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Role of Artificial Intelligence in Drug Discovery and Design: From 
Foundational Principles to Emerging Applications in Antiviral 
Therapeutics 
Nimra Ameer , Saba Razzak∗ , Isha Fatima , Sehrish Haider , Erum Hassan
, Amna Baig , Osama Ilyas , and Sohail Abbas  
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Salim Habib University, Karachi, 
Pakistan 

ABSTRACT  
Artificial Intelligence (AI) has significantly transformed drug discovery by 
enhancing efficiency, reducing costs, and accelerating timelines, 
particularly in research related to antiviral drugs. Traditional drug discovery 
methods are not able to compete with rapidly occurring viral mutations, 
since these are often time-consuming and labor-intensive. Hence, they have 
been replaced with AI techniques, capable of handling massive datasets, 
predicting molecular interactions, and optimizing drug candidates rapidly. 
AI can be used to identify novel drug molecules, drug targets, and 
repurposed drugs. Furthermore, it can also be used to predict chemical 
properties, as well as pharmacokinetic, pharmacodynamic, and toxicology 
profiles by analyzing large datasets. In the early stages of drug discovery, 
AI aids in target identification and validation by analyzing the genomic, 
proteomic, and chemical data to predict disease-relevant proteins. In virtual 
screening and hit identification, AI replaces high-throughput screening with 
rapid in silico analysis. Generative chemistry approaches utilize 
reinforcement learning to design novel, drug-like molecules rapidly. 
Through off-target profiling using models such as DeepTox, AI reduces 
adverse effects by forecasting unintended protein interactions and drug-
drug interactions, improving safety profiles. Its predictive capabilities at 
each development stage—from molecular screening to clinical trials—have 
not only accelerated the pace of antiviral drug discovery but have also 
reduced overall costs significantly, thus proving essential during global 
pandemics like COVID-19. AI can be implemented at each step of drug 
discovery and development, from identifying drug molecules and 
conducting virtual screening to lead optimization and designing clinical 
trials, as well as interpreting the data obtained from the trials. Antiviral 
drugs for viral diseases, such as COVID-19, dengue, influenza, hepatitis, 
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and Ebola, developed using AI are mentioned in this study. It also highlights 
the significance of AI in healthcare, particularly in novel drug development. 
There is also a dark side to AI, and concerns are rising about the accuracy 
and quality, as well as the legal and ethical aspects of fact-driven by 
datasets.   
Keywords: Artificial Intelligence (AI), COVID-19, database, dengue, drug 
design and discovery, hepatitis, influenza, Machine Learning (ML), Natural 
Language Processing (NLP), virtual screening 
GRAPHICAL ABSTRACT  

 
Highlights  

• A comprehensive review of drug design, discovery, and development of 
antiviral drugs.  

• AI-assisted drug development, focused on antiviral drugs.  

• AI is integrated into the drug discovery process involving drug design, 
target identification, virtual screening, drug repurposing, and predicting 
ADMET profiles.     
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• Antiviral drug development for specific viral diseases, including 
COVID-19, dengue, hepatitis, and Ebola.  

• This review article uses a PRISMA flow chart as an explanation of the 
review methodology.   

1.INTRODUCTION  
The reemergence and spread of viral infections pose noteworthy 

challenges worldwide, as proven by the repeated flare-up of various viral 
illnesses, such as COVID-19, Ebola, Zika, and influenza [1]. The constant 
evolution of viral genomes and the limited availability of broad-spectrum 
antiviral experts necessitate the urgent development of new and useful 
techniques [2]. It usually takes over ten years and billions of dollars to bring 
a medicine to the market through the labor-intensive, time-consuming, and 
expensive process of traditional antiviral drug discovery. Additionally, the 
burden on pharmaceutical companies and public health systems has 
increased due to the high proportion of clinical trial failures brought on by 
safety or efficacy concerns [3].  

Artificial intelligence (AI) is transforming drug discovery in this regard 
by providing creative, data-driven solutions that drastically save costs and 
time. From target identification and validation to lead compound screening, 
optimization, and even preclinical and clinical trial design, the use of AI, 
which includes a variety of techniques such as machine learning (ML), deep 
learning (DL), natural language processing (NLP), and reinforcement 
learning (RL), has shown impressive success [4]. By quickly identifying 
viable drug candidates against new viruses through the analysis of large 
biomedical datasets, forecasting drug-virus interactions, and repurposing 
current medications for novel viral targets, AI plays a significant role in 
antiviral research. Indeed, it is anticipated that a new era of AI-driven 
antiviral treatments will be ushered in soon by continuous improvements in 
AI algorithms, the emergence of better data-sharing platforms, and 
encouraging regulatory frameworks. 

 This study aims to demonstrate how AI is changing the strategy to fight 
viral infections and how its incorporation may result in more effective, 
accurate, and creative therapeutic options by methodically examining recent 
research and advancements [5]. In this regard, Table 1 provides an overview 
of AI techniques [3]. Further, this review aims to explore the current 
landscape of AI applications in antiviral drug discovery, including the 
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methodologies, key tools and platforms, success stories, and future 
perspectives. By systematically analyzing the recent literature and latest 
developments, it intends to highlight how AI is reshaping the approach to 
combating viral diseases and how its integration can lead to more efficient, 
precise, and innovative therapeutic solutions. 
1.1.The Global Challenge of Viral Diseases  

Global health systems have been continuously challenged by viral 
infections, resulting in substantial morbidity, mortality, and financial costs. 
Effective antiviral treatments are desperately needed, as seen by the 
resurgence of well-known infections and the appearance of new viruses 
including SARS-CoV-2. Conventional drug discovery procedures, which 
are expensive, time-consuming, and have poor success rates, are frequently 
unable to address such public health emergencies. The traditional drug 
development pipeline, for example, can take more than ten years and cost 
more than $2 billion, while the success rate from the preclinical stage to 
market approval is less than 10% [1, 3].  
1.2. Emergence of Artificial Intelligence in Drug Discovery  

In antiviral drug discovery, Al facilitates in the following ways. 

• Target Identification: AI algorithms can analyze genomic and proteomic 
data to identify potential viral or host targets for therapeutic 
intervention.  

• Lead Compound Discovery: Through virtual screening and generative 
models, AI can identify novel compounds with potential antiviral 
activity.  

• Drug Repurposing: AI can uncover new therapeutic uses for existing 
drugs, expediting the availability of treatments during outbreaks.  

• Optimization of Drug Properties: AI can predict pharmacokinetic and 
pharmacodynamic properties, aiding in the refinement of lead 
compounds.  

