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Role of Artificial Intelligence in Drug Discovery and Design: From
Foundational Principles to Emerging Applications in Antiviral
Therapeutics
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, Amna Baig®, Osama Ilyas®, and Sohail Abbas

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Salim Habib University, Karachi,
Pakistan

ABSTRACT

Artificial Intelligence (AI) has significantly transformed drug discovery by
enhancing efficiency, reducing costs, and accelerating timelines,
particularly in research related to antiviral drugs. Traditional drug discovery
methods are not able to compete with rapidly occurring viral mutations,
since these are often time-consuming and labor-intensive. Hence, they have
been replaced with Al techniques, capable of handling massive datasets,
predicting molecular interactions, and optimizing drug candidates rapidly.
Al can be used to identify novel drug molecules, drug targets, and
repurposed drugs. Furthermore, it can also be used to predict chemical
properties, as well as pharmacokinetic, pharmacodynamic, and toxicology
profiles by analyzing large datasets. In the early stages of drug discovery,
Al aids in target identification and validation by analyzing the genomic,
proteomic, and chemical data to predict disease-relevant proteins. In virtual
screening and hit identification, Al replaces high-throughput screening with
rapid in silico analysis. Generative chemistry approaches utilize
reinforcement learning to design novel, drug-like molecules rapidly.
Through off-target profiling using models such as DeepTox, Al reduces
adverse effects by forecasting unintended protein interactions and drug-
drug interactions, improving safety profiles. Its predictive capabilities at
each development stage—from molecular screening to clinical trials—have
not only accelerated the pace of antiviral drug discovery but have also
reduced overall costs significantly, thus proving essential during global
pandemics like COVID-19. Al can be implemented at each step of drug
discovery and development, from identifying drug molecules and
conducting virtual screening to lead optimization and designing clinical
trials, as well as interpreting the data obtained from the trials. Antiviral
drugs for viral diseases, such as COVID-19, dengue, influenza, hepatitis,
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Role of Artificial Intelligence in Drug...

and Ebola, developed using Al are mentioned in this study. It also highlights
the significance of Al in healthcare, particularly in novel drug development.
There is also a dark side to Al, and concerns are rising about the accuracy
and quality, as well as the legal and ethical aspects of fact-driven by
datasets.

Keywords: Artificial Intelligence (Al), COVID-19, database, dengue, drug
design and discovery, hepatitis, influenza, Machine Learning (ML), Natural
Language Processing (NLP), virtual screening
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e A comprehensive review of drug design, discovery, and development of
antiviral drugs.

e Al-assisted drug development, focused on antiviral drugs.

e Al is integrated into the drug discovery process involving drug design,
target identification, virtual screening, drug repurposing, and predicting
ADMET profiles.
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e Antiviral drug development for specific viral diseases, including
COVID-19, dengue, hepatitis, and Ebola.

e This review article uses a PRISMA flow chart as an explanation of the
review methodology.

1.INTRODUCTION

The reemergence and spread of viral infections pose noteworthy
challenges worldwide, as proven by the repeated flare-up of various viral
illnesses, such as COVID-19, Ebola, Zika, and influenza [1]. The constant
evolution of viral genomes and the limited availability of broad-spectrum
antiviral experts necessitate the urgent development of new and useful
techniques [2]. It usually takes over ten years and billions of dollars to bring
a medicine to the market through the labor-intensive, time-consuming, and
expensive process of traditional antiviral drug discovery. Additionally, the
burden on pharmaceutical companies and public health systems has
increased due to the high proportion of clinical trial failures brought on by
safety or efficacy concerns [3].

Artificial intelligence (Al) is transforming drug discovery in this regard
by providing creative, data-driven solutions that drastically save costs and
time. From target identification and validation to lead compound screening,
optimization, and even preclinical and clinical trial design, the use of Al,
which includes a variety of techniques such as machine learning (ML), deep
learning (DL), natural language processing (NLP), and reinforcement
learning (RL), has shown impressive success [4]. By quickly identifying
viable drug candidates against new viruses through the analysis of large
biomedical datasets, forecasting drug-virus interactions, and repurposing
current medications for novel viral targets, Al plays a significant role in
antiviral research. Indeed, it is anticipated that a new era of Al-driven
antiviral treatments will be ushered in soon by continuous improvements in
Al algorithms, the emergence of better data-sharing platforms, and
encouraging regulatory frameworks.

This study aims to demonstrate how Al is changing the strategy to fight
viral infections and how its incorporation may result in more effective,
accurate, and creative therapeutic options by methodically examining recent
research and advancements [5]. In this regard, Table 1 provides an overview
of Al techniques [3]. Further, this review aims to explore the current
landscape of Al applications in antiviral drug discovery, including the
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methodologies, key tools and platforms, success stories, and future
perspectives. By systematically analyzing the recent literature and latest
developments, it intends to highlight how Al is reshaping the approach to
combating viral diseases and how its integration can lead to more efficient,
precise, and innovative therapeutic solutions.

1.1.The Global Challenge of Viral Diseases

Global health systems have been continuously challenged by viral
infections, resulting in substantial morbidity, mortality, and financial costs.
Effective antiviral treatments are desperately needed, as seen by the
resurgence of well-known infections and the appearance of new viruses
including SARS-CoV-2. Conventional drug discovery procedures, which
are expensive, time-consuming, and have poor success rates, are frequently
unable to address such public health emergencies. The traditional drug
development pipeline, for example, can take more than ten years and cost
more than $2 billion, while the success rate from the preclinical stage to
market approval is less than 10% [1, 3].

1.2. Emergence of Artificial Intelligence in Drug Discovery
In antiviral drug discovery, Al facilitates in the following ways.

e Target Identification: Al algorithms can analyze genomic and proteomic
data to identify potential viral or host targets for therapeutic
intervention.

¢ Lead Compound Discovery: Through virtual screening and generative
models, Al can identify novel compounds with potential antiviral
activity.

e Drug Repurposing: Al can uncover new therapeutic uses for existing
drugs, expediting the availability of treatments during outbreaks.

e Optimization of Drug Properties: Al can predict pharmacokinetic and
pharmacodynamic properties, aiding in the refinement of lead
compounds.

