but remains costly and 
needs a lot of labour in traditional PCR. 

 
Figure 1. Overview of Conventional PCR [12] 

2.1.2. Nested PCR. Nested PCR 
comprises two rounds of amplification. The 
first round is used to make copies of a large 
region of DNA via a single set of primers. 
Then, the product of the first round itself is 
used as a template for the second round by 
using two internal primers. Due to the two 
rounds of amplification, the cycle's 
sensitivity is enhanced, diluting any 
inhibitor present in the sample and 
increasing specificity. In the first round of 
amplification, if non-specific products are 
generated, then such products do not act as 
templates for the second round [13]. Due to 
an alternative round of amplification in 
separate tubes, there are chances of 

significant contamination. So, false 
positive results generated due to 
contamination and intense struggle are the 
main disadvantages of nested PCR [14]. 
Laboratories must take precautions and 
follow some advanced protocols to limit 
these drawbacks [15].  

2.1.3. RT-PCR. Reverse transcription 
PCR was invented after the development of 
a large number of changes in traditional 
PCR. Today, RT-PCR is used in many 
medical and biological fields due to its 
diagnostic capabilities [16]. RT-PCR 
technique can identify the presence of any 
pathogens or nonpathogenic genetic 
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material including viruses. In this 
molecular diagnostic technique, RNA is 
converted into complementary DNA 
(cDNA) reversely and then copies are made 
through the PCR technique with the help of 
random primers and reverse transcriptase 
enzyme. RT-PCR is widely used for the 
detection of infection-causing RNA 
viruses, such as Retroviruses. The 
diagnosis of RNA viruses is very useful for 
the development and checking of 
antimicrobial vaccine therapy [17]. Other 
conventional PCR could not distinguish 
between live and dead pathogens. 
However, with the discovery of RT-PCR, 
this drawback was eliminated. In fact, 
mRNA disintegrates in dead cells. So, 
mRNA is detected by RT-PCR for 
checking the viability of cells [18]. 
Fluorescent dyes, such as SYBR Green 1 or 
Taq Man probe, are used for the monitoring 
of reaction during the amplification 
process. The signal is produced when dye 
intercalates into the DNA. After each cycle 
of amplification, the amount of DNA 
increases with the increase of signal from 
the fluorescent dye [19]. RT-PCR is a less 

costly but a nonspecific technique. The 
disadvantage of this method is the 
formation of primer dimer when dye 
intercalates into the DNA. As a result, false 
positive results can be produced.  

2.1.4. Real-time PCR. Real-time PCR 
techniques have been widely used in 
clinical microbiology. This method 
functions with the help of specific probes, 
which are labelled by fluorescent in 
addition to amplification techniques as 
shown in Figure 2. There are numerous 
different probes formats and instruments 
for the detection of pathogens are present, 
such as TaqMan hydrolysis probes, 
Scorpion probes, molecular beacons, and 
minor groove binding probes [20]. In this 
technique, the risk of contamination is 
minimized to a greater extent due to the 
closed tube system in real-time PCR. One 
of the major benefits of real-time PCR 
using fluorescence technology is that 
quantify genetic variations e.g., single 
nucleotide polymorphisms with the help of 
a set of precise probes for each possible 
SNP within the same species [21]. 

 
Figure 2. Schematic Representation of Real-time PCR [1] 
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2.1.5. Broad Range16s rRNA Gene 
PCR. Broad range 16S ribosomal 
ribonucleic acid gene polymerase chain 
reaction is used for pathogen detection and 
identification of clinical specimens [22]. 
This technique is usually applied for cases 
where bacterial culture gives negative 
results, despite suspected infection [23]. 
This technique is mainly used for fastidious 
bacteria that do not grow easily in the 
laboratory, such as Mycobacterium 
genovese, Coxiella burnetii, Ehrlichia 
chaffeensis, and Tropheryma whipplei [24]. 
Conserved regions of the 16S rRNA are 
ideal for designing primers, sequencing 
based on PCR, and alignment of sequences. 
Species identification is done by this gene 
because of having species-specific variable 
regions [25].  

Universal primers have been utilized 
for the amplification of PCR products and 
gene sequencing of the 16S rRNA gene 
when a tested specimen is suspected to have 
nonculturable pathogens. Unknown 
bacteria were detected by comparing the 
gene sequence of 16S rRNA with the 
sequences already present in the database. 
Samples detected via PCR showed negative 
results specific for C. burnetii. However, 
when these samples were detected via 16S 
rRNA gene sequences, about 98% showed 
similarity to that of C. burnetii [26]. 