1.3.AI Techniques in Antiviral Drug Discovery  
1.3.1.Machine Learning and Deep Learning. Deep learning, 

particularly convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), has shown promise in modeling complex biological 
interactions and predicting molecular properties with high accuracy [6].  
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1.3.2.Natural Language Processing. NLP algorithms make it possible 
to extract pertinent information from clinical trial data, patents, and a large 
body of biological literature. NLP can evaluate unstructured text and find 
possible drug-target interactions, side effects, and therapeutic indications, 
all of which helps drug developers to make well-informed decisions [3].  

1.3.3.Generative Models. Generative models, such as generative 
adversarial networks (GANs) and variational autoencoders (VAEs), can 
design novel molecular structures with desired properties. These models 
learn the underlying distribution of the chemical space and generate 
compounds that are structurally diverse and potentially bioactive [4, 7].  
Table 1. AI Techniques for Drug Design [3, 8, 9] 

AI Techniques Description Application 

Machine learning 
(ML) 

An algorithm that learns 
from data to make 
predictions and decisions. 

Used to predict antiviral 
drug discovery, optimize 
lead compounds, and 
classify viral targets based 
on patterns. 

Deep learning (DL) 

A subset of ML involving 
neural networks with 
many layers that can 
capture complex data. 

Enables the prediction of 
drug-virus interaction, 
identification of novel 
inhibitors, and drug 
repurposing for 
viral diseases. 

Reinforcement 
learning (RL) 

Learns optimal actions 
through trial and error by 
receiving feedback from 
the environment. 

Assists in compound 
optimization by simulating 
the molecular environment 
to find the best drug 
structure. 

Natural language 
processing (NLP) 

Enables computers to 
understand and process 
human language data. 

Extracts useful insight 
from scientific literature, 
patents, and clinical trials 
to identify potential 
antiviral agents. 

Generative 
adversarial networks 
(GANS) 

Comprises a generator and 
a discriminator to generate 
new, realistic data 
samples. 

Used to design novel 
antiviral molecules by 
generating molecular 
structures similar to 
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AI Techniques Description Application 
known and effective 
antivirals. 

Support vector 
machines (SVM) 

Supervise learning 
algorithms effective for 
classification and 
regression tasks. 

Classifies viral protein and 
drug candidates and 
predicts antiviral 
bioactivity. 

Random forest (RF) 

An ensemble learning 
method which uses 
multiple decision trees for 
predictions. 

Predicts viral target 
binding and drug toxicity 
with a higher accuracy. 

Decision trees (DTs) 
A flowchart-like structure 
used for decision-making 
based on data features. 

Identifies structural 
features of antiviral drugs 
that influence activity and 
safety. 

Bayesian networks 
Probabilistic graphical 
models representing 
conditional dependencies. 

Estimate the likelihood of 
drug success and assist in 
target 
identification and 
prioritization. 

Convolutional neural 
networks (CNNs) 

Specialized deep networks 
that analyze visual 
imagery and molecular 
graphs. 

Applied in analyzing 
molecular structures and 
predicting binding affinity 
with viral targets. 

Recurrent neural 
networks (RNNs) 

Neural networks are 
capable of learning from 
sequential data. 

Model molecular 
sequences and predict 
drug response over time in 
viral infections. 

Transfer learning 
Using pre-trained models 
to solve similar problems 
with limited new data. 

Accelerate model 
development for novel 
viruses. 

Autoencoders 
Unsupervised networks 
for data compression and 
reconstruction. 

Help in denoising 
chemical data and 
extracting important 
features for drug 
candidates. 
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Figure 1. PRISMA Flow Diagram Representing the Article Search, 
Screening, Eligibility, and Inclusion Criteria 
2.ROLE OF AI IN DRUG DESIGN  

The use of AI in the field of medicinal chemistry is gaining popularity 
because of its potential to transform the discovery of drugs. Traditional 
methods are known to be slow and labor-intensive, such as trial-and-error 
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and high-throughput screening. AI techniques, such as machine learning 
(ML), deep learning (DL), and natural language processing (NLP), can 
speed up and enhance this process by analyzing vast datasets efficiently. 
This has shown promising results in predicting drug efficacy and toxicity. 
However, challenges remain, including ethical concerns and the need for 
further research [10].   
2.1. Role of AI in Predicting Drug Efficacy and Safety  

A very important use of AI in medicinal chemistry is to predict the 
efficacy and safety of a potential drug compound. Researchers can use AI 
to predict new potential drug compounds that are more effective and have 
fewer side effects in a shorter time, in comparison to the classical methods. 
It is done by training deep learning (a more advanced type of AI) on large 
data sets containing information about the biological activities and 
behaviors of the known compounds. After learning this data set completely, 
this tool can accurately and precisely predict how the new potential drug 
compounds would behave. AI also helps to identify the drug compounds 
that may cause toxicity in the body by training it on the dataset of both toxic 
and non-toxic compounds [11]. Another pivotal role of AI is to predict drug-
drug interaction. The interaction occurs when the patient is on 
polypharmacy and can lead to harmful effects. AI learns and studies the 
known interactions and identifies the patterns to predict how the newly 
made combinations of drugs may interact with each other [12]. Hence, AI 
helps doctors to create personalized treatments based on a person’s genetics 
and how their physiology responds to medicine. Such treatments are more 
effective and carry lower risks of adverse effects and side effects [10].  
2.2. AI in Identifying Drug-Binding Sites  

Currently, AI plays a key role in identifying drug-binding sites, 
especially in new drug compounds, where the location of these sites remains 
unknown. Some new AI models have been designed to recognize allosteric 
sites on proteins with the aim of predicting the ion-binding sites based on 
the amino acid sequence. For instance, one model that uses a position 
weight scoring matrix achieved over 80% accuracy in predicting metal ion 
binding sites (Zn2+, Fe2+, Mg2+, etc).  

Some of the tools that enable the 3D prediction of pharmacophore 
properties [13] are as follows:  
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• HS-Pharm – features in ML algorithms to identify cavity atoms 
important for ligand binding.  

• Pharm-IF – uses ML to rank docking poses of small molecules.  

• DeepSite – uses AI with images to predict how “druggable” protein 
binding sites are.  
There are two more powerful ML-based models for the prediction of 

binding affinities.   

• TIES (Thermodynamic Integration with Enhanced Sampling) [14, 15]: 
This tool uses multiple MD (Molecular Dynamics) simulations to 
achieve better accuracy and error control. Its advantage is its precision 
(mean error of 0.7 Kcal/mol), but the disadvantage is that it is 
computationally expensive.  