1.3.AI Techniques in Antiviral Drug Discovery

1.3.1.Machine Learning and Deep Learning. Deep Ilearning,
particularly convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), has shown promise in modeling complex biological
interactions and predicting molecular properties with high accuracy [6].
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1.3.2.Natural Language Processing. NLP algorithms make it possible
to extract pertinent information from clinical trial data, patents, and a large
body of biological literature. NLP can evaluate unstructured text and find
possible drug-target interactions, side effects, and therapeutic indications,
all of which helps drug developers to make well-informed decisions [3].

1.3.3.Generative Models. Generative models, such as generative
adversarial networks (GANs) and variational autoencoders (VAEs), can
design novel molecular structures with desired properties. These models
learn the underlying distribution of the chemical space and generate
compounds that are structurally diverse and potentially bioactive [4, 7].

Table 1. Al Techniques for Drug Design [3, 8, 9]

Al Techniques

Description

Application

Machine learning
(ML)

An algorithm that learns
from data to make
predictions and decisions.

Used to predict antiviral
drug discovery, optimize
lead compounds, and
classify viral targets based
on patterns.

Enables the prediction of

A subset of ML involving  drug-virus interaction,
. neural networks with identification of novel
Deep learning (DL) s
many layers that can inhibitors, and drug
capture complex data. repurposing for
viral diseases.
. . Assists in compound
Learns optimal actions L . .
. . optimization by simulating
Reinforcement through trial and error by .
. . the molecular environment
learning (RL) receiving feedback from
i to find the best drug
the environment.
structure.

Natural language

Enables computers to
understand and process

Extracts useful insight
from scientific literature,
patents, and clinical trials

ing (NLP i i i
processing (NLP) human language data. to identify potential
antiviral agents.
Generative Comprises a generator and Used to design novel

adversarial networks
(GANS)

a discriminator to generate
new, realistic data
samples.

antiviral molecules by
generating molecular
structures similar to
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Al Techniques Description Application
known and effective
antivirals.

Supervise learning Classifies viral protein and
Support vector algorithms effective for drug candidates and
machines (SVM) classification and predicts antiviral

regression tasks. bioactivity.

11?11; tilgzeglﬁilshlifgng Predicts viral target
Random forest (RF) binding and drug toxicity

multiple decision trees for
predictions.

with a higher accuracy.

Decision trees (DTs)

A flowchart-like structure
used for decision-making
based on data features.

Identifies structural
features of antiviral drugs
that influence activity and
safety.

Probabilistic graphical

Estimate the likelihood of
drug success and assist in

Bayesian networks models representing target
conditional dependencies. identification and
prioritization.
Specialized deep networks Applied in analyzing

Convolutional neural
networks (CNNs)

that analyze visual
imagery and molecular
graphs.

molecular structures and
predicting binding affinity
with viral targets.

Recurrent neural
networks (RNNs)

Neural networks are
capable of learning from
sequential data.

Model molecular
sequences and predict
drug response over time in
viral infections.

Transfer learning

Using pre-trained models
to solve similar problems
with limited new data.

Accelerate model
development for novel
viruses.

Unsupervised networks

Help in denoising
chemical data and

Autoencoders for data compression and  extracting important
reconstruction. features for drug
candidates.
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Figure 1. PRISMA Flow Diagram Representing the Article Search,
Screening, Eligibility, and Inclusion Criteria

2.ROLE OF AI IN DRUG DESIGN

The use of Al in the field of medicinal chemistry is gaining popularity
because of its potential to transform the discovery of drugs. Traditional
methods are known to be slow and labor-intensive, such as trial-and-error
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and high-throughput screening. Al techniques, such as machine learning
(ML), deep learning (DL), and natural language processing (NLP), can
speed up and enhance this process by analyzing vast datasets efficiently.
This has shown promising results in predicting drug efficacy and toxicity.
However, challenges remain, including ethical concerns and the need for
further research [10].

2.1. Role of Al in Predicting Drug Efficacy and Safety

A very important use of Al in medicinal chemistry is to predict the
efficacy and safety of a potential drug compound. Researchers can use Al
to predict new potential drug compounds that are more effective and have
fewer side effects in a shorter time, in comparison to the classical methods.
It is done by training deep learning (a more advanced type of Al) on large
data sets containing information about the biological activities and
behaviors of the known compounds. After learning this data set completely,
this tool can accurately and precisely predict how the new potential drug
compounds would behave. Al also helps to identify the drug compounds
that may cause toxicity in the body by training it on the dataset of both toxic
and non-toxic compounds [11]. Another pivotal role of Al is to predict drug-
drug interaction. The interaction occurs when the patient is on
polypharmacy and can lead to harmful effects. Al learns and studies the
known interactions and identifies the patterns to predict how the newly
made combinations of drugs may interact with each other [12]. Hence, Al
helps doctors to create personalized treatments based on a person’s genetics
and how their physiology responds to medicine. Such treatments are more
effective and carry lower risks of adverse effects and side effects [10].

2.2. Al in Identifying Drug-Binding Sites

Currently, Al plays a key role in identifying drug-binding sites,
especially in new drug compounds, where the location of these sites remains
unknown. Some new Al models have been designed to recognize allosteric
sites on proteins with the aim of predicting the ion-binding sites based on
the amino acid sequence. For instance, one model that uses a position
weight scoring matrix achieved over 80% accuracy in predicting metal ion
binding sites (Zn*", Fe*", Mg?", etc).

Some of the tools that enable the 3D prediction of pharmacophore
properties [13] are as follows:
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* HS-Pharm - features in ML algorithms to identify cavity atoms
important for ligand binding.

* Pharm-IF — uses ML to rank docking poses of small molecules.

* DeepSite — uses Al with images to predict how “druggable” protein
binding sites are.

There are two more powerful ML-based models for the prediction of
binding affinities.

e TIES (Thermodynamic Integration with Enhanced Sampling) [14, 15]:
This tool uses multiple MD (Molecular Dynamics) simulations to
achieve better accuracy and error control. Its advantage is its precision
(mean error of 0.7 Kcal/mol), but the disadvantage is that it is
computationally expensive.

e ESMACS (Enhanced Sampling of Molecular Dynamics with
Approximation of Continuum Solvent) [14—16]: This is a faster method
that uses ensemble short simulations, but it doesn’t yield the results as
accurately as TIES. Adaptive ensemble algorithms reduce the
computing time of both TIES and ESMACS by 2.5 times, which is a
significant improvement.

