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ABSTRACT 

Background. The rising incidence of fungal infections and the growing threat of antifungal 
resistance have heightened the clinical importance of medical mycology. Candida species, 
particularly Candida albicans, are major contributors to fungal diseases, including vulvo-
vaginal and oral candidiasis. 

Methods. This mini review critically analyzed the current literature on Candida infection, 
primarily Candida albicans, growing antifungal resistance, and therapeutic limitations.  
Furthermore, this review also explored the emerging therapeutic strategies, including novel 
antifungal agents and nanotechnology-based strategies to overcome biofilm-related re-
sistance. 

Results. Recent studies highlight a rising prevalence of non-albicans Candida species 
(NAC), many of which exhibit increased antifungal resistance and a tendency for persistent 
infections. Nevertheless, Candida albicans remains a major pathogenic species, capable of 
evading the host immune response through robust biofilm formation and other virulence 
factors. 

Conclusion. Infections caused by Candida species pose a significant healthcare challenge 
due to their rising incidence and increasing resistance to conventional antifungals. The 
complexity of the infection(s) is due to C.albicans accompanied by non-albicans species. 
This review emphasized on urgent need of emerging therapeutic strategies for biofilm-
associated resistance.  

Keywords: biofilm, Candida albicans, nanotechnology, quorum sensing, transcription 
factors 

Highlights 

• The staggering rise of antifungal resistance due to Candida species  (spp.)  is an emerg-
ing problem in healthcare settings 

• Due to limited therapeutic strategies, non-albicans are more contagious than Candida 
albicans spp.   
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• The albicans spp.  promotes the formation of biofilm, contributes to antifungal re-
sistance, and persistent infection  

• To overcome the limitations of drug resistance, emerging molecular targeting thera-
pies and nanotechnology are needed 

• Host immune system plays a pivotal role in disease morbidity, severity, persistence, 
and response to therapy  

GRAPHICAL ABSTRACT 

 
1. INTRODUCTION 

Invasive fungal infections (IFIs) are 
the cause of approximately 1.5 million 
deaths annually worldwide [1]. A signifi-
cant proportion of these death tolls, includ-
ing neonatal mortality are attributed to fun-
gal sepsis, primarily acquired in hospitals, 
that is, opportunistic Candida infections 
[2]. Recent estimates suggest that IFIs af-
fect over 6 million people worldwide, re-
sulting in 3.8 million annual deaths [3]. In 
line with this, mucosal infections, particu-
larly oral candidiasis, manifests in three 

primary forms: pseudomembranous, ery-
thematous, and hyperplastic. Hyperplastic 
candidiasis is usually presented as a chronic 
lesion, while pseudomembranous and ery-
thematous candidiasis are often acute in na-
ture [4].  

Additionally, a group of conditions 
known as "lesions associated with Candida 
spp.," such as Candida-associated denture 
stomatitis (CADS) as documented recently, 
are recognized in oral pathology [5]. More-
over, Vulvovaginal candidiasis (VVC), or 
Candida vaginitis, affects almost 70-75% 
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of women during their lifetime, with about 
10% experiencing recurrent VVC. Candida 
albicans is usually more recognized clini-
cally compared to non-albicans species [6]. 
However, due to their nature, non albicans 
species (Candida parapsilosis, Candida. 
Tropicalis, Candida glabrata, Candida. 
krusei, and Candida. Dubliniensis) are in-
creasingly implicated in nosocomial infec-
tions [7]. In addition, key risk factors of 
non-albicans candidiasis include age, prior 
antifungal use, diabetes and economic sta-
tus. The pathogenic characteristics of non-
albicans-related candidiasis are less ex-
plored but involve certain mechanisms in-
cluding adhesion, epithelial invasion, en-
zyme secretion, and immune evasion [8]. 
Similarly, Candida albicans commonly 
colonizes the human gut and is generally 
considered normal. However, its presence 
has been associated with intestinal issues, 
such as Crohn's disease [9]. Patients often 
exhibit heightened antibodies against C. al-
bicans, which is frequently found in their 
stools [10]. Certain genetic variations affect 
immune reactions to commensal fungi. C. 
albicans colonization delays recovery in ul-
cerative colitis but antifungal therapy and 
probiotics have demonstrated promising ef-
fects [11] 