2.1.6. DiversiLab Repetitive 
Sequence-based PCR (DL rep-PCR). 
DiversiLab is a program based on a 
repetitive sequence PCR system for 
bacterial typing. It has a high degree of 
standardization, specifically at the 
electrophoresis step achieved through 
Bioanalyzer [27]. In contrast to 

conventional gel electrophoresis, this 
method via microfluidic capillary 
electrophoresis overwhelms the low 
duplicability of prior rep-PCR 
methodologies [28]. Also, it provides 
internet-based, user friendly, and computer 
supported data evaluation [29]. The 
consistency of data achieved through this 
system has been species-dependent [30]. 

2.1.7. Multiple Locus Variable 
Number Tandem Repeat Analysis 
(MLVA). It is a process (based upon PCR) 
that has been used to subtype the strains of 
microorganisms through the variable copy 
number of tandem repeats. MLVA applies 
to DNA sequences that differ in the number 
of tandem repeats obtained on multiple loci 
in bacterial genomes identified through 
PCR by utilizing flanking primers [31]. It is 
a more promising method as compared to 
other typing techniques due to greater 
diversity and comprehensive 
discrimination ability [32]. It is a rapid 
method with great resolution. MLVA 
microbial cells from the agar plate are taken 
and DNA is released by boiling the cells. 
For the detection of the DNA region, a 
variable number tandem repeat array is 
performed. PCR is used to combine DNA 
with chemicals for the amplification of 
VNTR. After PCR, the size of the PCR 
product must be determined. Then, the PCR 
product is loaded into the sample analysis 
plate and blended with chemicals which 
help to determine the product size. 
Capillary electrophoresis is used to 
determine the size of DNA fragments. Data 
outputs of MLA are expressed in the form 
of an electropherogram [33]. 
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Figure 3. Overview of Molecular Techniques [9] 

Table 2. Advantages and Limitations of PCR-based Techniques 

Techniques Advantages Limitation References 

Conventional 
PCR 

• Widely employed 
• Specific and sensitive 
• Multiplex detection 

potential 

• Prone to inhibitors 
• Qualitative 
• Labour intensive 
• Time consuming 
• High risk of 

contamination 

[34] 

RT-PCR 
• Specific and sensitive 
• Multiplex detection 

potential 

• High risk of 
contamination 

• Difficult RNA handling 
• Time consuming 
• Prone to inhibitors 
• Expensive 

[35–37] 

Real time 
PCR 

• Rapid highly specific 
and sensitive 

• Genotyping 
• Less labour intensive 
• Low cross 

contamination risk 

• Expensive laboratory 
equipment 

• Prone to inhibitor 
[38] 
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2.2. DNA/RNA Probe-based Method 
(Sequencing Independent Method) 

2.2.1. Southern Blotting. This 
technique is a detection method for the 
target DNA sequence. Firstly, restriction 
enzymes, such as restriction endonucleases, 
are used to cut the target DNA into short 
pieces. Then, gel electrophoresis technique 
is used to segregate these pieces. On gel, 
these fragments move according to their 
molecular weight. After gel 
electrophoresis, DNA fragments are shifted 

onto a membrane called the nitrocellulose 
membrane or blotting paper. These 
fragments are then incubated on blotting 
paper with selective probes. The probes are 
highly selective in their function and are 
radioactively labelled. Moreover, bind with 
the resolution 1 in a million fragments. In 
molecular biology, this technique is usually 
used for the detection of viral and bacterial 
infections. Autoradiography has been used 
for detection purposes after the completion 
of the incubation period, as shown in Figure 
4 [39]. 

 
Figure 4. Procedure for Southern Blotting [40] 

2.2.2. Northern Blotting. Northern 
blot is also a hybridization-based technique 
used for the detection of specific RNAs for 

several purposes. This technique is similar 
to southern blotting, except that the target 
sequence is an RNA molecule. Control over 
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structure and function is achieved via 
northern blotting by identifying the level of 
expression of genes during differentiation 
and morphogenesis, as well as an abnormal 
condition. One of the major drawbacks is 
the degradation of mRNA during gel 
electrophoresis. Secondly, multiple probe 
detection makes the process less efficient 
[41]. 