• ESMACS (Enhanced Sampling of Molecular Dynamics with 
Approximation of Continuum Solvent) [14–16]: This is a faster method 
that uses ensemble short simulations, but it doesn’t yield the results as 
accurately as TIES. Adaptive ensemble algorithms reduce the 
computing time of both TIES and ESMACS by 2.5 times, which is a 
significant improvement.  
3D-QSAR models, especially the Comparative Molecular Field 

Analysis and AutoMEP methods (combined with PLS or RSA), are helpful 
in predicting binding based on the molecular structure. For instance, when 
it was tested on the NMDA receptor antagonists, it yielded a prediction 
accuracy (r-value) of 0.81, along with autoMEP/RSA reaching 0.99. Other 
advanced methods to predict the binding affinity include free energy 
perturbation, QM/MM (Quantum Mechanics/Molecular Mechanics), and 
slow growth and thermodynamic integration.  
2.3. Role of AI in Predicting Solubility  

Solubility is an important drug property. A study by Boobier et al. 
tracked human predictions of solubility against ML models and found that 
tools/factors affecting solubility predictions for drug-like molecules are 
remarkably comparable in their accuracy to MLs [17]. This makes sense as 
long as developing ML remains time and cost-effective.  

COSMO-RSol is a more theory-oriented approach developed by Klamt 
et al. [18]. It uses density functional theory (DFT) with conductor-like 
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screening model (COSMO). In contrast to earlier versions (e.g., COSMO-
RS), COSMO-RSol can also account for solid-state solubility, integrating 
the energy of fusion into its calculations. It was trained on 150 neutral drug-
like molecules with an RMSD of 0.66 log units, using only three fitting 
parameters. Subsequently, it was evaluated on 107 heterogeneous neutral 
pesticides, yielding an RMSD of 0.61 log-units. In most cases, such error 
can be attributed to the limitations present in the experimental data [11]. In 
terms of estimating solubility in any solvent or solvent mixture, COSMO-
RSol differs in that it uses the same simulation data to calculate associated 
properties, such as partition coefficients, Henry’s constants, and vapor 
pressures. However, because of its slow pace, the approach is not suited to 
high-throughput screening. The development of a fast version, namely 
COSMOfrag, addressed this shortcoming [11]. Molecular descriptors are 
employed to calculate solubility in models such as QSAR, but not their 
activity. The effect of temperature on solubility was the focus of another 
QSPR study.   
2.4. Role of AI in Predicting the Toxicology of New Drugs  

While in vivo toxicology testing is still required, in silico (computer-
based) testing is a cost-efficient, ethical, and timely option. One of the most 
used measures of toxicity is LD₅₀, the dose that is lethal to half of the test 
population. Toxicity can be tested by single or repeated exposure at various 
doses and routes of intake. TOXNET, ToxCast, Tox21, PubChem, 
DrugBank, ToxBank, ECOTOX, and SuperToxic are among the major 
databases used for in silico toxicity studies [19]. One such prominent 
platform is OpenTox, which is based on transparency and interoperability 
and enables ML and QSAR models for toxicity prediction, according to the 
international regulatory standards. A variety of computational models have 
been created, such as structural alerts, rule-based systems, read-across, 
dose/time-response models, and pharmacokinetic/dynamic models [11].  

The TIMES model is a hybrid computational tool that incorporates the 
theoretical knowledge of toxicity and considers 30 metabolic 
transformations, such as oxidation, hydroxylation, and glucuronidation. 
Other ML models (such as k-NN, SVM, and classification trees) are utilized 
to forecast the toxicity of 221 phenols towards Tetrahymena pyriformis, a 
protozoan model. For hepatotoxicity (liver toxicity) prediction, various ML 
models, including logistic regression, SVM, XGBoost, LightGBM, 
CatBoost, and ensemble classifiers, were tried out on the DILIrank dataset.  
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2.5. Role of AI in Blood-Brain Barrier Penetration Prediction  
A drug’s capacity to cross the blood-brain barrier (BBB) can be 

predicted with 75-97% accuracy using 67-199 molecular descriptors [20]. 
Yet, predictions of non-penetrating molecules are less accurate (60–80%). 
To overcome this bias, Zhao et al. applied recursive feature elimination to 
reduce the descriptors to only 19 significant features including 
polarizability, hydrogen bonding, surface area, and pKa [20]. Their model 
registered more than 90% training accuracy and more than 95% accuracy in 
the test set. Some other ML strategies have also delivered robust outcomes. 
A decision tree model labeled BBB permeability with 90% accuracy. Garg 
and Verma constructed a multilayer perceptron (MLP) ANN from seven 
descriptors—largely in view of their molecular weight and polar surface 
area—and obtained a correlation coefficient of 0.89 [21]. A Kohonen self-
organizing map ANN based solely on five descriptors showed 97.2% 
accuracy for penetrants and 90.3% for non-penetrants. Another MLP ANN 
model was also found to be highly accurate with a correlation coefficient of 
0.87 [11].  
2.6. Role of AI in Predicting Chemical Properties  

Machine learning (ML) has greatly improved the accuracy and 
efficiency of the prediction of chemical properties, including atomic 
charges, dipole moments, hydration energies, and hydrogen bonding 
strength. One such example is the Pfizer charge assignment method, which 
uses non-parametric random forest (RF) regression to predict atomic 
charges for atoms, such as H, C, N, O, F, S, and Cl, with an accuracy 
comparable to ab initio methods [22]. In addition, ML also predicts 
hydrogen bond strength for acceptors and donors using the free energy of 
interaction calculation with model molecules, such as acetone and 4-
fluorophenol. One of the most popular methods of computational drug 
design is Quantitative Structure-Activity Relationship (QSAR) modeling. 
QSAR defines the relationship between the molecular structure and the 
biological activity of a molecule by examining its various properties, such 
as steric bulkiness, hydrophobicity, electron density, atomic charges, and 
topological properties. Such descriptors can be computed using quantum 
theories such as QTAIM (Quantum Theory of Atoms in Molecules), which 
evaluates the wave function. QSAR models typically employ ML 
techniques including random forests, linear regression, support vector 
machines (SVMs), deep neural networks (DNNs), and Bayesian neural 
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networks. Random forest is the best among them. QSAR approaches range 
from 1D to 6D, each providing greater dimensionality and data complexity.   

• 1D-QSAR- predicts global properties (e.g., pKa, logP).  

• 2D- and 3D-QSAR are concerned with structural patterns and spatial 
contacts.  

• 4D- to 6D-QSAR- encompass ligand conformations, induced fit, and 
solvation effects, respectively.  