Despite its role in disseminated can-
didiasis, gut colonization via C. albicans 
may offer protective benefits, such as re-
sistance against Clostridioides difficile in-
fection and enhanced immune responses 
against various pathogens. Gastrointestinal 
colonization induces antifungal immune re-
sponses, protecting against C. albicans or 
Candida auris infections, and possibly 
against other pathogens, emphasizing the 
potential benefits of C. albicans gut coloni-
zation [12]. Particularly, the C. albicans an-
tigens (Hyr1), potentially provides cross-
kingdom protection against Ancinetobacter 
baumanii infection, facilitating gut 

colonization of albicans in immunocom-
promised patients [13].  

Moreover, candidiasis includes muco-
sal and invasive candidiasis (IC). These 
kinds of candida infections include organ-
related infections and candidemia, respec-
tively. The IC is mainly caused by C. albi-
cans and some other species, such as C. 
tropicalis, C. auris, and some other non-al-
bicans species. The IC causes blood-asso-
ciated candidiasis, such as deep vein throm-
bosis. On the other hand, the associated risk 
factors include critical illness, over-use of 
broad-spectrum antibiotics, immunosup-
pression, and skin disruption [14]. There-
fore, this study examined the escalating 
challenge particularly Candida albicans, 
focusing on their growing antifungal re-
sistance and clinical significance across 
various infections. In addition, emerging 
therapeutic strategies were also discussed 
to overcome resistance and improve treat-
ment efficacy. 

2. ETIOLOGY AND EPIDEMIOLOGY  

Candidiasis is an opportunistic infec-
tion mainly caused by Candida spp., partic-
ularly C. albicans and non-albicans are in-
volved including C. tropicalis, C. krusei, 
and others, typically in recurrent resistant 
cases. The infection is particularly associ-
ated with C. albicans which colonizes in 
oral, esophageal, and Gastrointestinal (GI) 
tracts of healthy individuals. However, in 
immunocompromised patients, such as 
those with leukemia or lymphoma who are 
receiving corticosteroid or cytotoxic drug 
therapies, Candida may cause proliferation, 
leading towards mucosal candidiasis [15].  

In line with this, 90% of HIV patients 
are affected with oral candidiasis as oppor-
tunistic infection. Notably, esophageal can-
didiasis is more prevalent in individuals 
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suffering from HIV/AIDS with low CD4+  
counts [16, 17].  

Subsequently, the use of broad-spec-
trum antibiotics is a risk factor of candidia-
sis in cancer patients receiving cytotoxic 
chemotherapy. They are at risk of mycosis 
due to fungal translocation through dam-
aged mucosal barriers (as shown in Fig 1) 
[18]. In accordance with this, mutation in 
the endogenous population or host sur-
rounding may lead to pathogenic symbiosis 
with GI tract [19]. Vaginal candidiasis is 
commonly an occurring infection in 

patients with diabetes mellitus, pregnant 
women, and in those using oral contracep-
tives [20] (shown in Fig. 2). Additional risk 
factors for candidiasis include tuberculosis, 
myxedema, hypoparathyroidism, Addison's 
disease, nutritional deficiencies (such as 
vitamin A, B6, and iron), smoking, poorly-
maintained dentures, the use of intravenous 
tubes and catheters, heart valve issues, old 
age, infancy, pregnancy, and xerostomia. 
These tend to reduce the presence of pro-
tective antifungal proteins, such as histatin 
and calprotectin [21].  

 
Figure 1. Etiology and Risk Factors for Candidiasis 
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This flowchart illustrates important 
factors contributing to the risk of develop-
ing candidiasis. Notable influences include 
antibiotic use, immunocompromised states 
(e.g., cancer, HIV), and underlying 

conditions, such as diabetes and age-related 
changes. These factors have the potential to 
significantly affect the frequency of Can-
dida infections in susceptible populations. 

 
Figure 2. Global Impact of Invasive Fungal Infections (2010-2023).  

This figure demonstrates annual inci-
dence and significant mortality rate of var-
ious fungal infections [22]. 