2.2.3. In-situ Hybridization (ISH). 
In-situ hybridization (ISH) is an 
outstanding method for the identification 
and characterization of viral nucleic acids 
and other pathogens which are causative 
agents of different infectious diseases and 
cancer [42]. In-situ hybridization consists 
of four basic steps, namely (1) 
denaturation, (2) hybridization, (3) probe 
detection, and (4) analysis, as illustrated in 
Figure 5. ISH technique is used to regulate 
and detect the exact fixed location of 

different viruses, such as herpes simplex 
viruses, hepatitis viruses, human 
papillomaviruses, adenovirus, JC viruses, 
cytomegalovirus, and Epstein–Barr viruses 
[43]. The occurrence of cervical cancer is 
due to human papillomavirus (HPV). 
About 100 genomic types of HPV have 
been detected. Most types are not 
associated with the development of cervical 
cancer and hence are not oncogenic types. 
Therefore, those oncogenic types are 
divided into groups according to their 
potential to develop cancer, such as high-
risk, moderate-risk, and low-risk HPVs. 
Currently, ISH is extensively used in 
cervical specimens for the differentiation 
and detection of HPV. There are different 
probes such as Dako Corporation supply 
probes for HPV ISH. These are named as 
biotinylated probes and high-risk groups 
[44]. 

 
Figure 5. Basic Steps of In-Situ Hybridization [45] 
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2.2.4. Peptide Nucleic Acid-
Fluorescence In-Situ Hybridization 
(PNA FISH). Fluorescence in situ 
hybridization (FISH) using peptide-nucleic 
acid (PNA) probes (PNA FISH) is a unique 
molecular technique. PNA probes have 
been used for the detection of infectious 
diseases quickly and with more accuracy. 
PNA probes are synthetic compounds with 
nucleotide bases the same as DNA that 
adhere to the backbone of peptides [45]. 
PNA with neutral backbone make PNA 
probes with great properties of 
hybridization, with a high level of 
specificity, rapid kinetics, strong affinity, 
and better hybridization ability for rRNA 
which is a highly structured target. PNA 
FISH probes have been made and checked 
for the identification of various pathogens, 
such as S. aureus, E. coli, E. faecalis, C. 
albicans, coagulase-negative 
staphylococci, Pseudomonas aeruginosa, 
C. dubliniensis and K. pneumoniae. 
Currently, FDA has approved some PNA 
probes for the pathogens listed above, such 
as S. aureus PNA FISH, C. albicans PNA 
FISH, and E. faecalis PNA FISH for 
diagnostic purposes. A recent evaluation 
suggests that PNA FISH is an accurate 
method with high sensitivity and specificity 
[46]. Mycobacterium bacteria can be 
identified from liquid culture with the help 
of using PNA FISH [47]. PNA FISH has 
been used also for the quick detection of 
species from positive cultures of blood and 
to evaluate bacterial diversity in 
environmental samples [48]. 

2.3. Sequence-based Technologies 

Due to technological advancement in 
equipment and the lessening of price per 
reaction, DNA sequencing has been 
introduced in the laboratory. Up till now, 
sequencing has been utilized for the 
detection of microorganisms that have been 
hard to recognize by traditional methods. 

The target considered the utmost for that 
application is ribosomal DNA gene [49, 
50].  

2.3.1. Sanger Sequencing. Sanger 
sequencing was the key sequencing 
technique utilized during the period 1975-
2005 and the golden standard for all 
sequencing technologies. The rRNA, 
particularly 16S and 23S rRNA, have been 
the most convenient phylogenetic markers 
for the diagnosis of diseases in Sanger 
sequencing [51]. The marker 16S rRNA is 
a widely used unit for microbiological 
species identification, and it is incredibly 
abundant in bacteria. The length of 
sequence 1 is about 1.5 kb [52] and it 
remains remarkably intact in terms of 
assembly and operation in a variety of 
flexible areas [53]. So, this sequence can be 
used for the identification of various genera 
and species of diverse pathogenic bacteria. 
At present, 16S rRNA bacterial gene 
analysis is mainly attained through 
sequencing the flexible regions of this gene 
[54]. The specific clones from microbes 
attained by the culture can be recognized 
through the Sanger method of sequencing, 
subsequently after amplification by 16S 
general primers. Bacterial, full-length, 16S 
rRNA gene could be sequenced via Sanger 
sequencing. Nonetheless, the disadvantage 
of this technique is that bacterial culture 
must be untainted; else, the bacterium could 
not be recognized. The positive rate of the 
clinical culture is not clearly known. 
Furthermore, microbes cannot be 
distinguished and the mix of the16S genes 
cannot be utilized to differentiate species. 
Moreover, it is a time-consuming 
technique. First-generation DNA 
sequencing is highly affected by all the 
above highlighted flaws [55]. An overview 
of Sanger sequencing is represented in 
Figure 6. 
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Figure 6. Overview of Sanger Sequencing [56] 

2.3.2. MALDI-TOF MS. Matrix-
assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF 
MS) is useful for the study of the entire 
bacterial protein profile. A few years ago, 
the sequencing of the nucleic acids of 
bacteria has been upgraded through MAL 

of the nucleic acid DI-TOF MS technique. 
Cleavage products have been studied by the 
MALDI-TOF MS the resultant mass 
patterns have been related to reference 
ranges for sequence purposes. Still, 
MALDITOF MS are probable to develop 
the process of choice for high-output 
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testing. MALDITOF MS provides precise 
outcomes, is automatable, fast, and cost-
effective [57, 58]. 