3D-QSAR models, especially the Comparative Molecular Field
Analysis and AutoMEP methods (combined with PLS or RSA), are helpful
in predicting binding based on the molecular structure. For instance, when
it was tested on the NMDA receptor antagonists, it yielded a prediction
accuracy (r-value) of 0.81, along with autoMEP/RSA reaching 0.99. Other
advanced methods to predict the binding affinity include free energy
perturbation, QM/MM (Quantum Mechanics/Molecular Mechanics), and
slow growth and thermodynamic integration.

2.3. Role of Al in Predicting Solubility

Solubility is an important drug property. A study by Boobier et al.
tracked human predictions of solubility against ML models and found that
tools/factors affecting solubility predictions for drug-like molecules are
remarkably comparable in their accuracy to MLs [17]. This makes sense as
long as developing ML remains time and cost-effective.

COSMO-RSol is a more theory-oriented approach developed by Klamt
et al. [18]. It uses density functional theory (DFT) with conductor-like

UMT65

School of Pharmacy :@:
Volume 3 Issue 2, Fall 2025 bt



Role of Artificial Intelligence in Drug...

screening model (COSMO). In contrast to earlier versions (e.g., COSMO-
RS), COSMO-RSol can also account for solid-state solubility, integrating
the energy of fusion into its calculations. It was trained on 150 neutral drug-
like molecules with an RMSD of 0.66 log units, using only three fitting
parameters. Subsequently, it was evaluated on 107 heterogeneous neutral
pesticides, yielding an RMSD of 0.61 log-units. In most cases, such error
can be attributed to the limitations present in the experimental data [11]. In
terms of estimating solubility in any solvent or solvent mixture, COSMO-
RSol differs in that it uses the same simulation data to calculate associated
properties, such as partition coefficients, Henry’s constants, and vapor
pressures. However, because of its slow pace, the approach is not suited to
high-throughput screening. The development of a fast version, namely
COSMOfrag, addressed this shortcoming [11]. Molecular descriptors are
employed to calculate solubility in models such as QSAR, but not their
activity. The effect of temperature on solubility was the focus of another
QSPR study.

2.4. Role of Al in Predicting the Toxicology of New Drugs

While in vivo toxicology testing is still required, in silico (computer-
based) testing is a cost-efficient, ethical, and timely option. One of the most
used measures of toxicity is LDso, the dose that is lethal to half of the test
population. Toxicity can be tested by single or repeated exposure at various
doses and routes of intake. TOXNET, ToxCast, Tox21, PubChem,
DrugBank, ToxBank, ECOTOX, and SuperToxic are among the major
databases used for in silico toxicity studies [19]. One such prominent
platform is OpenTox, which is based on transparency and interoperability
and enables ML and QSAR models for toxicity prediction, according to the
international regulatory standards. A variety of computational models have
been created, such as structural alerts, rule-based systems, read-across,
dose/time-response models, and pharmacokinetic/dynamic models [11].

The TIMES model is a hybrid computational tool that incorporates the
theoretical knowledge of toxicity and considers 30 metabolic
transformations, such as oxidation, hydroxylation, and glucuronidation.
Other ML models (such as k-NN, SVM, and classification trees) are utilized
to forecast the toxicity of 221 phenols towards Tetrahymena pyriformis, a
protozoan model. For hepatotoxicity (liver toxicity) prediction, various ML
models, including logistic regression, SVM, XGBoost, LightGBM,
CatBoost, and ensemble classifiers, were tried out on the DILIrank dataset.
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2.5. Role of Al in Blood-Brain Barrier Penetration Prediction

A drug’s capacity to cross the blood-brain barrier (BBB) can be
predicted with 75-97% accuracy using 67-199 molecular descriptors [20].
Yet, predictions of non-penetrating molecules are less accurate (60-80%).
To overcome this bias, Zhao et al. applied recursive feature elimination to
reduce the descriptors to only 19 significant features including
polarizability, hydrogen bonding, surface area, and pKa [20]. Their model
registered more than 90% training accuracy and more than 95% accuracy in
the test set. Some other ML strategies have also delivered robust outcomes.
A decision tree model labeled BBB permeability with 90% accuracy. Garg
and Verma constructed a multilayer perceptron (MLP) ANN from seven
descriptors—Ilargely in view of their molecular weight and polar surface
arca—and obtained a correlation coefficient of 0.89 [21]. A Kohonen self-
organizing map ANN based solely on five descriptors showed 97.2%
accuracy for penetrants and 90.3% for non-penetrants. Another MLP ANN
model was also found to be highly accurate with a correlation coefficient of
0.87 [11].

2.6. Role of Al in Predicting Chemical Properties

Machine learning (ML) has greatly improved the accuracy and
efficiency of the prediction of chemical properties, including atomic
charges, dipole moments, hydration energies, and hydrogen bonding
strength. One such example is the Pfizer charge assignment method, which
uses non-parametric random forest (RF) regression to predict atomic
charges for atoms, such as H, C, N, O, F, S, and Cl, with an accuracy
comparable to ab initio methods [22]. In addition, ML also predicts
hydrogen bond strength for acceptors and donors using the free energy of
interaction calculation with model molecules, such as acetone and 4-
fluorophenol. One of the most popular methods of computational drug
design is Quantitative Structure-Activity Relationship (QSAR) modeling.
QSAR defines the relationship between the molecular structure and the
biological activity of a molecule by examining its various properties, such
as steric bulkiness, hydrophobicity, electron density, atomic charges, and
topological properties. Such descriptors can be computed using quantum
theories such as QTAIM (Quantum Theory of Atoms in Molecules), which
evaluates the wave function. QSAR models typically employ ML
techniques including random forests, linear regression, support vector
machines (SVMs), deep neural networks (DNNs), and Bayesian neural
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networks. Random forest is the best among them. QSAR approaches range
from 1D to 6D, each providing greater dimensionality and data complexity.

e 1D-QSAR- predicts global properties (e.g., pKa, logP).

e 2D- and 3D-QSAR are concerned with structural patterns and spatial
contacts.

e 4D- to 6D-QSAR- encompass ligand conformations, induced fit, and
solvation effects, respectively.

In another work, GB decision trees were applied to predict
electrophilicity based on conceptual DFT descriptors and topological
indices. The model reported a mean absolute error of 0.72 and an R? 0f 0.98.
Likewise, three open-source QSAR models (SVM-kNN, XGBoost, and
DNN) were applied to predict pKa values of 7,912 compounds, with RMSE
~1.5 and R* ~0.80, which compares favorably with commercial packages,
such as ChemAxon and ACD/Labs. Lastly, meta-QSAR, a high-level
modeling approach, was investigated by Olier et al. [23]. They examined
2,764 QSAR targets through multivariate random forest regression and
identified that meta learning was superior to base-learning QSAR by as
much as 13%, citing its potential within drug discovery workflows. Kausar
and Falcao also advanced QSAR usability by developing an automated
system that produces good models without the need for prior ML experience
or parameter tuning, utilizing curated databases.