3. CLINICAL MANIFESTATIONS 

3.1. Nosocomial Candidiasis and Anti-
fungal Resistance 

Nosocomial candidiasis is a major 
cause of morbidity and high mortality 
(71%), particularly candidemia in hospital 
settings. Studies have reported C. albicans 
as the most predominantly isolated species 
in hospital-acquired infections. However, 
non-albicans species are also increasingly 
documented with unpredictable resistance 
patterns and antifungal agents [23, 24]. In 
addition, non-albicans species including C. 
parapsilosis, C. glabrata, and C.krusei have 
shown resistance to antifungal drugs (az-
ole) as compared to C. albicans [25]. Simi-
larly, factors affecting blood culture persis-
tence in candidemia include host traits, 

antifungal resistance, treatment efficacy, 
and source control. Furthermore,  risk fac-
tors for persistent candidemia include con-
tiguous infections, central lines futile treat-
ment, prolonged hospitalization, and septic 
shocks [26]. Global outbreaks of resistant 
Candida strains (as shown in figure 2 &3) 
highlight the need for infection control. An-
tifungal resistance is notably higher in non-
albicans species, particularly C. parapsilo-
sis. Additionally, C. albicans biofilm for-
mation significantly boosts resistance 
against antifungal treatment [27]. However, 
significant research gaps still exist in un-
derstanding clinical outcomes between 
Candida species with and without re-
sistance. In line with this, previous studies 
investigated critical and moderate COVID-
19 patients with candidemia.  

3.2. Oral Candidiasis 

The current research evidently re-
ported C. albicans as an opportunistic 
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pathogen for the progression and develop-
ment of Oral Squamous Cell Carcinoma 
(OSCC). This type of cancer promotes mu-
tation in cell structure and cariogenic sub-
stances [28]. Similarly, malignant disorders 
(OPMDs), particularly oral leukoplakia, is 
significantly associated with the highest 
frequency of C. albicans [29]. However, 
the classification of Chronic Hyperplastic 
Candidiasis (CHC) as an OPMD remains 
controversial. Whereas, some classifica-
tions include CHC due to its high malignant 
transformation rate, while others exclude it. 
Recent meta-analyses indicate a notable 
malignant transformation rate for CHC pa-
tients. Furthermore, association between C. 
albicans and OSCC underscores its poten-
tial role in disease progression [30]. Epide-
miological studies have revealed the asso-
ciation between C. albicans and OSCC de-
velopment, with high detection rates ob-
served in saliva of OSCC patients. Moreo-
ver, stability in C. albicans colonization af-
ter various OSCC treatments implies its 
persistence in disease progression [31]. An-
imal models have further verified the car-
cinogenic potential of C. albicans, demon-
strating its ability to promote oral epithelial 

dysplasia transformation into OSCC. These 
experiments reveal C. albicans as a signifi-
cant risk factor for oral mucosal carcino-
genesis [32]. 

Similarly, DS, a commonly occurring 
candidiasis is more prevalent in denture us-
ers [32]. Despite its multifaceted origins, 
the primary cause of DS is the formation of 
Candida albicans biofilm on oral and den-
ture surfaces. DS affects 17-75% of denture 
wearers, with a higher incidence in elderly 
females, commonly observed on mucosal 
denture surfaces and the posterior tongue. 
DS manifests as erythema, mucosal swell-
ing, and edema. Management typically in-
volves oral and denture hygiene measures, 
denture adjustments, smoking cessation, 
and antifungal medications as shown in 
Figure 1. Alternative therapies, such as mi-
crowave disinfection and photodynamic 
therapy are under investigation but require 
further validation for routine clinical use. 
General dental practitioners play a pivotal 
role in effectively managing DS by under-
standing its pathogenesis, recognizing clin-
ical presentations, and employing contem-
porary treatment approaches [33]. 

Figure 3. Distribution of Candida Species in Bloodstream, Vulvovaginal, and Oral Infec-
tions.  
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This chart illustrates the prevalence of 
various Candida species across different 
types of infections. C. albicans remains 
predominant in bloodstream infections, 
whereas non-albicans are more prevalent in 
vaginal and oral candidiasis [34]. 