2.3.3. Multilocus Sequence Typing. 
Multilocus sequence typing (abbreviated as 
MLST) is an extension of MLEE. In 
MLST, alleles at all housekeeping loci are 
allocated directly through nucleotide 
sequencing. Interior -150 base pair 
fragments of the housekeeping genes are 
applied in MLST. Meanwhile, such 
fragments could be precisely sequenced on 
every strand with a single primers pair and, 
in many species, would offer adequate 
difference to identify numerous alleles in a 
population. Therefore, bacterial strains are 
defined by a string of integers consistent 
with alleles at all housekeeping loci. The 
use of nucleotide sequencing for the 
allocation of alleles at the housekeeping 
loci is of advantage [59]. Firstly, 
sequencing reveals all differences at a 
locus, resulting in more numerous alleles 
per loci as compared to those revealed by 
the MLEE. Therefore, MLST attains high 
levels of discrimination by using seven loci. 
Secondly, the uniqueness of alleles 
becomes definite through sequence data in 
contradiction of MLEE, where similar 
electrophoretic mobility might imitate 
identical/similar sequences of nucleotide, 
or totally dissimilar sequences that encode 
enzymes which travel on the starch gel at 
an equal rate. Thirdly, the electronic 
movability of the DNA sequences permits 
some testing centers to characterize 
bacterial isolates by presenting sequences 
of seven gene fragments through the 
Internet to the chief MLST website, which 
grips frequently increasing databases of the 
allelic profiles of the isolates of species. 
Finally, sequences of the seven loci from 
100-1000 isolates of all species could be 
applied to address the features of their 
evolutionary biology and population [60]. 

2.3.4. Nanopore Technology. 
Nanopore technology is an electrical 
signal-based Seq-technology [61]. Protein-
based   nanopores (such as microscopic 
pores that basically form the channels on 
the membrane) are packed in the synthetic 
membrane and absorbed in the 
electrophysiological solution, which 
permits the ionic current to pass through 
them. The flow of ionic current is restricted 
when the molecules such as DNA/RNA 
pass it, producing a distinctive modification 
in the current signals. In nanopore 
technology, signal is evaluated in real-time 
format to determine the strand of 
DNA/RNA base sequence, which is 
transitory through the pore that permits the 
whole DNA/RNA sequence to be 
determined [62, 63]. This technology 
efficiently reports the flaws of the NGS in 
the aetiological diagnostic field, directly 
sequencing DNA/RNA that reads above 1 
Mb in length [64]. Nanopore Seq-
technology eradicates the exertion and the 
time required for reverse transcription. 
Since RNA reverse transcription into 
cDNA is not essential, the nanopore 
technology may execute RNA sequencing 
unswervingly [65]. 

2.3.5. Pyrosequencing. 
Pyrosequencing is a DNA sequencing 
method founded on the identification of the 
released pyrophosphate synthesis of DNA. 
The reactions are based on enzymes; visible 
light is produced which is proportionate to 
the number of the unified nucleotides.  
Enzymatic cascade is initiated with the 
polymerization reaction of nucleic acid 
(DNA/RNA) in which inorganic 
pyrophosphate remains unconfined due to 
the incorporation of nucleotide by the 
polymerase. Unconfined PPi is later 
converted to ATP through ATP sulfurylase, 
which delivers energy to the luciferase that 
oxidizes luciferin and also produces light. 
As more nucleotides come to light, then 
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template sequence could be identified [66]. 
The complete reaction from polymerization 
to the detection of light occurs in 3–4 
seconds at room temperature. Single 
PMOL of DNA in a pyrosequencing 
reaction produces 6 × 1011 molecules of 
ATP, which produce above 6 × 109 photons 
at 560 nm (wavelength). The light amount 
is simply detected through a 
photomultiplier tube, photodiode, and 
charge-coupled device camera. Two 
different strategies of pyrosequencing are 
now accessible, namely liquid-phase 
pyrosequencing [67] and solid-phase 
pyrosequencing [68]. Pyrosequencing has 
opened novel avenues for the 
accomplishment of sequence-based 
analysis of DNA. It is used for the analysis 
of SNPs (single nucleotide polymorphisms) 
and currently applied for the fast typing of 
a huge number of bacteria, viruses, and 
yeasts. Moreover, it remains the quickest 
technique for the sequencing of PCR 
products [69]. This technique is also used 
for the resequencing of suppressor gene 
(p53 tumor) where mutations are 
effectively determined and measured [70]. 
It has possible advantages of accuracy, 
parallel processing, flexibility, and 
automaticity.  
2.4. Post-amplification Techniques 

