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Department of Biosciences, COMSATS University Islamabad, Pakistan 

ABSTRACT 
Alzheimer’s disease (AD) is an irreversible and progressive 
neurodegenerative disorder. The brain mechanisms involved in this disease 
remain largely unknown. Hence, this study used the integrated 
bioinformatics approach to analyze a high throughput sequencing dataset 
(GSE162873) in order to identify the potential biomarkers involved in the 
pathophysiology of this disease. DESeq2 package was used for the 
identification of differentially expressed genes (DEGs) from both healthy 
and diseased patients. DAVID, a web-based bioinformatics resource, was 
used to perform functional enrichment analysis. StringApp plugin in 
Cytoscape was utilized to construct the protein-protein interaction (PPI) 
networks, whereas hub genes were identified through cytoHubba. MCODE 
was used to perform module analysis, ClueGO to evaluate the KEGG 
pathways enriched in modules, and miRNet platform for the interaction 
analysis of miRNAs and hub genes. Drug-genes interaction analysis was 
performed using DGIdb resource to find out the related drugs. A total of 
652 DEGs were screened which were significantly enriched in GO terms. 
KEGG pathways analysis showed that PI3K-Akt signaling, hippo signaling, 
MAPK signaling, TGF-beta signaling, and sphingolipid signaling were 
significantly enriched pathways. A total of 12 hub genes were found to be 
significantly interacting with miR-603, miR-10b-5p, miR-124-3p, and miR-
1-3p, and some FDA approved drugs. The current study provided an insight 
into the molecular mechanisms of AD and identified some potential 
biomarker genes, their pathways, miRNAs, and drugs which might be 
useful for diagnostic and therapeutic purposes. 
Keywords: Alzheimer’s disease (AD), hub genes, integrated 
bioinformatics, KEGG pathways, RNA-sequencing, transcriptome analysis. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is a serious neurological disorder which is 
progressive in nature. It causes the necrosis and shrinkage of brain cells 
which leads to gradual memory loss, difficulty in thinking, and other 
cognitive deteriorations to such an extent that a person cannot function 
independently [1]. WHO categorizes AD under dementia. The worldwide 
prevalence of this disease was assessed to be 50 million, with 10 million 
new cases annually [2] . The most common risk factor for AD is ageing and 
increasing age is directly linked with the disease [3]. Other common 
associated risk factors include obesity, hypertension, type 2 diabetes, pre-
existing cerebrovascular diseases, depression, head injury, impaired 
hearing, physical inactivity, and smoking [4–6] . 

Alzheimer is marked by extracellular accumulation of the plaques of 
Amyloid-β (Aβ) and the formation of intracellular neurofibrillary tangles 
(NFTs) of hyperphosphorylated tau-protein, resulting in abnormalities of 
limbic and cortical areas of brain. These plaques accumulate initially in the 
temporal, basal, and orbitofrontal neocortex areas and then slowly spread 
throughout the hippocampus, amygdala, neocortex, basal ganglia, and 
diencephalon. Thus, NFTs and Aβs are the major players associated with 
the progression of the disease [7, 8] . This disease can also be familial or 
sporadic [9] . There are two types of ADs namely early-onset Alzheimer’s 
disease (EOAD) and late-onset Alzheimer’s disease (LOAD). The former 
starts to develop before the age of 65 years and the latter shows its 
symptoms after the age of 65 years. Among these, EOAD is initiated by 
mutations in presenilin genes (PSEN1 and PSEN2) and the Aβ precursor 
protein (APP) gene [10] . Whereas, the initiation of LOAD is associated 
with various types of gene-environment interactions. These interactions 
may include different gene polymorphisms that cause metabolic alterations 
such as hyperinsulinemia, altered adipokines, and hypercholesterolemia. 
Other possible causes of this type of AD include head injury, hypertension, 
psychological stress, and aluminum toxicity [11] . In LOAD, Aβ slowly 
accumulates in the brain before the appearance of the symptoms [12] . 
Among the three common variants (E2, E3, and E4) of apolipoprotein E 
(APOE), the primary genetic risk factor associated with LOAD is the E4 
allele [13] . Several potential biomarkers and therapies for the identification 
and cure of AD have been identified; however, these remedies only 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr


Amin et al. 