3.3. Vulvovaginal Candidiasis (VVC) 

VVC is the fungal infection of vulva 
and vagina, primarily caused by fungal in-
fections, such as Candida species, with 
Candida albicans being the most common 
species. VVC is affecting millions of 
women and is considered as the second-
most common cause of vaginitis as com-
pared to bacterial vaginosis [35]. Studies 
have revealed over one million of VVC 
cases among women of United states, and 
53% of cases reported have often been 
treated with antifungal agents [36].  Like-
wise, non-albicans species including 

Candida glabrata, Candida tropicalis, 
Candida krusei, and Candida parapsilosis 
can also cause VVC. However, these spe-
cies are often significantly associated with 
higher more recurrent rates and greater an-
tifungal resistance compared to C. albicans 
[37]. Several risk factors contribute to VVC 
development including gene polymor-
phisms, allergies, antibiotics, diabetes, hy-
pertension, estrogen levels, and multi-part-
ners [38]. Clinically, VVC is divided into 
two main types, that is, uncomplicated 
cases, which are usually mild and sporadic 
and complicated cases, which can be severe 
or recurrent [39]. Fluconazole is the pri-
mary treatment for VVC, however, studies 
have claimed that about 63% of women 
may have ongoing infections after treat-
ment [39].  

Table 1. Major Clinical Forms of Candidiasis: Invasive, Nosocomial, Oral, Vulvovaginal, 
Gastrointestinal, and Chronic Hyperplastic Candidiasis (CHC) 

Type of Can-
didiasis Clinical Features Associated Species Key Risk Factors References 

Invasive Can-
didiasis (IC) 

Bloodstream infec-
tion and deep-seated 
infection. Mortality: 

50-71%. 

C. albicans, C. 
tropicalis, C. gla-

brata, C. para-
psilosis, C. auris. 

Immunosuppres-
sion, broad-spec-
trum antibiotics, 
ICU stays, cathe-
ters, critical ill-

ness. 

[1, 14, 27, 
40–45] 

Nosocomial 
Candidiasis 

Hospital-acquired 
candidemia; persis-
tent infections due 

to biofilm formation 
on medical devices. 

Non-albicans spe-
cies (e.g., C. para-
psilosis complex), 

C. albicans. 

Central venous 
catheters, pro-

longed hospitali-
zation, severe sep-

sis. 

[46–48] 

Oral Candidi-
asis 

Subtypes: - Pseudo-
membranous (white 
plaques). - Erythem-
atous (red patches). 

- Hyperplastic 
(chronic lesions). - 
Denture stomatitis 
(CADS) (erythema 

under dentures). 

Predominantly C. 
albicans; non-albi-
cans in immuno-
compromised pa-

tients. 

HIV/AIDS, diabe-
tes, denture use, 

smoking, xerosto-
mia. 

[49–52] 
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Type of Can-
didiasis Clinical Features Associated Species Key Risk Factors References 

Vulvovaginal 
Candidiasis 

(VVC) 

Vaginal itching, dis-
charge, erythema; 
recurrent cases (≥4 

episodes/year). 

C. albicans (85-
95%); non-albi-

cans (C. glabrata, 
C. africana, C. 
dubliniensis). 

Diabetes, estrogen 
therapy, antibiotic 
use, genetic poly-

morphisms. 

[38, 53–
56] 

Gastrointesti-
nal Candidia-

sis 

Asymptomatic colo-
nization or dysbiosis 

linked to Crohn’s 
disease; potential 
protection against 

C. difficile 

C. albicans (com-
mensal/pathogenic 

switch). 

Antibiotic use, im-
munosuppression, 
altered microbi-

ota. 

[12, 13, 
52, 57–61] 

Chronic Hy-
perplastic 

Candidiasis 
(CHC) 

Pre-malignant oral 
lesions; controver-

sial association with 
oral squamous cell 
carcinoma (OSCC). 

C. albicans (hy-
phal form pro-

motes epithelial 
dysplasia). 

Tobacco use, 
chronic mucosal 

irritation. 
[29, 30] 

3.4. Candida Albicans and Gastrointestinal (GI) Tract 

The gut microbiome comprises various 
fungal species as normal flora which can be 
harmful to human health, sometimes acting 
as opportunistic pathogens. An imbalance 
of these fungal communities, known as 
dysbiosis, is directly linked with inflamma-
tion and some autoimmune disorders [62]. 
Despite the fact that C. albicans frequently 
engages in asymptomatic interactions with 
its host, it remains a standard constituent of 
the human gut microbiota. Colonization 
typically occurs in childhood and the fungal 
clones that establish infection are believed 
to persist in a quiescent state throughout the 
life of an individual [63]. To prevent these 
commensal fungi from turning pathogenic, 
the immune system plays a crucial role 
through complex interactions. Recent re-
search has made considerable contributions 
in identifying the innate and adaptive im-
mune pathways that regulate intestinal 
fungi [57]. These studies have advanced 
our understanding of fungal molecular 
pathways, revealing how these fungi can ei-
ther remain benign or become pathogenic 
in the gut environment.  