2.7. Role of Al in Predicting Bioavailability and ADMET Profile

Traditionally, ADMET (absorption, distribution, metabolism,
elimination, and toxicity) evaluation of any new drug molecule relies on
experimental and animal-based studies [24], which are both time- and
resource-consuming and laborious. However, the rapid emergence of
different Al tools and techniques, such as machine learning, deep learning,
and neural-based models, has helped researchers to predict the ADMET
properties in less time and more accurately (Fig. 2) [25, 26]. This has
reduced the failure rates of new drugs and minimized the development costs
significantly. The lack of efficacy and uncontrolled toxicity are the main
causes of 90% of medication failure during clinical development. Al
interprets complex biological data and provides information about
molecular behavior. Table 2 represents some Al models used in the
prediction of ADMET [24, 25].
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Figure 2. Machine Learning in Drug Discovery
Table 2. Al models used in the prediction of ADMET [24].
Model Type Purpose
Deep Neural Network Predict blood-brain barrier permeability,
(DNNs) CYP450 inhibition, and toxicity.
Convolutional Neural Process molecular images to predict
Networks (CNNs) clearance and solubility.
Graph Convolutional Model drug structures as graphs to
Networks (GCNs) predict toxicity and metabolism.

2.8.Al-based Drug Distribution Property Predictions

The general structure of the drug distribution property prediction model
using Al is shown in Figure 3 [25]. By detecting and eliminating compounds
that are expected to have poor ADMET characteristics before clinical
testing, these techniques can help to reduce the time and cost of the
traditional testing methods. Distribution property prediction tools are shown
in Table 3 [24, 25].
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Table 3. Tools Used for Distribution Property Predictions [24]
Property Tool
) ) ADMETLab 2.0
BBB (blood-bram barrier) FP -ADMET
predictions AdmetSAR 2.0.
. ADMETLab 2.0
PPB'(p}asma protein binding) Interpretable ~ADMET
predictions AdmetSAR 2.0.
ADMETLab 2.0
) _y FP -ADMET
Fu (fraction unbonded) predictions Helix ADMET
AdmetSAR 2.0.
ADMETLab 2.0
Vd (volume of distribution) FP -ADMET
predictions Interpretable -ADMET
AdmetSAR 2.0.
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2.9.Drug Metabolism Prediction
In silico, metabolic prediction using Al falls into three major categories:
e The site of metabolism prediction
e Metabolite structures prediction
e Metabolic pharmacokinetics prediction
Table 4 presents the various tools used for metabolism prediction [24].

Table 4. Tools Used to Predict Metabolism [24]

Name Metabolism Prediction Method
GLORYx Metabolite structure ML (mgchme
learning)
Site of metabolism
FAME 3 predictions for CYP ML
Bio Transformer 3.0 Metaboh(; ML
transformation
Helix ADMET CYP inhibitors and GNN (graph neural
substrates network)
FP -ADMET CYP inhibitors and RF (random forest)
substrates

2.10. Drug Excretion Predictions

Different software have been developed to predict ADMET properties,
such as FP-ADMET which integrates clearance prediction, including
human renal clearance, intrinsic clearance, metabolic intrinsic clearance,
and human liver microsomal clearance. Al methods used to predict
clearance property from 2019 to 2022 are shown below in Table 5 [24].

Table 5. Tools Used to Predict Clearance [24]

Method Data Sources Dataset Size
Human renal clearance 636
Intrinsic clearance 244
RF (random forest) Metabolic intrinsic clearance 5278
Human liver microsomal 5348
clearance
SVM (supp qrt AstraZeneca in-house data 73,620
vector machine)
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Method Data Sources Dataset Size

ANN (artificial Medivir in-house data 4794
neural network)

MT-CNN (multi-
task convolutional AstraZeneca 139,907
neural network)

3.A1 REVOLUTIONIZES VIRTUAL SCREENING IN DRUG
DESIGN

3.1.Accelerated Compound Screening

Al dramatically shortens the early-stage drug discovery timeline.
Traditional high-throughput screening (HTS) techniques rely on physical
assays of thousands of compounds against target proteins, which is time-
consuming, expensive, and limited in scale [27]. A schematic illustration of
Al in virtual screening is shown below in Figure 4.

3.1.1.With Al, Here’s How It Changes.

e Compound Library Digitization: Billions of chemical structures can be
represented using SMILES or molecular graphs [28].

e Al Pre-screening Models: Algorithms trained on known ligand-target
pairs predict the likelihood of binding before docking even begins [29].

e Smart Prioritization: Instead of testing all compounds, Al ranks top
candidates, reducing screening space by 90-95% [30].

3.1.2.Data Utilized
e Molecular fingerprints (e.g., ECFP4, MACCS keys)
o 3D structure-based features (electrostatic potential, hydrogen bonding)
o Public datasets: ChEMBL, PubChem BioAssay, BindingDB

Kwofie et al. [27] in a recent study, found that Al-driven screening
pipelines reduced both cost and time by over 80%, when applied to antiviral
compounds.
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Figure 4. Roles of Al in Virtual Screening
3.2.Enhanced Accuracy with Deep Learning

Deep learning, especially the use of convolutional neural networks
(CNNs) and transformer-based architectures, greatly enhances precision in
molecular recognition tasks [31]. A comparison between traditional vs Al-
assisted virtual screening for new drug development is shown below in
Figure 5.

TRADITIONAL DRUG Al-POWERED DRUG
SCREENING SCREENING

Al REDUCES -
TIME & COST

BY 80 %
(Kwofie et al, 2023)

e, [| | ——
g il TIME
Torget AN
Identification i li
y cosT Al-Silico
m e
! Lead Vitilization
(@3’ Synthesis/
K S Prediction

SUCCESS RATE I
— 30%
g Successs Rate 10% 30%

igure 5. Comparison of Traditional v/s Al-assisted Virtual Screening

3.2.1.A1 Tools and Approaches.

e DeepDDS: Integrates drug features with target biology to predict
synergy [30].

e Mol2Vec & ChemBERTa: Embed molecular structures in numerical
space to find hidden relationships [28].

e Knowledge Graphs: Link diseases, genes, and drugs in a network to
discover new uses
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e [31]
3.2.2.Notable Al-led Discoveries

e Quinine: Repurposed for dengue through Al modeling of viral protease
inhibition.

e Tilorone: Predicted by deep learning to act as a broad-spectrum
antiviral, especially for Ebola.