 
45 Department of Knowledge and Research Support Services 

 Volume 3 Issue 2, Fall 2023 
 

temporarily slow down the progression of the disease. There is no effective 
treatment strategy available which can stop disease progression in the brain 
[14] .  

The identification of key molecules which may be involved in causing 
cognitive impairment at an early stage has been very challenging. Several 
studies have established that early-stage neuro impairment is strongly 
impacted by the changes in genes regulation and expression. These findings 
suggest that the understanding of transcriptome may help to improve the 
diagnostic strategies for AD [15, 16]. With the recent advancements in 
sequencing technologies, the involvement of bioinformatics analysis for the 
identification of the biomarkers of diseases has rapidly increased. 

In the current study, several biomarkers of AD were identified using the 
publicly available transcriptomics dataset available at the Gene Expression 
Omnibus (GEO) database [17]. Different bioinformatics techniques were 
utilized to analyze and perform the enrichment analysis of the KEGG 
(Kyoto Encyclopedia of Genes and Genome) pathways and gene ontology 
(GO) terms. Moreover, the functional association of genes was determined 
through the construction of protein-protein interaction (PPI) networks, 
which were used further to identify the hub genes and modules. The 
interaction of the retrieved hub genes with miRNAs and FDA approved 
drugs was also underscored. 
2. MATERIALS AND METHODS 
2.1. Retrieval and Analysis of RNA Sequencing Data 

RNA-sequencing dataset with identifier code GSE162873 [18] was 
retrieved using the GEO database, a public repository for microarrays, 
RNA-sequencing, DNA-sequencing, and gene ChIP expression datasets. 
This dataset was obtained through GPL11154 Illumina HiSeq 2000 (Homo 
sapiens) platform on AD. The dataset consisted of 8 tissue samples (4 
samples from AD patients and 4 samples from healthy individuals). The raw 
counts of each sample were used for the subsequent differential expression 
analysis. 
2.2. Data Normalization and Processing 

The normalization and processing of count matrix containing raw 
counts from each sample was performed through DESeq2 package. DESeq2 
utilizes the Wald test for calculating probability values, Benjamini 
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Hochberg (BH) method for the correction of the values, and the maximum 
likelihood estimate (MLE) for gene expression [19]. Further, the adjusted 
p-value < 0.001 and |log2FC| >1 criteria were followed to screen 
differentially expressed genes (DEGs). The expression of DEGs was 
visualized through heatmap which was created using pheatmap package 
[20] available in R Bioconductor. The volcano plot of the acquired DEGs 
was also constructed to show the overall differential expression trend. 
2.3. Enrichment Analysis of Selected Genes  

Functional enrichment analysis was executed to explore DEGs. For this 
purpose, DAVID (Database for Annotation, Visualization, and Integrated 
Discovery) bioinformatics resource [21] was used to obtain the gene 
ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes and 
Genome) pathways. The cutoff criteria for the functional analysis were p-
value <0.05 and gene counts > 4.  
2.4. Network Construction and Extraction of Hub Genes and Modules 

The functional and physical interactions of DEGs were assessed using 
stringAPP plug-in in Cytoscape, which uses STRING database to provide 
information about both functional associations and physical interactions of 
the genes [22]. The threshold confidence score for the generation of network 
was ≥ 0.4. These networks were visualized using Cytoscape [23]. The top 
20 genes were identified using 5 different topological methods, namely 
degree, density of maximum neighborhood component (DMNC), edge 
percolated component (EPC), maximum clique centrality (MCC), and 
maximum neighborhood component (MNC). These genes were mined from 
the PPI network through the application of cytoHubba. It provides a user 
friendly interface to extract hub objects and nodes from biological networks 
[24]. The genes found by using at least 4 different methods were considered 
hub genes. MCODE, which identifies clusters within a network [25], was 
used to extract modules from the PPI network using default parameters. The 
modules are densely connected regions in a PPI network representing a 
group of proteins involved in performing  specific functions [26]. The cutoff 
criteria used for the screening of modules were score > 5 and nodes > 5. The 
screened modules were then subjected to KEGG pathways enrichment 
analysis in Cytoscape using ClueGO plugin which generates dynamic 
network structures of these pathways enriched with the genes of interest 
[27]. The pathways having p-value < 0.05 were selected for analysis. 
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2.5. miRNA-mRNA Interaction Network Analysis 