In another work, GB decision trees were applied to predict 
electrophilicity based on conceptual DFT descriptors and topological 
indices. The model reported a mean absolute error of 0.72 and an R² of 0.98. 
Likewise, three open-source QSAR models (SVM-kNN, XGBoost, and 
DNN) were applied to predict pKa values of 7,912 compounds, with RMSE 
~1.5 and R² ~0.80, which compares favorably with commercial packages, 
such as ChemAxon and ACD/Labs. Lastly, meta-QSAR, a high-level 
modeling approach, was investigated by Olier et al. [23]. They examined 
2,764 QSAR targets through multivariate random forest regression and 
identified that meta learning was superior to base-learning QSAR by as 
much as 13%, citing its potential within drug discovery workflows. Kausar 
and Falcao also advanced QSAR usability by developing an automated 
system that produces good models without the need for prior ML experience 
or parameter tuning, utilizing curated databases.  
2.7. Role of AI in Predicting Bioavailability and ADMET Profile  

Traditionally, ADMET (absorption, distribution, metabolism, 
elimination, and toxicity) evaluation of any new drug molecule relies on 
experimental and animal-based studies [24], which are both time- and 
resource-consuming and laborious. However, the rapid emergence of 
different AI tools and techniques, such as machine learning, deep learning, 
and neural-based models, has helped researchers to predict the ADMET 
properties in less time and more accurately (Fig. 2) [25, 26]. This has 
reduced the failure rates of new drugs and minimized the development costs 
significantly. The lack of efficacy and uncontrolled toxicity are the main 
causes of 90% of medication failure during clinical development. AI 
interprets complex biological data and provides information about 
molecular behavior. Table 2 represents some AI models used in the 
prediction of ADMET [24, 25]. 
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Figure 2. Machine Learning in Drug Discovery  
Table 2. AI models used in the prediction of ADMET [24]. 

Model Type Purpose 
Deep Neural Network 
(DNNs) 

Predict blood-brain barrier permeability, 
CYP450 inhibition, and toxicity. 

Convolutional Neural 
Networks (CNNs) 

Process molecular images to predict 
clearance and solubility. 

Graph Convolutional 
Networks (GCNs) 

Model drug structures as graphs to 
predict toxicity and metabolism. 

2.8.AI-based Drug Distribution Property Predictions  
The general structure of the drug distribution property prediction model 

using AI is shown in Figure 3 [25]. By detecting and eliminating compounds 
that are expected to have poor ADMET characteristics before clinical 
testing, these techniques can help to reduce the time and cost of the 
traditional testing methods. Distribution property prediction tools are shown 
in Table 3 [24, 25]. 
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Figure 3. General Structure of A Drug Distribution Property Prediction 
Model using AI 
Table 3. Tools Used for Distribution Property Predictions [24] 

Property Tool 

BBB (blood-brain barrier) 
predictions 

ADMETLab 2.0 
FP -ADMET 

AdmetSAR 2.0. 

PPB (plasma protein binding) 
predictions 

ADMETLab 2.0 
Interpretable -ADMET 

AdmetSAR 2.0. 

Fu (fraction unbonded) predictions 

ADMETLab 2.0 
FP -ADMET 

HelixADMET 
AdmetSAR 2.0. 

Vd (volume of distribution) 
predictions 

ADMETLab 2.0 
FP -ADMET 

Interpretable -ADMET 
AdmetSAR 2.0. 
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2.9.Drug Metabolism Prediction  
In silico, metabolic prediction using AI falls into three major categories:  

• The site of metabolism prediction  

• Metabolite structures prediction  

• Metabolic pharmacokinetics prediction  
Table 4 presents the various tools used for metabolism prediction [24]. 

Table 4. Tools Used to Predict Metabolism [24] 

Name Metabolism Prediction Method 

GLORYx Metabolite structure ML (machine 
learning) 

FAME 3 Site of metabolism 
predictions for CYP ML 

Bio Transformer 3.0 Metabolic 
transformation ML 

HelixADMET CYP inhibitors and 
substrates 

GNN (graph neural 
network) 

FP -ADMET CYP inhibitors and 
substrates RF (random forest) 

2.10. Drug Excretion Predictions  
Different software have been developed to predict ADMET properties, 

such as FP-ADMET which integrates clearance prediction, including 
human renal clearance, intrinsic clearance, metabolic intrinsic clearance, 
and human liver microsomal clearance. AI methods used to predict 
clearance property from 2019 to 2022 are shown below in Table 5 [24]. 
Table 5. Tools Used to Predict Clearance [24] 

Method Data Sources Dataset Size 

RF (random forest) 

Human renal clearance 
Intrinsic clearance 

Metabolic intrinsic clearance 
Human liver microsomal 

clearance 

636 
244 
5278 
5348 

 
SVM (support 
vector machine) AstraZeneca in-house data 73,620 
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Method Data Sources Dataset Size 
ANN (artificial 
neural network) Medivir in-house data 4794 

MT-CNN (multi-
task convolutional 
neural network) 

AstraZeneca 139,907 

3.AI REVOLUTIONIZES VIRTUAL SCREENING IN DRUG 
DESIGN  
3.1.Accelerated Compound Screening  

AI dramatically shortens the early-stage drug discovery timeline. 
Traditional high-throughput screening (HTS) techniques rely on physical 
assays of thousands of compounds against target proteins, which is time-
consuming, expensive, and limited in scale [27]. A schematic illustration of 
AI in virtual screening is shown below in Figure 4.  

3.1.1.With AI, Here’s How It Changes.  
• Compound Library Digitization: Billions of chemical structures can be 

represented using SMILES or molecular graphs [28].  
• AI Pre-screening Models: Algorithms trained on known ligand-target 

pairs predict the likelihood of binding before docking even begins [29].  
• Smart Prioritization: Instead of testing all compounds, AI ranks top 

candidates, reducing screening space by 90-95% [30].  
3.1.2.Data Utilized  

• Molecular fingerprints (e.g., ECFP4, MACCS keys)  
• 3D structure-based features (electrostatic potential, hydrogen bonding)  
• Public datasets: ChEMBL, PubChem BioAssay, BindingDB  

Kwofie et al. [27] in a recent study, found that AI-driven screening 
pipelines reduced both cost and time by over 80%, when applied to antiviral 
compounds.  
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Figure 4. Roles of AI in Virtual Screening 
3.2.Enhanced Accuracy with Deep Learning  

Deep learning, especially the use of convolutional neural networks 
(CNNs) and transformer-based architectures, greatly enhances precision in 
molecular recognition tasks [31]. A comparison between traditional vs AI-
assisted virtual screening for new drug development is shown below in 
Figure 5.  

 
Figure 5. Comparison of Traditional v/s AI-assisted Virtual Screening 

3.2.1.AI Tools and Approaches.  

• DeepDDS: Integrates drug features with target biology to predict 
synergy [30].   

• Mol2Vec & ChemBERTa: Embed molecular structures in numerical 
space to find hidden relationships [28].   

• Knowledge Graphs: Link diseases, genes, and drugs in a network to 
discover new uses  



Role of Artificial Intelligence in Drug… 

74 Currents In Pharmaceutical Research 
 

Volume 3 Issue 2, Fall 2025 

• [31].   
3.2.2.Notable AI-led Discoveries  

• Quinine: Repurposed for dengue through AI modeling of viral protease 
inhibition.  