4. ARTIFICIAL INTELLIGENCE IN DRUG REPURPOSING

Al has emerged as a transformative tool in accelerating drug
repurposing efforts by analyzing vast biomedical datasets, predicting drug-
target interactions, and identifying novel indications for approved drugs
[32].

4.1.Al Approaches in Drug Repurposing

4.1.1.Machine Learning for Drug-Target Prediction. Supervised and
unsupervised ML models have been used widely to predict drug-target
interactions. For instance, deep neural networks (DNNs) and random forest
(RF) algorithms successfully identify potential repurposing candidates by
analyzing chemical structures and genomic data [33]. A comparison of
traditional v/s Al-assisted drug repurposing is shown below in Fig. 6 [34].
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Figure 6. Comparison of Traditional v/s Al-assisted Drug Repurposing
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4.2. Network-Based AI Approaches

Network medicine, combined with Al, enables the mapping of drug-
disease relationships. The integration of network medicine with Al allows
for the exploring of connections between drugs and diseases. Techniques
like graph neural networks (GNNs) and knowledge graphs combine multi-
omics data to reveal previously unknown relationships between them.
Unlike traditional drug development, which involves lengthy preclinical
and clinical phases, repurposing accelerates the process by leveraging the
existing data. Repurposed drugs typically take 3-12 years to gain regulatory
approval from various agencies, including the FDA or EMA, with costs
reduced by 50-60%. Since these candidates have already undergone early-
stage testing—including structural optimization, preclinical trials, and
clinical evaluation—their safety and efficacy profiles are already partially
established.

4.3. Natural Language Processing (NLP) for Literature Mining

NLP techniques, such as BERT and BioBERT, extract meaningful drug-
disease relationships from scientific literature and clinical trial reports. A
study by Wu et al. [35] employed NLP to uncover repurposing candidates
for COVID-19 by analyzing over 24,000 research articles .

4.3.1.Case Studies of AI-Driven Drug Repurposing.

¢ Baricitinib (for COVID-19): An AI model by Richardson et al. [36]
identified baricitinib, an arthritis drug, as a potential COVID-19
treatment by analyzing gene expression profiles.

e Thalidomide (for Crohn’s disease): ML-based drug similarity networks
suggested that thalidomide’s anti-inflammatory effects could be
repurposed for Crohn’s disease [37].

e Metformin is used in diabetes but Al drug repurposing suggested it to
be used to treat cancer by using the method of network pharmacology
[38].

5.AI-BASED TOOLS IN DRUG DISCOVERY
Al-powered tools are essential to leverage the potential of artificial

intelligence in drug discovery. The tools range from molecular modeling

software and virtual screening to the tools used to assist with the generation
of compounds, identification of targets, and optimization. DeepChem is one
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of the leading tools that integrates cheminformatics and bioinformatics with
deep learning techniques to assist the drug discovery processes, such as
virtual screening and molecular property prediction. Its use of deep learning
models has led to dramatic improvements in the identification of drug
candidates, overtaking traditional methods for the most part. Another
impactful Al technology is AlphaFold, a deep learning model developed by
DeepMind to predict protein structures with high accuracy. The technology
has revolutionized structural biology by providing insights into protein
folding, a critical field of drug target discovery. By enabling a quicker and
more accurate prediction of protein structures than the current methods,
AlphaFold has greatly sped up the discovery of treatments against
individual proteins, such as those in COVID-19.

In addition, computer programs such as Ligand Scout and AutoQSAR
combine machine learning with traditional pharmacophore and QSAR
modeling to refine drug candidates from predictive data based on their
biological activity and interactions. In addition, Al software including
COVID Moonshot has made it possible for researchers to collaborate and
share data and computational models to rapidly generate candidate drugs
for immediate global health crises like COVID-19. The collaborative
platform uses reinforcement learning and other ML techniques to generate
molecular candidates capable of inhibiting the SARS-CoV-2 virus.

5.1. Clinical Trial Optimization

e IBM Watson for Clinical Trials: Analyzes EMRs (electronic medical
records) to match patients with trials. Reduce recruitment time for a
melanoma study by 78%.

e Saama’s AI CRO Platform: Uses NLP to extract data from unstructured
clinical notes, cutting data cleaning time by 50%.

With innovations in the field of drug discovery for Al novel platforms
and tools are emerging to help drug researchers negotiate the intricacies of
modern-day drug development. By performing most of the repetitive and
time-consuming tasks associated with drug discovery, Al tools have the
potential to reduce both the time and cost involved in bringing new drugs to
the market and improving the success rate of drug candidates.
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6.APPLICATIONS OF AI IN DRUG DESIGNING AND
DEVELOPMENT FOR SPECIFIC VIRAL DISEASES

6.1. Al in COVID-19

COVID-19, caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), reached epidemic proportions in China and
across the world within weeks of its initial outbreak in December 2019 in
Wuhan, China. The World Health Organization (WHO) first declared
COVID-19 a Public Health Emergency of International Concern on January
30, 2020. On March 11, 2020, it was declared a pandemic. By August 6,
2021, there had been 200.8 million cases of COVID-19 worldwide and 4.26
million deaths [39].
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Figure 7. The Application of Al in Managing the COVID-19 Pandemic
Highlights the Role of AI/ML in COVID-19 Diagnosis, Drug Discovery,
and Clinical Management
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6.1.1.Advancement of Computational Methods to Combat the
COVID-19 Pandemic. Over the past 20 years, the way scientists study
diseases have changed due to the digital revolution and artificial
intelligence. This is due to the incorporation of Al in diagnosis and
treatment. Al uses a range of methods, such as rule-based systems, machine
learning, and deep learning. ML allows Al to learn from the past data to
generate predictions, whereas DL uses specialized networks called artificial
neural networks (ANNs) to handle huge and complicated data. These
instruments are quite useful in the medical field. For example, IBM’s
Watson for Oncology aids in choosing cancer treatment, and Microsoft’s
Hanover Project offers specific therapy suggestions to cancer patients (Fig.
7)[39]. When COVID-19 initially came out, Al technologies were also used
to read CT scans, X-rays, and cough sounds to detect infections.