Nervous tissue specific miRNAs and hub genes interaction was 
predicted through a web-based tool namely miRNet 2.0. It covers 11 
databases to provide high quality data on miRNA-target interaction [28]. 
Nervous tissue specific miRNAs were chosen because AD primarily affects 
the nervous system [29]. Cytoscape was used to visualize the resulting co-
interaction networks. 
2.6. Drug-Gene Interaction Analysis 

The interaction of hub genes with potential drugs was also evaluated. 
For this purpose, an online database DGIdb (Drug-Gene Interaction 
database) v4.2.0 was used. This database uses web-based sources as well as 
the text mining of publications and different databases to provide interaction 
information of drugs with respective genes [30]. 
3. RESULTS 
3.1. Identification of Significant Genes 

Following the cutoff criteria, 652 DEGs were short listed from the total 
genes list. Out of these, 394 genes were up-regulated, and 258 genes were 
down-regulated. The visualization of DEGs is represented through volcano 
plot and heatmap (Figure 1 (a) and Figure 1(b)).  
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Figure 1. (a) Volcano Plot of Differentially Expressed Genes (DEGs). The 
Upregulated Genes are Shown in Red Color, While the Downregulated 
Genes are Shown in Green. Black Color Represents the Insignificant Genes. 
(b) Heatmap of DEGs. The Upregulated Genes are Shown in Red Color, 
While the Downregulated Genes Are Shown in Green 
3.2. Enrichment Analysis of Selected Genes 

Functional enrichment analysis of the selected genes revealed that 627 
genes were enriched in both GO terms and KEGG pathways. Among the 
GO terms enrichment results, a total of 10 biological processes (BP) were 
found to be enriched. Among these BPs, the top 5 included protein kinase 
B signaling, angiogenesis, anterior/posterior pattern specification, negative 
regulation of apoptotic process, and ureteric bud development. The top 5 
GO terms from the cellular components (CC) category included axon, 
neuronal cell body, dendrite, lysosomal lumen, and sarcolemma, while the 
molecular functions (MFs) found to be significantly enriched included 
metal ion binding, actin binding, growth factor activity, microtubule 
binding, and sequence specific DNA binding. Dot plot of the GO terms 
plotted through ggplot2 package [31] in R software (v4.0.2) is shown in 
Figure 2. This dot plot displays the names of the GO terms (BP, CC, MF) 
along with the gene counts and associated p-values. 
3.3. Networks, Hub Genes, and Modules 

PPI network consisting of 360 nodes and 778 interactions is shown in 
Figure 4(a). cytoHubba discovered 100 hub genes using the 5 methods 
mentioned above, out of which 12 hub genes were found to be common 
across 4 different methods namely MNC, Degree, MCC, and EPC, as shown 
in Figure 4(b). These 12 hub genes were TIPM1, SPARC, P4HB, GAS6, 
FST, COL6A1, GPC3, TGFB1, ITGA5, COL6A2, COL1A2, and CYR61 
(Table 1).  