Additionally, C. albicans are com-
monly occurring species in GI tract, coex-
isting with diverse bacterial species and es-
tablishing commensal and pathogenic be-
havior [58]. Mouse models have shown that 
microbiota composition is key for success-
ful colonization, with some bacterial con-
sortia inhibiting C. albicans [64]. While C. 
albicans is not a representative colonizer in 
many mouse strains, certain strains, such as 
those treated with antibiotics, can be easily 
colonized. By altering metabolic pathways, 
fungal growth can be affected, resulting in 
colonization resistance and boosting the 
immune response to produce antimicrobial 
peptides, such as LL-37. Specific diets, 
however, may promote colonization [65]. 

Additionally, in human beings, the mi-
crobiome plays a crucial role in controlling 
C. albicans levels, with broad-spectrum an-
tibiotics being a major risk factor for can-
didemia [66]. Patients undergoing hemato-
poietic stem-cell transplants or ICU treat-
ments with antibiotics (targeting anaer-
obes) show increased Candida species in 
their intestinal mycobiome [67]. These 
findings underscore the role of microbiota 
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in suppressing C. albicans overgrowth and 
pathogenicity in both experimental models 
and patients. Conversely, C. albicans colo-
nization may affect the intestinal micro and 
mycobiome, promoting bacterial dysbiosis 
and invasive infection. 

Furthermore, laboratory studies have 
revealed that bacteria may antagonize C. al-
bicans growth and pathogenicity. Probiotic 
cocktails reduce polymicrobial biofilm for-
mation and bacterial metabolites, such as 
fatty acids inhibit fungal hyphal formation 
[59]. Similarly, Lactobacillus rhamnosus 
can prevent the colonies of C. albicans 
from disrupting intestinal barriers [68]. Pre-
viously, study has also investigated the role 
of host epithelial cells to C. albicans re-
sistance but due to various invading mech-
anisms, these pathogens easily translocate 
via epithelial cells barriers [69]. 

C. albicans is found to colonize the GI 
tract by utilizing available nutrients effec-
tively, showing notable nutritional flexibil-
ity. It can use various carbon sources sim-
ultaneously and achieve adaptation to the 
low-glucose environment of the distal GI 
tract [59]. Nutritional adaptation includes 
tight regulation of nutrient acquisition path-
ways, with N-acetyl glucosamine (Glc-
NAc) playing a significant regulatory role. 
Different nutrient sources impact C. albi-
cans' stress resistance and colonization 
ability, with specific mutants showing sus-
ceptibility to stresses and reduced coloniza-
tion capability [70]. 

The C. albicans also possesses the 
ability to familiarize with diverse condi-
tions, for instance the availability of carbon 
source and iron intake effects the coloniza-
tion and pathogenicity. For instance, modi-
fication in cell wall structure can signifi-
cantly influence immune activation or envi-
sion [71]. Consequently, the alteration of 
GI tract metabolites milieu by producing 

prostaglandin E2 (PGE2), derived from ar-
achidonic acid which plays a crucial role in 
colonization of C. albicans [60]. 

For instance, bile acids also signifi-
cantly affect C. albicans behavior, influ-
encing colonization and infection. Second-
ary bile acids have antifungal properties, 
while primary bile acids can promote fun-
gal growth and filamentation. However, an-
tibiotic treatment disrupts bile acid conver-
sion, increasing primary bile acids and en-
hancing C. albicans outgrowth [72]. 

Furthermore, C. albicans must adapt to 
gut-specific conditions, such as hypoxia 
and varied pH levels, requiring sophisti-
cated regulatory networks. Phenotypic ad-
aptation includes the ability to switch be-
tween yeast and hyphal forms, essential for 
invasive disease but detrimental for com-
mensalism. The intestinal environment sup-
presses filamentation, supporting commen-
salism by limiting hyphal growth [73]. 