6.1.2.Application of Al in Vaccine Development and Delivery. Al
has played a pivotal role in the development of COVID-19 vaccines. By
enhancing vaccine design and development, Al technologies have enabled
researchers to predict which viral components—such as the whole virus,
spike protein, nucleocapsid protein, or membrane protein—are most likely
to elicit a strong immune response. Al tools are mentioned in Table 6 [39].
MARIA, MoDec, and Vaxign-ML programs are used to identify possible
targets.

Table 6. Al Tools Used in COVID-19 [39]

Al Tool Full Form Role in COVID-19
Convolutional Neural Used to analyze chest X-
CNN rays and CT scans for
Network . .
diagnosis.

Diagnosed COVID-19 by

A14COVID- Al-based Cough Sound . o,
analyzing patients’ cough

19 Detection Tools
sounds.
IDVI Infectious Digease P.redi'cted infection 'risk
Vulnerability in different countries.
Predicted patient

XGBOOST Extreme Gradient Boosting mortality risk using
medical markers.

Major Histocompatibility Predicted antigen
MARIA . i :
Complex Analysis with peptides for vaccine
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Al Tool Full Form Role in COVID-19
Recurrent Integrated development.
Architecture
Deep-learning-based Helpeq find new drug
DeepCE Chemical Embeddin candidates against
& COVID-19.
Identified peptide
MoDec Motif Deconvolution sequences for vaccine
design.
Predicted possible
LSTM Long Short-term memory mutations in the virus
Network
genome.

6.1.3.Repurposing Candidate for COVID-19. A schematic
illustration of the Al-based drug discovery screening for COVID-19 is
shown below in Fig. 8 [40].
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Figure 8. Al-based Drug Discovery Screening for COVID-19, Identifying
the FDA-approved Drug “Zafirlukast” Using Al

An impressive study by Delijewski and Haneczok used supervised ML
to predict repurposing candidates among FDA-approved drugs with
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antiviral activity against SARS-CoV-2. The approach applied in this study,
that is, molecular property prediction for drug discovery, is based on
MACCS fingerprints computed using the RDKit library and the
implementation of a GB tree learning method (XGBoost). Zafirlukast has
emerged as a promising repurposing candidate against SARS-CoV-2
infection, complementing findings on the potential of other drugs in the
same class, such as montelukast. It ranks among the top drug candidates due
to its dual action—targeting the SARS-CoV-2 3CLpro to inhibit viral
replication and blocking NF-«B to reduce hyperinflammation. Additionally,
as an FDA-approved oral medication for asthma, it offers a favorable safety
profile for drug repurposing in COVID-19 treatment [40].

6.2. Al in Drug Discovery and Development of Anti-dengue Drugs

Dengue fever is caused by the dengue virus (DENV), carried by
mosquitoes named Aedes albopictus and Aedes aegypti. Dengue is now
endemic to more than 100 tropical and subtropical countries in the
Americas, Africa, Southeast Asia, and certain regions of Europe. Each year,
an estimated 390 million dengue infections, in which clinical symptoms are
exhibited in 96 million cases, are reported, along with 25,000 deaths [41].
DENV has four distinct antigenic serotypes: DENV-1, DENV-2, DENV-3,
and DENV-4 [42]. Dengue shock syndrome (DSS) and dengue hemorrhagic
fever (DHF) are serious diseases with complications caused by antibody-
dependent enhancement (ADE) or original antigenic sin [41]. Dengue
therapy is limited to curing symptoms. Currently, no FDA-approved
medication is available to treat dengue. The first licensed dengue vaccine,
named dengvaxia, is not considered to be safe and effective for certain age
groups [43]. New antiviral drug development is essential to prevent and
control dengue virus infection. Al provides benefits for the prevention,
control, and management of dengue fever. Dengue outbreaks can be
predicted and prevented by Al through analyzing factors such as climate,
population density, and mosquito habitats. Al also takes part in vaccine
development and new drug discovery.

6.2.1.Anti-dengue Inhibitors. Various studies have used Al to identify
anti-dengue inhibitors. For example, a research used an ‘Anti-Dengue’
algorithm which employs ML to discover dengue virus inhibitors [44].
Moreover, a database named SWEETLEAD, which discovered medications
with anti-dengue viral activity that were previously approved by the FDA,
demonstrates the significance of computational screening in identifying
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potential inhibitors [45]. Synthesis and evaluation of several compounds for
their antiviral activity and efficacy against the dengue virus, such as
heterocyclic molecules [46], baicalein-derived [47], and other compounds
identified by virtual screening of molecular libraries [48]. Moreover,
structure-activity relationship studies (SARs) and docking are used to
synthesize and verify the inhibitory effectiveness of anti-dengue drugs, such
as imidazole phenazine derivatives [49].

6.2.2.Anti-dengue Inhibitor from Drug Repurposing Using Al. To
combat DENV, drug repurposing can be achieved by using Al as a potential
method. Many researchers found that metoclopramide, N-acetylcysteine,
quinine, and indole derivatives are present in many anti-dengue drugs and
DENYV can be treated by them. A specific method of ML-assisted prediction
of small molecule antivirals can be used to identify the repurposed
pharmaceutical drugs to target and treat DENV. A computational scan
named the SWEETLEAD database is used to find anti-dengue viral
substances approved by the FDA. The identification and creation of
effective anti-dengue treatments through medication repurposing can be
easily done by using Al [44, 45, 50].

6.3. Role of Al in Anti-influenza Drugs Discovery and Development

Influenza, commonly known as ‘the flu,” is one of the most persistent
seasonal respiratory illnesses affecting millions worldwide each year.
Despite being a familiar illness, its viruses constantly evolve, presenting
ongoing challenges to public health systems, globally. The flu causes
290,000 to 650,000 respiratory deaths annually and results in 3-5 million
cases of severe illness worldwide, according to the WHO [51].

6.3.1.Role of AI in Flu Management. Over the past decade, Al has
dramatically transformed how we understand, track, and combat influenza.
The integration of computational methods with traditional epidemiology
has created powerful new tools that offer unprecedented advantages in the
fight against this familiar yet ever-changing pathogen [52, 53]. Al tools
used in influenza are shown below in Table 7.