• Tilorone: Predicted by deep learning to act as a broad-spectrum 
antiviral, especially for Ebola.  

4.ARTIFICIAL INTELLIGENCE IN DRUG REPURPOSING  
AI has emerged as a transformative tool in accelerating drug 

repurposing efforts by analyzing vast biomedical datasets, predicting drug-
target interactions, and identifying novel indications for approved drugs 
[32].    
4.1.AI Approaches in Drug Repurposing  

4.1.1.Machine Learning for Drug-Target Prediction. Supervised and 
unsupervised ML models have been used widely to predict drug-target 
interactions. For instance, deep neural networks (DNNs) and random forest 
(RF) algorithms successfully identify potential repurposing candidates by 
analyzing chemical structures and genomic data [33]. A comparison of 
traditional v/s AI-assisted drug repurposing is shown below in Fig. 6 [34]. 

 
Figure 6. Comparison of Traditional v/s AI-assisted Drug Repurposing 
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4.2. Network-Based AI Approaches    
Network medicine, combined with AI, enables the mapping of drug-

disease relationships. The integration of network medicine with AI allows 
for the exploring of connections between drugs and diseases. Techniques 
like graph neural networks (GNNs) and knowledge graphs combine multi-
omics data to reveal previously unknown relationships between them. 
Unlike traditional drug development, which involves lengthy preclinical 
and clinical phases, repurposing accelerates the process by leveraging the 
existing data. Repurposed drugs typically take 3-12 years to gain regulatory 
approval from various agencies, including the FDA or EMA, with costs 
reduced by 50-60%. Since these candidates have already undergone early-
stage testing—including structural optimization, preclinical trials, and 
clinical evaluation—their safety and efficacy profiles are already partially 
established.  
4.3. Natural Language Processing (NLP) for Literature Mining    

NLP techniques, such as BERT and BioBERT, extract meaningful drug-
disease relationships from scientific literature and clinical trial reports. A 
study by Wu et al. [35] employed NLP to uncover repurposing candidates 
for COVID-19 by analyzing over 24,000 research articles .    

4.3.1.Case Studies of AI-Driven Drug Repurposing.  

• Baricitinib (for COVID-19): An AI model by Richardson et al. [36] 
identified baricitinib, an arthritis drug, as a potential COVID-19 
treatment by analyzing gene expression profiles.    

• Thalidomide (for Crohn’s disease): ML-based drug similarity networks 
suggested that thalidomide’s anti-inflammatory effects could be 
repurposed for Crohn’s disease [37].    

• Metformin is used in diabetes but AI drug repurposing suggested it to 
be used to treat cancer by using the method of network pharmacology 
[38].  

5.AI-BASED TOOLS IN DRUG DISCOVERY  
AI-powered tools are essential to leverage the potential of artificial 

intelligence in drug discovery. The tools range from molecular modeling 
software and virtual screening to the tools used to assist with the generation 
of compounds, identification of targets, and optimization. DeepChem is one 
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of the leading tools that integrates cheminformatics and bioinformatics with 
deep learning techniques to assist the drug discovery processes, such as 
virtual screening and molecular property prediction. Its use of deep learning 
models has led to dramatic improvements in the identification of drug 
candidates, overtaking traditional methods for the most part. Another 
impactful AI technology is AlphaFold, a deep learning model developed by 
DeepMind to predict protein structures with high accuracy. The technology 
has revolutionized structural biology by providing insights into protein 
folding, a critical field of drug target discovery. By enabling a quicker and 
more accurate prediction of protein structures than the current methods, 
AlphaFold has greatly sped up the discovery of treatments against 
individual proteins, such as those in COVID-19.  

In addition, computer programs such as Ligand Scout and AutoQSAR 
combine machine learning with traditional pharmacophore and QSAR 
modeling to refine drug candidates from predictive data based on their 
biological activity and interactions. In addition, AI software including 
COVID Moonshot has made it possible for researchers to collaborate and 
share data and computational models to rapidly generate candidate drugs 
for immediate global health crises like COVID-19. The collaborative 
platform uses reinforcement learning and other ML techniques to generate 
molecular candidates capable of inhibiting the SARS-CoV-2 virus.  
5.1. Clinical Trial Optimization  

• IBM Watson for Clinical Trials: Analyzes EMRs (electronic medical 
records) to match patients with trials. Reduce recruitment time for a 
melanoma study by 78%.   

• Saama’s AI CRO Platform: Uses NLP to extract data from unstructured 
clinical notes, cutting data cleaning time by 50%.  
With innovations in the field of drug discovery for AI, novel platforms 

and tools are emerging to help drug researchers negotiate the intricacies of 
modern-day drug development. By performing most of the repetitive and 
time-consuming tasks associated with drug discovery, AI tools have the 
potential to reduce both the time and cost involved in bringing new drugs to 
the market and improving the success rate of drug candidates.  
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6.APPLICATIONS OF AI IN DRUG DESIGNING AND 
DEVELOPMENT FOR SPECIFIC VIRAL DISEASES  
6.1. AI in COVID-19   

COVID-19, caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), reached epidemic proportions in China and 
across the world within weeks of its initial outbreak in December 2019 in 
Wuhan, China. The World Health Organization (WHO) first declared 
COVID-19 a Public Health Emergency of International Concern on January 
30, 2020. On March 11, 2020, it was declared a pandemic. By August 6, 
2021, there had been 200.8 million cases of COVID-19 worldwide and 4.26 
million deaths [39].  

 
Figure 7. The Application of AI in Managing the COVID-19 Pandemic 
Highlights the Role of AI/ML in COVID-19 Diagnosis, Drug Discovery, 
and Clinical Management 
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6.1.1.Advancement of Computational Methods to Combat the 
COVID-19 Pandemic. Over the past 20 years, the way scientists study 
diseases have changed due to the digital revolution and artificial 
intelligence. This is due to the incorporation of AI in diagnosis and 
treatment. AI uses a range of methods, such as rule-based systems, machine 
learning, and deep learning. ML allows AI to learn from the past data to 
generate predictions, whereas DL uses specialized networks called artificial 
neural networks (ANNs) to handle huge and complicated data. These 
instruments are quite useful in the medical field. For example, IBM’s 
Watson for Oncology aids in choosing cancer treatment, and Microsoft’s 
Hanover Project offers specific therapy suggestions to cancer patients (Fig. 
7) [39]. When COVID-19 initially came out, AI technologies were also used 
to read CT scans, X-rays, and cough sounds to detect infections.  