Additionally, C. albicans forms spe-
cialized gut cells during colonization. 
These cells have maximized ability of ad-
herence to GI linings, increased susceptibil-
ity to bile associated acids, and alteration in 
metabolism, contributing in prolonged col-
onization [61]. 

4. DIAGNOSIS 

4.1. Biomarkers of Candida Species  

Various diagnostic techniques and 
non-culture-based methods, such as sero-
logical biomarkers (CAGTA test, BDG, 
Mannan-Ag, and Mannan-Ab), are availa-
ble for sensitive and rapid diagnosis of in-
vasive candidiasis. Techniques include the 
detection of Candida DNA and circulating 
fungal antigens in serum. Commercial tests 
exist for BDG, Mannan-Ag, and Cand-
TecTM Candida-antigen (CA), though nu-
cleic acid amplification techniques still 
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require standardization [74]. Reported sen-
sitivity/specificity for these techniques 
vary, with BDG at 77%/85%, Mannan-Ag 
at 58%/93%, and CA at 64%/58% [75]. De-
spite this, BDG and Mannan-Ag have 
proved to be effective serum biomarkers 
depending on the diagnostic approach. 
However, ELISA can increase the 

sensitivity of Mannan-Ag and Mannan-Ab 
measurements to 83% and 86%, respec-
tively [76]. Additionally, high BDG levels 
in bacteremia challenge its validity to diag-
nose invasive fungal disease [77]. Further-
more, antibodies against glucans (ALCA) 
and chitin (ACCA) have also been explored 
as potential biomarkers [78]. 

Table 2. Summary of Diagnostic Techniques and Biomarkers for Invasive Candida Infec-
tions 

Diagnostics Details 

Urgent Medical Need 
Improved diagnostic tools for early detec-
tion of invasive Candida infections and 
monitoring antifungal therapy. 

Diagnostic Techniques 

Non-culture-based methods: CAGTA 
test, BDG, Mannan-Ag, Mannan-Ab. 
<br>- Detection of Candida DNA and cir-
culating fungal antigens in serum. 

Commercial Tests BDG, Mannan-Ag, Cand-TecTM Can-
dida-antigen (CA). 

Sensitivity/Specificity BDG: 77%/85% <br>- Mannan-Ag: 
58%/93% <br>- CA: 64%/58%. 

Effectiveness of Biomarkers 

BDG and Mannan-Ag show promise 
based on diagnostic approach. <br>- 
ELISA increases sensitivity: Mannan-Ag 
(83%), Mannan-Ab (86%). <br>- High 
BDG in bacteremia challenges its diag-
nostic validity. 

Other Biomarkers 
Antibodies against glucans (ALCA) and 
chitin (ACCA) explored as potential bi-
omarkers. 

CAGTA Test and BDG 

High sensitivity and NPV in ICU patients 
with severe abdominal conditions; re-
duces unnecessary antifungal therapy in 
31% of patients. 

Combination of Biomarkers 

CAGTA + BDG or Mannan-Ag: Very 
high NPV. <br>- Useful in antifungal 
control programs to limit unnecessary 
empirical therapy in suspected can-
didemia cases. 

Challenges 

Limited data on biomarkers for deep-
seated candidiasis with negative blood 
cultures. <br>- Interpretation difficulties, 
potential false positives/negatives. 
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Diagnostics Details 

Promising Detection Tool 

Bispecific monoclonal antibody combin-
ing mAbs against BDG and MP65 for de-
tecting significant Candida biomarkers in 
patient sera. 

The CAGTA test and BDG, used seri-
ally during empirical antifungal treatment, 
show high sensitivity and negative predic-
tive value (NPV) in ICU patients with se-
vere abdominal conditions. This method 
could reduce unnecessary antifungal ther-
apy in at least 31% of patients, supporting 
antifungal control programs. Combining 
CAGTA with BDG or Mannan-Ag yields a 
very high NPV and may help limit unnec-
essary empirical therapy in suspected can-
didemia cases. Furthermore, data on bi-
omarkers in patients with deep tissue can-
didiasis and negative blood cultures is rare, 
leading to challenges in interpretation and 
potential false positives or negatives. A 
bispecific monoclonal antibody, combining 
mAbs against BDG and MP65, shows 
promising results as a tool for the detection 
of clinically-significant Candida bi-
omarkers in patient sera [79]. 