Table 7. Al Tools for Influenza

Al Tool Full Form Role in Influenza
Convolutional Analyzes chest X-rays to differentiate
CNN influenza from other respiratory conditions

Neural Network with >92% accuracy [54].
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Al Tool Full Form Role in Influenza
Flu Artificial Processes patient symptoms and vital signs to
FIuAI Intelligence distinguish influenza strains and predict
Detector severity.
. Audio-based Flu  Identifies specific acoustic signatures in cough
AudioFlu . . : . . .
Diagnostic patterns unique to influenza infection [55].
IFRRS Influenza Rapid Combines clinical data with lab values to

Recognition System minimize false negatives in rapid testing [56].

6.3.2.Revolutionizing Vaccine Development. The traditional flu
vaccine development process has been dramatically accelerated by Al
systems. These systems

® Predict antigen drift in influenza viruses to better match vaccines to
circulating strains.

¢ Identify conserved viral epitopes that might enable the development of
universal flu vaccines.

* Optimize manufacturing processes to increase vaccine yield and purity.
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Figure 9. ML-assisted Drug Repurposing for COVID-19, Identifying
Potential Existing Therapeutics
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6.3.3.Drug Repurposing Through Machine Learning. Al-driven
analysis has identified several existing medications with potential anti-
influenza properties. Drug repurposing through ML is shown below in
Figure 9. ML approaches similar to those used for COVID-19 have
identified several promising candidates.

e Baloxavir was initially flagged by Al algorithms before becoming an
FDA-approved influenza treatment [57].

e DL-based screening identified the combination of oseltamivir with
specific antihistamines as particularly effective against resistant strains
[58].

e Network pharmacology models discovered that certain cholesterol-
lowering medications may disrupt influenza virus replication [59].

6.4. Al in Drug Discovery for Hepatitis

6.4.1.Role of AI in Targeting HAV IRES-Dependent Translation.
HAYV relies on its internal ribosomal entry site (IRES) for cap-independent
translation, a critical step in viral replication. Researchers have identified
host proteins, including La antigen and glucose-regulated protein 78
(GRP78), as key interaction partners of HAV IRES. ML and DL models
have accelerated the identification of drugs targeting these host factors [60].

6.4.2.Drug Repositioning and Rescue. Al platforms have been used to
screen FDA-approved drugs, such as amantadine and interferons (IFN-a,
IFN-L), which inhibit HAV IRES-mediated translation. These drugs have
been validated using cheminformatics and bioinformatics tools,
highlighting their potential for rapid therapeutic deployment. Zinc
compounds and Japanese rice-koji miso extracts have been identified as
well as GRP78 inhibitors, reducing HAV replication through Al-based
structural analysis [61]. The crystallization of the HAV IRES domain V
enabled a structure-based drug design. Al algorithms have been used to
compare HAV IRES with other picornavirus structures in order to identify
conserved motifs, facilitating the discovery of synthetic antibody fragments
as potential inhibitors [62]. The role of Al in anti-HAV drug development
is illustrated below in Figure 11 [63]. AI application in hepatitis and
antiviral drug discovery is presented below in Table 8.
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Figure 10. Flowchart Representation of Al Applications in Anti-HAV Drug
Development, From Target Identification to Drug Discovery

Table 8. Role of Al in Anti-hepatitis Drug Discovery
Target AI/ML Drug

Virus Mechanism Method  Candidates Outcome
SVM, Suppressed IRES
HAy [RES-dependent g, p qoon  JAK o ivity and HAV
translation . inhibitors .
learning replication
GRP78 Structure-  Zine  Leduced HAV
HAV interaction based ML  Sulphate replication and
P GRP78 inhibition
Polymerase/prote QSAR BIS. (amino Identified anti-
HBV acid) ester
ase model HBYV compounds
prodrugs
. . Deep . .
HBV legr ﬁbrgsm learning N/A No invasive
diagnosis . fibrosis staging
radiomics
. . Machine Host .
HBV Qu:;?gp Seicsles learning targeted Predlcé:ﬁ HCC
Y (NGS data) therapies
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6.5.Al in the Ebola

6.5.1.0verview of Ebola Virus and Disease Transmission. The Ebola
virus (EBOV) is a highly virulent pathogen from the Filoviridae family,
causing severe hemorrhagic fever with mortality rates reaching 90% in
some outbreaks [64]. While fruit bats serve as natural reservoirs,
transmission to humans occurs through contact with infected animals
(primates, bushmeat), followed by human-to-human spread via bodily
fluids [65]. The disease progresses rapidly from initial symptoms (fever,
fatigue) to severe manifestations, including vomiting, hemorrhage, and
multi-organ failure.

6.5.2.Role of Big Data in Drug Discovery. The integration of multi-
omics data (genomic, proteomic, chemical) enables computational drug
discovery at unprecedented scales. Key applications include

e Drug repurposing: Identifying existing drugs (e.g., chloroquine
derivatives) with potential anti-EBOV activity.

e Virtual screening: Rapid evaluation of millions of compounds against
EBOV targets.

e Network pharmacology: Mapping virus-host protein interactions to
identify vulnerable pathways.

6.5.3.Data Resources for Databases Powering Al-driven Discovery.
The success of Al-driven Ebola drug discovery relies heavily on robust,
well-curated  databases that provide essential molecular and
pharmacological data. The most valuable resources include

e PubChem BioAssay: This offers over 500 EBOV-related screening
datasets containing vital information on compound activity and
cytotoxicity profiles.

e ChEMBL: Serves as another indispensable repository, providing
meticulously curated drug-target interaction data that helps researchers
to identify promising lead compounds.

e DrugRepV: Stands out as a specialized database compiling hundreds of
experimentally validated compounds with potential anti-EBOV activity.
Used for drug repurposing efforts.

e EbolaBase: Offers unique insights by mapping the complex network of
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virus-host protein interactions, enabling researchers to pinpoint critical
pathways for therapeutic intervention [66]. These databases collectively
form the foundation to train accurate ML models and accelerate the
discovery of effective Ebola treatments. A detailed summary of Al and
ML applications in Ebola (EBOV) research is provided below in Table