6.1.2.Application of AI in Vaccine Development and Delivery. AI 
has played a pivotal role in the development of COVID-19 vaccines. By 
enhancing vaccine design and development, AI technologies have enabled 
researchers to predict which viral components—such as the whole virus, 
spike protein, nucleocapsid protein, or membrane protein—are most likely 
to elicit a strong immune response. AI tools are mentioned in Table 6 [39]. 
MARIA, MoDec, and Vaxign-ML programs are used to identify possible 
targets.  
Table 6. AI Tools Used in COVID-19 [39] 

AI Tool Full Form Role in COVID-19 

CNN Convolutional Neural 
Network 

Used to analyze chest X-
rays and CT scans for 

diagnosis. 

A14COVID-
19 

AI-based Cough Sound 
Detection Tools 

Diagnosed COVID-19 by 
analyzing patients’ cough 

sounds. 

IDVI Infectious Disease 
Vulnerability 

Predicted infection risk 
in different countries. 

XGBOOST Extreme Gradient Boosting 
Predicted patient 

mortality risk using 
medical markers. 

MARIA Major Histocompatibility 
Complex Analysis with  

Predicted antigen 
peptides for vaccine 
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AI Tool Full Form Role in COVID-19 
Recurrent Integrated 

Architecture 
development. 

DeepCE Deep-learning-based 
Chemical Embedding 

Helped find new drug 
candidates against 

COVID-19. 

MoDec Motif Deconvolution 
Identified peptide 

sequences for vaccine 
design. 

LSTM Long Short-term memory 
Network 

Predicted possible 
mutations in the virus 

genome. 

6.1.3.Repurposing Candidate for COVID-19. A schematic 
illustration of the AI-based drug discovery screening for COVID-19 is 
shown below in Fig. 8 [40].  
 

 
Figure 8. AI-based Drug Discovery Screening for COVID-19, Identifying 
the FDA-approved Drug “Zafirlukast” Using AI 

 An impressive study by Delijewski and Haneczok used supervised ML 
to predict repurposing candidates among FDA-approved drugs with 
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antiviral activity against SARS-CoV-2. The approach applied in this study, 
that is, molecular property prediction for drug discovery, is based on 
MACCS fingerprints computed using the RDKit library and the 
implementation of a GB tree learning method (XGBoost). Zafirlukast has 
emerged as a promising repurposing candidate against SARS-CoV-2 
infection, complementing findings on the potential of other drugs in the 
same class, such as montelukast. It ranks among the top drug candidates due 
to its dual action—targeting the SARS-CoV-2 3CLpro to inhibit viral 
replication and blocking NF-κB to reduce hyperinflammation. Additionally, 
as an FDA-approved oral medication for asthma, it offers a favorable safety 
profile for drug repurposing in COVID-19 treatment [40].  
6.2. AI in Drug Discovery and Development of Anti-dengue Drugs  

Dengue fever is caused by the dengue virus (DENV), carried by 
mosquitoes named Aedes albopictus and Aedes aegypti. Dengue is now 
endemic to more than 100 tropical and subtropical countries in the 
Americas, Africa, Southeast Asia, and certain regions of Europe. Each year, 
an estimated 390 million dengue infections, in which clinical symptoms are 
exhibited in 96 million cases, are reported, along with 25,000 deaths [41]. 
DENV has four distinct antigenic serotypes: DENV-1, DENV-2, DENV-3, 
and DENV-4 [42]. Dengue shock syndrome (DSS) and dengue hemorrhagic 
fever (DHF) are serious diseases with complications caused by antibody-
dependent enhancement (ADE) or original antigenic sin [41]. Dengue 
therapy is limited to curing symptoms. Currently, no FDA-approved 
medication is available to treat dengue. The first licensed dengue vaccine, 
named dengvaxia, is not considered to be safe and effective for certain age 
groups [43]. New antiviral drug development is essential to prevent and 
control dengue virus infection. AI provides benefits for the prevention, 
control, and management of dengue fever. Dengue outbreaks can be 
predicted and prevented by AI through analyzing factors such as climate, 
population density, and mosquito habitats. AI also takes part in vaccine 
development and new drug discovery. 

6.2.1.Anti-dengue Inhibitors. Various studies have used AI to identify 
anti-dengue inhibitors. For example, a research used an ‘Anti-Dengue’ 
algorithm which employs ML to discover dengue virus inhibitors [44]. 
Moreover, a database named SWEETLEAD, which discovered medications 
with anti-dengue viral activity that were previously approved by the FDA, 
demonstrates the significance of computational screening in identifying 
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potential inhibitors [45]. Synthesis and evaluation of several compounds for 
their antiviral activity and efficacy against the dengue virus, such as 
heterocyclic molecules [46], baicalein-derived [47], and other compounds 
identified by virtual screening of molecular libraries [48]. Moreover, 
structure-activity relationship studies (SARs) and docking are used to 
synthesize and verify the inhibitory effectiveness of anti-dengue drugs, such 
as imidazole phenazine derivatives [49].  

6.2.2.Anti-dengue Inhibitor from Drug Repurposing Using AI. To 
combat DENV, drug repurposing can be achieved by using AI as a potential 
method. Many researchers found that metoclopramide, N-acetylcysteine, 
quinine, and indole derivatives are present in many anti-dengue drugs and 
DENV can be treated by them. A specific method of ML-assisted prediction 
of small molecule antivirals can be used to identify the repurposed 
pharmaceutical drugs to target and treat DENV. A computational scan 
named the SWEETLEAD database is used to find anti-dengue viral 
substances approved by the FDA. The identification and creation of 
effective anti-dengue treatments through medication repurposing can be 
easily done by using AI [44, 45, 50]. 
6.3. Role of AI in Anti-influenza Drugs Discovery and Development  

Influenza, commonly known as ‘the flu,’ is one of the most persistent 
seasonal respiratory illnesses affecting millions worldwide each year. 
Despite being a familiar illness, its viruses constantly evolve, presenting 
ongoing challenges to public health systems, globally. The flu causes 
290,000 to 650,000 respiratory deaths annually and results in 3-5 million 
cases of severe illness worldwide, according to the WHO [51].  

6.3.1.Role of AI in Flu Management. Over the past decade, AI has 
dramatically transformed how we understand, track, and combat influenza. 
The integration of computational methods with traditional epidemiology 
has created powerful new tools that offer unprecedented advantages in the 
fight against this familiar yet ever-changing pathogen [52, 53].  AI tools 
used in influenza are shown below in Table 7. 
Table 7. AI Tools for Influenza 
AI Tool Full Form Role in Influenza 

CNN Convolutional 
Neural Network 

Analyzes chest X-rays to differentiate 
influenza from other respiratory conditions 

with >92% accuracy [54]. 
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AI Tool Full Form Role in Influenza 

FIuAI 
Flu Artificial 
Intelligence 

Detector 

Processes patient symptoms and vital signs to 
distinguish influenza strains and predict 

severity. 