5. THERAPEUTIC ADVANCEMENTS 

5.1. Pathogenesis Associated with Bio-
film Formation: Future Recommenda-
tions and Therapeutic Advancements 

The challenge of the high mortality and 
morbidity rate caused by C. albicans bio-
film formation is a critical issue. As the 
problem of biofilm and biomaterial infec-
tions continues to escalate, it becomes im-
perative to develop new antifungal agents 
and identify new targets [80]. According to 
studies, the formation of biofilm and path-
ogenesis of C. abicans could be an explor-
ing point for therapeutic strategies and drug 
resistance [81]. 
Recent advancements have highlighted dif-
ferent transcription factors including 

quorum sensing molecules, host response 
to adhesion, changes in efflux pumps, en-
zymes, bud to hyphal transition, and aber-
ration in lipid profiles that lead to biofilm 
resistance [82]. Additionally, researchers 
are actively exploring the development of  
anti-adhesive biomaterials, anti-infective 
lock therapies, and high throughput screen-
ing methods to discover small-molecule in-
hibitors derived from natural compounds 
[83]. In terms of medical instruments' pre-
vention measures against bacterial accumu-
lation and biofilm formation, coating them 
with nanomaterial has shown promising re-
sults [84]. Conversely, metal nanoparticles 
are also considered as potential agents to in-
hibit biofilm formation in C. albicans [85]. 

Extensive studies should be conducted 
to understand different phenotypic charac-
ter changes involved in biofilm formation.  
To enhance our knowledge further, electron 
microscopic techniques, such as TEM 
(Transmission Electron Microscopy) and 
SEM (Scanning Electron Micro) can be uti-
lized at higher resolutions, providing de-
tailed insights into the structure of these 
complex structures [86]. Another approach 
is using engineered enzymes that inhibit 
colony formation thus, preventing subse-
quent biofilm growth effectively [87]. 

In its host environment, C. albicans 
utilizes various secreted effectors, includ-
ing candidalysin and nutrient acquisition 
machinery, for survival. Recent findings 
have revealed that macrophages possess the 
ability to detect these fungal effectors. A 
specific cysteine-rich protein, resembling 
effectors of plant pathogens, has been 
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observed to activate macrophages through 
Toll-like receptor (TLR)-2 and 4 signaling 
[88]. Additionally, candidalysin, a hypha-
associated toxin, has been implicated in 
macrophage activation. The release of IL-
1β plays a crucial role in host defense 
against C. albicans, facilitating neutrophil 
recruitment to vital sites, such as the brain 
[88]. Candidalysin is identified as a media-
tor of NLRP3-inflammasome activation, 
essential for processing pro-IL-1β in mac-
rophages [89]. These discoveries under-
score the dual role of fungal effectors, serv-
ing as virulence factors for the fungus while 
also being recognized by macrophages, 
leading to neutralization of its virulence. In 
healthy individuals, macrophages exhibit 
optimal functionality. However, in patients 
with systemic candidiasis, macrophage 
function can be severely compromised due 
to underlying conditions, intense inflamma-
tion, and immunosuppressive therapy. Im-
munotherapy presents a promising avenue 
to bolster host defense and combat fungal 
infections, as discussed by Armstrong-
James et al. Interferon-γ (IFN-γ) stimula-
tion has emerged as a particularly intri-
guing approach, as it enhances phagocyto-
sis and killing by macrophages [90]. Mu-
rine models have shown that depletion of 
NK cells and the consequent reduction in 
IFN-γ levels impairs macrophage-mediated 
clearance of C. albicans [91]. Additionally, 

intravenous immunoglobulin therapy has 
shown promising results in providing pro-
tection against Candida auris and Candida 
albicans in mouse models, especially in 
combination with antifungal drugs, such as 
amphotericin B [92]. Consequently, IFN-γ 
presents an attractive strategy to enhance 
macrophage function in order to eliminate 
C. albicans. However, the precise molecu-
lar mechanisms underlying the enhanced 
clearance of C. albicans by macrophages 
following IFN-γ treatment remain to be 
fully elucidated. Conversely, an excess of 
IL-1β-mediated inflammation can exacer-
bate immunopathology. Immunotherapy 
aimed at modulating this proinflammatory 
signal holds promising results to enhance 
infection outcomes. To mitigate immuno-
pathological effects resulting from candida-
lysin-induced NLRP3-inflammasome acti-
vation, sulfonylureases have been proposed 
as a potential suppressive agent [93]. De-
spite their perceived efficacy, macrophages 
often fail to overcome candidiasis in se-
verely-compromised patients. Recent stud-
ies emphasize the significant adaptability of 
C. albicans within macrophages, highlight-
ing its ability to evade immune responses. 
In the early stages of infection, the fungus 
detect environmental and primes itself for 
interactions with phagocytes, a trait that 
highlights its evolutionary adaptation as 
commensal-turned pathogen [94].  