9.
Table 9. Al and ML in Anti-Ebola Virus Drug Discovery
Tool/Algorithm Application Exan{qus I:QTOOI Remarks
Predication anti Tilorone High ROC value
. EBOV . L (0.86), EC50
Bayesian ML Quinacrine,
compounds 1 values
Models . Pyronaridine .
from screening Tetraphosphate confirmed in
data set phosp vitro
Predict drug Robust, widely
Support Vector target Anti-Ebola used; good
Machines interactions, Initiative, performance
(SVM) bioactivity EBOLApred with accuracy
prediction up to 0.86
Small molecules High accuracy
Random Forest screenin (up t0 0.89);
CNIng. EBOLApred used with
(RF) Classification
PubChem
models
datasets
i . Accuracy up to
Artificial Neural Drug screening Anti-Ebola 0.95: useful for
Networks and virtual e )
(ANN) screenin Initiative nonlinear
& relationships
Moderate
Naive Bayes Compound accuracy
(NB) classification EBOLApred (~0.65); simple
and interpretable
. Accuracy ~0.80;
k-Nearest Similarity-based ’
Neighbor (kNN)  classification EBOLApred usetul for small
datasets
Recursive Ensemble model Used with ROC 0.75-0.85
Partitioning for the Bayesian & in anti-EBOV
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Tool/Algorithm Application Exar%ps féTOOI Remarks
Forest prediction of SVM in early applications
activities studies
Advanced Outperforms
gzs\g}gﬁsral prediction of AtomNet, traditional
(DNN) small molecule DEEPScreen models; high
inhibitors AUC (>0.83)
Convolutional Predict drug— or f(I){rlrignce'
Neural target DEEPScreen pa lied in ’
Networks interaction from mulr‘zirl))le virus-
(CNN) the 2D structure related studies
Structure-based Used for SARS- Sueeested for
Deep Docking  virtual screening CoV-2(1.3 g8
: o future EBOV
(DD) on massive billion research
libraries compounds)
. De novo DDRI1 Inhibitor
Generative compounds Desion Can generate
Reinforcement P g entirely new
Learnin design and (Zhavoronkov et otential drues
& optimization al., 2019) P &

7. STRENGTHS OF AI IN DRUG DESIGN

Artificial Intelligence (AI) is emerging as a potent tool in drug
designing, with numerous strengths that are transforming the way we
identify and develop new drugs. One of the biggest strengths of Al is its
capacity to process enormous amounts of data at very high speed. It aids to
identify potential drug candidates much quickly than previously possible.
Another significant strength of Al lies in it being able to identify patterns
that are not immediately apparent to human researchers.

Al analyzes the information from previous experiments and clinical
trials. Al algorithms can identify and predict which kinds of molecules are
most likely to be effective against specific diseases. This helps to make
better predictions about new drugs, saving time and resources. It can also
predict how a drug will behave after entering the body. AI models help to
develop personalized and targeted treatments. It also has the capacity to
assist in repurposing drugs. Al systems help to estimate the possibility of a
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compound binding to disease targets even before conducting any physical
testing. Further, they can process data-intensive tasks, while humans can
offer ethical judgment, emotional intelligence, and profound scientific
knowledge. For instance, reinforcement learning algorithms that are trained
to collaborate with humans can make more informed decisions by
integrating machine efficiency with human empathy and ethics. Overall, Al
contributes numerous strengths to drug designing: it accelerates research,
decreases costs, enhances precision, enables personalized medicine, aids in
drug repurposing, and streamlines clinical trials. Although there are still
obstacles to overcome, its advantages are already making a significant
impact in the medical field and holding out hope for speedier, wiser, and
more effective treatments down the line [11].

8.CHALLENGES AND LIMITATIONS

Al has shown promise in antiviral medication discovery; however, there
are still several obstacles to overcome. Some of these are given below.

e Al implementation for drug discovery introduces numerous ethical,
legal, and pragmatic issues. Intellectual property is also a massive
concern.

e Data Quality and Availability: To train, Al models need substantial,
superior datasets. However, model performance may be constrained by
the lack of data, particularly for newly discovered viruses. Creating
bias-free Al and ethics-free Al systems is a key challenge.

e Interpretability of the Model: A lot of Al models, especially DL
architectures, operate as ‘“black boxes,” making it challenging to
decipher their predictions and understand their mechanisms [67].

e Integration with Experimental Validation: To verify efficacy and safety,
experimental investigations must be conducted in addition to Al
forecasts, requiring interdisciplinary cooperation.

9.FUTURE PERSPECTIVES
The following are some potential future directions.

e Explainable AI Model Development: Improving the predictability of Al
forecasts to encourage adoption and trust in the biomedical community.

e Multi-Omics Data Integration: Bringing together transcriptomic,
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proteomic, metabolomic, and genomic data to offer a thorough
understanding of viral pathogenesis and host reactions.

e Personalized Medicine Approaches: Using Al to customize antiviral
treatments according to the patient profile, increasing treatment
effectiveness and lowering side effects.

e Active Learning Approaches: These approaches enable Al systems to
guide iterative experimentation cycles, strategically selecting the most
informative compounds for testing to maximize discovery efficiency.

e Quantum Computing Technology: It offers the potential for
dramatically accelerated molecular simulations, allowing researchers to
explore vast chemical spaces and protein-ligand interactions that are
currently computationally prohibitive [68].

e Development of Digital Twin Technology: It creates patient-specific
treatment models that simulate individual responses to potential
therapies before clinical administration. These emerging technologies,
combined with increased collaboration between computational and
experimental researchers, are paving the way for more effective and
rapid development of treatments in future outbreaks.

10. CONCLUSION

Artificial intelligence (AI) has emerged as a transformative force in
modern drug discovery and development, offering innovative solutions to
overcome the limitations of traditional approaches. By integrating Al into
each and every stage of the drug pipeline—ranging from target
identification, virtual screening, lead optimization, and ADMET prediction,
as well as drug repurposing—the process has become more rapid, efficient,
and cost-effective.

This review underscores Al’s pivotal role in antiviral drug discovery,
particularly for diseases such as COVID-19, dengue, influenza, hepatitis,
and Ebola. Al tools and models enable the precise prediction of drug
properties, identification of viable candidates, and accelerated development
timelines. The application of DL, ML algorithms, and specialized platforms
enhances the accuracy of target validation and pharmacokinetic profiling,
while supporting the discovery of novel inhibitors and repurposed
therapeutics.
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Despite these advancements, challenges remain, including data quality,
model transparency, ethical concerns, and the need for regulatory
alignment. Moving forward, the development of robust, interpretable, and
ethically responsible Al models trained on high-quality, diverse datasets is
essential to fully realize the potential of Al-driven drug discovery,
particularly in addressing global health threats posed by viral diseases.
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