AudioFlu Audio-based Flu 
Diagnostic 

Identifies specific acoustic signatures in cough 
patterns unique to influenza infection [55]. 

IFRRS Influenza Rapid 
Recognition System 

Combines clinical data with lab values to 
minimize false negatives in rapid testing [56]. 

6.3.2.Revolutionizing Vaccine Development. The traditional flu 
vaccine development process has been dramatically accelerated by AI 
systems. These systems 

• Predict antigen drift in influenza viruses to better match vaccines to 
circulating strains.  

• Identify conserved viral epitopes that might enable the development of 
universal flu vaccines.  

• Optimize manufacturing processes to increase vaccine yield and purity.   

 
Figure 9. ML-assisted Drug Repurposing for COVID-19, Identifying 
Potential Existing Therapeutics 
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6.3.3.Drug Repurposing Through Machine Learning. Al-driven 
analysis has identified several existing medications with potential anti-
influenza properties. Drug repurposing through ML is shown below in 
Figure 9. ML approaches similar to those used for COVID-19 have 
identified several promising candidates.  

• Baloxavir was initially flagged by AI algorithms before becoming an 
FDA-approved influenza treatment [57].  

• DL-based screening identified the combination of oseltamivir with 
specific antihistamines as particularly effective against resistant strains 
[58].  

• Network pharmacology models discovered that certain cholesterol-
lowering medications may disrupt influenza virus replication [59].  

6.4. AI in Drug Discovery for Hepatitis  
6.4.1.Role of AI in Targeting HAV IRES-Dependent Translation. 

HAV relies on its internal ribosomal entry site (IRES) for cap-independent 
translation, a critical step in viral replication. Researchers have identified 
host proteins, including La antigen and glucose-regulated protein 78 
(GRP78), as key interaction partners of HAV IRES. ML and DL models 
have accelerated the identification of drugs targeting these host factors [60]. 

6.4.2.Drug Repositioning and Rescue. AI platforms have been used to 
screen FDA-approved drugs, such as amantadine and interferons (IFN-α, 
IFN-λ), which inhibit HAV IRES-mediated translation. These drugs have 
been validated using cheminformatics and bioinformatics tools, 
highlighting their potential for rapid therapeutic deployment. Zinc 
compounds and Japanese rice-koji miso extracts have been identified as 
well as GRP78 inhibitors, reducing HAV replication through AI-based 
structural analysis [61]. The crystallization of the HAV IRES domain V 
enabled a structure-based drug design. AI algorithms have been used to 
compare HAV IRES with other picornavirus structures in order to identify 
conserved motifs, facilitating the discovery of synthetic antibody fragments 
as potential inhibitors [62]. The role of AI in anti-HAV drug development 
is illustrated below in Figure 11 [63]. AI application in hepatitis and 
antiviral drug discovery is presented below in Table 8.  
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Figure 10. Flowchart Representation of AI Applications in Anti-HAV Drug 
Development, From Target Identification to Drug Discovery 
Table 8. Role of AI in Anti-hepatitis Drug Discovery 

Virus Target 
Mechanism 

AI/ML 
Method 

Drug 
Candidates Outcome 

HAV IRES-dependent 
translation 

SVM, 
QSAR, deep 

learning 

JAK 
inhibitors 

Suppressed IRES 
activity and HAV 

replication 

HAV GRP78 
interaction 

Structure-
based ML 

Zinc 
Sulphate 

Reduced HAV 
replication and 

GRP78 inhibition 

HBV Polymerase/prote
ase 

QSAR 
model 

Bis (amino 
acid) ester 
prodrugs 

Identified anti-
HBV compounds 

HBV Liver fibrosis 
diagnosis 

Deep 
learning 

radiomics 
N/A No invasive 

fibrosis staging 

HBV Quasispecies 
analysis 

Machine 
learning 

(NGS data) 

Host 
targeted 
therapies 

Predicted HCC 
risk 
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6.5.AI in the Ebola   
6.5.1.Overview of Ebola Virus and Disease Transmission. The Ebola 

virus (EBOV) is a highly virulent pathogen from the Filoviridae family, 
causing severe hemorrhagic fever with mortality rates reaching 90% in 
some outbreaks [64]. While fruit bats serve as natural reservoirs, 
transmission to humans occurs through contact with infected animals 
(primates, bushmeat), followed by human-to-human spread via bodily 
fluids [65]. The disease progresses rapidly from initial symptoms (fever, 
fatigue) to severe manifestations, including vomiting, hemorrhage, and 
multi-organ failure.      

6.5.2.Role of Big Data in Drug Discovery. The integration of multi-
omics data (genomic, proteomic, chemical) enables computational drug 
discovery at unprecedented scales. Key applications include    

• Drug repurposing: Identifying existing drugs (e.g., chloroquine 
derivatives) with potential anti-EBOV activity.  

• Virtual screening: Rapid evaluation of millions of compounds against 
EBOV targets.  

• Network pharmacology: Mapping virus-host protein interactions to 
identify vulnerable pathways.  
6.5.3.Data Resources for Databases Powering AI-driven Discovery. 

The success of AI-driven Ebola drug discovery relies heavily on robust, 
well-curated databases that provide essential molecular and 
pharmacological data. The most valuable resources include 

• PubChem BioAssay: This offers over 500 EBOV-related screening 
datasets containing vital information on compound activity and 
cytotoxicity profiles.  

• ChEMBL: Serves as another indispensable repository, providing 
meticulously curated drug-target interaction data that helps researchers 
to identify promising lead compounds.   

• DrugRepV: Stands out as a specialized database compiling hundreds of 
experimentally validated compounds with potential anti-EBOV activity. 
Used for drug repurposing efforts.  

• EbolaBase: Offers unique insights by mapping the complex network of 
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virus-host protein interactions, enabling researchers to pinpoint critical 
pathways for therapeutic intervention [66]. These databases collectively 
form the foundation to train accurate ML models and accelerate the 
discovery of effective Ebola treatments. A detailed summary of AI and 
ML applications in Ebola (EBOV) research is provided below in Table 
9. 

Table 9. AI and ML in Anti-Ebola Virus Drug Discovery 

Tool/Algorithm Application Example/Tool 
Used Remarks 

Bayesian ML 
Models 

Predication anti 
EBOV 

compounds 
from screening 

data set 

Tilorone, 
Quinacrine, 
Pyronaridine 

Tetraphosphate 

High ROC value 
(0.86), EC50 

values 
confirmed in 

vitro 

Support Vector 
Machines 
(SVM) 

Predict drug 
target 

interactions, 
bioactivity 
prediction 

Anti-Ebola 
Initiative, 

EBOLApred 

Robust, widely 
used; good 

performance 
with accuracy 

up to 0.86 

Random Forest 
(RF) 

Small molecules 
screening. 