Table 3. Advance Therapeutic Strategies to Overcome C. albicans Biofilm Resistance 

Therapeutic Strategy Description References 

Targeting Transcrip-
tion Factors and 
Quorum Sensing 

Investigating roles of transcription factors (e.g., 
biofilm regulators) and quorum sensing mole-
cules (e.g., farnesol) to disrupt biofilm re-
sistance. 

[82] 

Host Response to Ad-
hesion 

Developing anti-adhesive biomaterials (e.g., 
nanomaterial coatings) to prevent fungal adhe-
sion to medical devices. 

[83] 
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Therapeutic Strategy Description References 

Efflux Pumps and 
Enzymes 

Exploring inhibitors of efflux pumps (e.g., 
ABC transporters) and enzymes (e.g., hydro-
lases) to reduce antifungal resistance. 

[87] 

Bud-to-Hyphal Tran-
sition 

Targeting hyphal formation (critical for biofilm 
virulence) using small-molecule inhibitors or 
genetic modulation. 

[82] 

Lipid Profile Altera-
tions 

Disrupting lipid-mediated biofilm robustness 
through lipidomic studies and antifungal 
agents. 

[82] 

Anti-Infective Lock 
Therapies 

Using lock therapies (e.g., antifungal-infused 
solutions) to prevent biofilm formation on cath-
eters. 

[83] 

High-Throughput 
Screening 

Identifying novel antifungal compounds (natu-
ral/synthetic) via high-throughput methods. [84] 

Nanotechnology-
Based Approaches 

Applying nanoparticles (e.g., metal NPs, car-
bon nanotubes) to disrupt biofilms or enhance 
drug delivery. 

[85] 

IFN-γ Immunother-
apy 

Enhancing macrophage phagocytosis and fun-
gal clearance via IFN-γ stimulation. [93] 

NLRP3-Inflam-
masome Modulation 

Suppressing excessive IL-1β-mediated im-
munopathology using sulfonylureases. [93] 

Probiotics and Engi-
neered Enzymes 

Lactobacillus rhamnosus GG releases Chi-
tinase (Msp1) enzyme Degrades chitin in Can-
dida albicans hyphal cell walls, inhibiting mor-
phogenesis and biofilm formation. Saccharo-
myces boulardii CNCM I-745 produces Capric 
acid (Decanoic acid) which Inhibits C. albicans 
hyphal morphogenesis and biofilm formation. 

[95, 96] 

6. CONCLUSION 

In conclusion, the rising global inci-
dence of candidiasis, driven by increasing 
antifungal resistance, and emergence of re-
silient non-albicans species, highlights an 
urgent need for state of the art diagnostic 
and treatment strategies.  Candida species 
particularly C. albicans remain a challeng-
ing pathogen owing to its dual nature as 
commensal and opportunistic invasive spe-
cies, capable of evading host immune sys-
tem by biofilm formation, phenotypic plas-
ticity, and immunoregulation. The thera-
peutic landscape is further challenged by 

emerging resistance of non-albicans (C. 
glabrata, C. parapsilosis, and C. auris) to 
traditional antifungals, demanding a trans-
formative shift in management approaches. 
Additionally, emerging therapies such as 
immunotherapy targeting macrophage 
function, quorum sensing inhibitors and 
nanotechnology based drug delivery signif-
icantly overcoming biofilm associated re-
sistance. Moreover, engineered enzymes 
and probiotics underscore the potential of 
microbiome-based intervention to disturb 
C. albicans virulence.  Therefore, further 
studies are required to address challenges 
particularly in immunocompromised 
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patients where host-pathogen interaction 
are deregulated. .  
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