2.4.1. Array-based Techniques. 
Typical solid phase hybridization uses 
precise hybridization probes attached to the 
solid substance for the detection of target-
labelled molecules in the solution. 
Primarily, assays for identification and 

characterization, certain probes were 
placed in microtiter plate wells and 
rendered immobile [71]. Secondarily, 
microarrays of the fixed manifold probes at 
definite locations on nitrocellulose/nylon 
membranes are advanced, with diverse 
probes applied as dot (in dot-blots)/lines (in 
line probe assay) [72, 73]. The diversity of 
numerous LIPA assays remains accessible 
for the detection of Enterococci that is 
vancomycin-resistant, the toxin of 
Clostridium difficile, MRSA, Neisseria 
meningitides, E. coli, and extended-
spectrum and metallo-beta-lactamases. In 
comparison to microarrays, the DNA 
microarrays have reduced versions with 
spot sizes typically below 200-300 µm. 
These microarrays are typically restricted 
to less than a hundred probes. DNA 
microarrays differ from low-density arrays 
that carry 100-1000 probes, while high-
density arrays comprise 10000-100000 
probes. Various labelling and detection 
systems can be utilized in combination with 
array-based technologies, extending from 
the fluorescence-ended silver ppt to 
assessable enzyme-facilitated substrate 
alteration [74]. Peptide or protein arrays 
have been defined for the detection of the 
HCV/HIV and Mycobacterium 
tuberculosis [75, 76]. Microarrays antigen  
are used for the identification of the 
negative endocarditis blood culture [77]. 
DNA microarrays are applied for the 
diagnosis of bacterial meningitis and its 
general representation, as illustrated in 
Figure 7 [78]. 
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Figure 7. General Representation of the Microarray Experiment [8] 

2.4.2. Loop-mediated Isothermal 
Amplification. It is a novel and strong 
amplification technique for nucleic acids 
and considered as a substitute for PCR. 
LAMP amplifies targeted nucleic acid with 
high specificity in isothermal conditions. In 
LAMP, there is no need for a thermal cycle 
for the changes made in temperature 
because it needs a specific temperature for 
DNA amplification [79]. Moreover, four 
primers comprising two internal and two 
external primers and Bst DNA polymerase 
are used to identify the six exclusive target 
sequences on the tested DNA. The two 
internal primers are the forward internal 
primer and the backward internal primer, 
while external primers are B3 and F3 [80]. 
Each FIP and BIP comprise two discrete 

sequences conferring to the sense or 
antisense strands of the targeted DNA. 
LAMP reaction begins with the help of one 
of the internal primers and the other is used 
for self-priming. This reaction is processed 
for 1 h in a water bath or heat block at 65°C. 
The amplification product is detected 
through SYBR Green 1 dye. The product 
yield has numerous inverted repeats of the 
targeted sequence that display a 
cauliflower-like assembly with many loops. 
It has 10 times better accuracy and 
sensitivity than traditional polymerase 
chain reactions [81]. Due to significant 
amplification efficacy, 1039 copies of the 
target part could be achieved within 1 hour 
of incubation. In LAMP, less inhibition 
reaction happens as compared to PCR in 
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which molecular beacons act as detectors 
for the amplification product. A new 
process founded on MB-LAMP has been 
confirmed that offers direct detection of the 
LAMP product [82]. 

3. CONCLUSION 

Studies about the history of evolving 
bacterial infections provide a new vision of 
the specific roles performed by various 
identification technologies. The old 
techniques are regarded as outdated due to 
the development of methods based on 
molecules. In this review, the use of direct 
hybridization, nucleic acid amplification, 
and variety of methods for 
postamplification analysis was made to 
detect microbial pathogens in human 
beings. PCR assists in identifying the 
taxonomical location of new organisms that 
still remain uncultured. LAMP is 
considered as a substitute for PCR and 
amplifies targeted nucleic acid with high 
specificity in isothermal conditions. 
Pyrosequencing technique is used for the 
resequencing of suppressor gene where 
mutations are effectively determined and 
measured. For the wide range and specific 
detection of pathogenic microbes, 
advancements in nucleic acid-based assay 
and sequencing have been introduced. 
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