Classification 
models 

EBOLApred 

High accuracy 
(up to 0.89); 

used with 
PubChem 
datasets 

Artificial Neural 
Networks 
(ANN) 

Drug screening 
and virtual 
screening 

Anti-Ebola 
Initiative 

Accuracy up to 
0.95; useful for 

nonlinear 
relationships 

Naïve Bayes 
(NB) 

Compound 
classification EBOLApred 

Moderate 
accuracy 

(~0.65); simple 
and interpretable 

k-Nearest 
Neighbor (kNN) 

Similarity-based 
classification EBOLApred 

Accuracy ~0.80; 
useful for small 

datasets 
Recursive 
Partitioning 

Ensemble model 
for the 

Used with 
Bayesian & 

ROC 0.75–0.85 
in anti-EBOV 
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Tool/Algorithm Application Example/Tool 
Used Remarks 

Forest prediction of 
activities 

SVM in early 
studies 

applications 

Deep Neural 
Networks 
(DNN) 

Advanced 
prediction of 

small molecule 
inhibitors 

AtomNet, 
DEEPScreen 

Outperforms 
traditional 

models; high 
AUC (>0.83) 

Convolutional 
Neural 
Networks 
(CNN) 

Predict drug–
target 

interaction from 
the 2D structure 

DEEPScreen 

High 
performance; 

applied in 
multiple virus-
related studies 

Deep Docking 
(DD) 

Structure-based 
virtual screening 

on massive 
libraries 

Used for SARS-
CoV-2 (1.3 

billion 
compounds) 

Suggested for 
future EBOV 

research 

Generative 
Reinforcement 
Learning 

De novo 
compounds 
design and 

optimization 

DDR1 Inhibitor 
Design 

(Zhavoronkov et 
al., 2019) 

Can generate 
entirely new 

potential drugs 

7. STRENGTHS OF AI IN DRUG DESIGN 
Artificial Intelligence (AI) is emerging as a potent tool in drug 

designing, with numerous strengths that are transforming the way we 
identify and develop new drugs. One of the biggest strengths of AI is its 
capacity to process enormous amounts of data at very high speed. It aids to 
identify potential drug candidates much quickly than previously possible. 
Another significant strength of AI lies in it being able to identify patterns 
that are not immediately apparent to human researchers.  

AI analyzes the information from previous experiments and clinical 
trials. AI algorithms can identify and predict which kinds of molecules are 
most likely to be effective against specific diseases. This helps to make 
better predictions about new drugs, saving time and resources. It can also 
predict how a drug will behave after entering the body. AI models help to 
develop personalized and targeted treatments. It also has the capacity to 
assist in repurposing drugs. AI systems help to estimate the possibility of a 
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compound binding to disease targets even before conducting any physical 
testing. Further, they can process data-intensive tasks, while humans can 
offer ethical judgment, emotional intelligence, and profound scientific 
knowledge. For instance, reinforcement learning algorithms that are trained 
to collaborate with humans can make more informed decisions by 
integrating machine efficiency with human empathy and ethics. Overall, AI 
contributes numerous strengths to drug designing: it accelerates research, 
decreases costs, enhances precision, enables personalized medicine, aids in 
drug repurposing, and streamlines clinical trials. Although there are still 
obstacles to overcome, its advantages are already making a significant 
impact in the medical field and holding out hope for speedier, wiser, and 
more effective treatments down the line [11]. 
8.CHALLENGES AND LIMITATIONS  

Al has shown promise in antiviral medication discovery; however, there 
are still several obstacles to overcome. Some of these are given below.  

• AI implementation for drug discovery introduces numerous ethical, 
legal, and pragmatic issues. Intellectual property is also a massive 
concern.  

• Data Quality and Availability: To train, Al models need substantial, 
superior datasets. However, model performance may be constrained by 
the lack of data, particularly for newly discovered viruses. Creating 
bias-free AI and ethics-free AI systems is a key challenge.  

• Interpretability of the Model: A lot of Al models, especially DL 
architectures, operate as “black boxes,” making it challenging to 
decipher their predictions and understand their mechanisms [67]. 

• Integration with Experimental Validation: To verify efficacy and safety, 
experimental investigations must be conducted in addition to Al 
forecasts, requiring interdisciplinary cooperation. 

9.FUTURE PERSPECTIVES  
The following are some potential future directions. 

• Explainable AI Model Development: Improving the predictability of AI 
forecasts to encourage adoption and trust in the biomedical community. 

• Multi-Omics Data Integration: Bringing together transcriptomic, 
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proteomic, metabolomic, and genomic data to offer a thorough 
understanding of viral pathogenesis and host reactions.  

• Personalized Medicine Approaches: Using AI to customize antiviral 
treatments according to the patient profile, increasing treatment 
effectiveness and lowering side effects.  

• Active Learning Approaches: These approaches enable AI systems to 
guide iterative experimentation cycles, strategically selecting the most 
informative compounds for testing to maximize discovery efficiency.  

• Quantum Computing Technology: It offers the potential for 
dramatically accelerated molecular simulations, allowing researchers to 
explore vast chemical spaces and protein-ligand interactions that are 
currently computationally prohibitive [68].  

• Development of Digital Twin Technology: It creates patient-specific 
treatment models that simulate individual responses to potential 
therapies before clinical administration. These emerging technologies, 
combined with increased collaboration between computational and 
experimental researchers, are paving the way for more effective and 
rapid development of treatments in future outbreaks. 

10. CONCLUSION  
Artificial intelligence (AI) has emerged as a transformative force in 

modern drug discovery and development, offering innovative solutions to 
overcome the limitations of traditional approaches. By integrating AI into 
each and every stage of the drug pipeline—ranging from target 
identification, virtual screening, lead optimization, and ADMET prediction, 
as well as drug repurposing—the process has become more rapid, efficient, 
and cost-effective. 

This review underscores AI’s pivotal role in antiviral drug discovery, 
particularly for diseases such as COVID-19, dengue, influenza, hepatitis, 
and Ebola. AI tools and models enable the precise prediction of drug 
properties, identification of viable candidates, and accelerated development 
timelines. The application of DL, ML algorithms, and specialized platforms 
enhances the accuracy of target validation and pharmacokinetic profiling, 
while supporting the discovery of novel inhibitors and repurposed 
therapeutics. 
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Despite these advancements, challenges remain, including data quality, 
model transparency, ethical concerns, and the need for regulatory 
alignment. Moving forward, the development of robust, interpretable, and 
ethically responsible AI models trained on high-quality, diverse datasets is 
essential to fully realize the potential of AI-driven drug discovery, 
particularly in addressing global health threats posed by viral diseases. 
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