Under the specified threshold of K-score > 5 and nodes > 5, 2 modules 
were screened from the PPI network with K-score 8.4 and 5.125 and nodes 
16 and 17, respectively (Figure 4(c) and Figure 4(d)). 
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Figure 2. The GO Terms (BP, CC, and MF) Enriched with DEGs from AD are Shown in the Dot Plot. The Size 
of the Dots Depicts the Number of Genes Involved in Each GO Term, While Dot Color Represents the 
Corresponding p-Value 
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Figure 3. KEGG Pathways Enriched with DEGs from AD Patients. Red 
Boxes Display KEGG Pathways’ IDs and Names, While Green Boxes 
Represent DEGs. 
Table 1. Gene Symbols, Log Transformed Expression Values, and 
Adjusted p-Values Of 12 Hub Genes Found Via 4 Different Methods of 
cytoHubba (MNC, Degree, MCC, and EPC) 

Sr. # Gene symbols log2FC Adjusted p value 
1 GAS6 1.312106 8.35E-16 
2 COL1A2 3.94514 1.21E-10 
3 P4HB 1.099993 2.06E-09 
4 COL6A2 2.439654 0.000000991 
5 FST 2.096529 0.00000728 
6 COL6A1 1.591406 0.0000307 
7 TIMP1 1.947849 0.000123516 
8 ITGA5 2.747075 0.000225242 
9 SPARC 1.181922 0.000242704 
10 TGFB1 1.235326 0.000327422 
11 CYR61 2.279453 0.000368363 
12 GPC3 1.881975 0.000789719 
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Figure. 4 Protein-Protein Interaction (PPI) Networks, Hub Genes, and 
Their Modules. (a) PPI Network of DEGs from AD. Red Nodes Display the 
Upregulation of Genes, While Green Nodes Represent the Downregulation 
of Genes. (b) Venn Diagram Represents the Number of Common Genes 
Found Via 4 Different Methods of cytoHubba. The Four Methods Used 
Were Degree, Maximum Neighborhood Component (MNC), Maximum 
Clique Centrality (MCC), and Edge Percolated Component (EPC). (c) 
Module 1 was Extracted from the PPI Network with the Score 8.4 and 16 
Nodes. (d) Module 2 was Extracted from the PPI Network with the Score 
5.125 and 17 Nodes 
3.4. KEGG Pathways Enrichment of Modules 

The enrichment of the KEGG pathways of the modules extracted from 
the PPI network showed that a significant number of KEGG pathways were 
enriched with DEGs. These included TGF-beta signaling, protein digestion 
and absorption, cholesterol metabolism pathways, and ECM receptor 
interaction (Figure 5(a) and Figure 5(b)). 
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Figure 5. KEGG Pathways Enrichment of Modules (a) KEGG Pathways 
Enriched in Module 1, (b) KEGG Pathways Enriched in Module 2. 
3.5. miRNA-mRNA Interaction Network 
The co-interaction network of the 10 hub genes with 9 miRNAs was 
identified. The network consisted of 26 edges and 19 nodes which were 
visualized through Cytoscape and is shown in Figure 6. Two hub genes 
(TIMP1 and GPC3) were excluded as no miRNA was found interacting 
with them. ITG5 (degree = 4), P4HB (degree = 4), and TGFB1 (degree = 3) 
were the top 3 hub genes with the most miRNA interactions.  

Figure 6. MicroRNA-hub Genes Interaction Network. The Interaction 
Between the miRNAs and Hub Genes is Represented Through Arrows. The 
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Rectangular Nodes Represent the Hub Genes, and the Diamond Shaped 
Nodes Represent miRNAs. 
3.6. Drug-Gene Interaction Analysis 

FDA approved drugs were retrieved from the DGIdb resource. A total 
of 75 drugs were found to interact with hub genes. The potential drug targets 
were TGFB1, P4HB, and ITGA5 because most of the drugs were found to 
interact with these 3 hub genes. There was no drug information available 
against two hub genes namely CYR61 and GPC3. Drug-gene interaction 
network visualized through Cytoscape is shown in Figure 7. 

 
Figure 7. Drug-gene interactions network. Oval shaped nodes represent 
gene names, while rectangular nodes represent the interacting drugs. The 
lines represent the interaction between genes and drugs. 
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4. DISCUSSION 
Despite the advancement in the field of clinical management, there is no 

treatment strategy available which can cure AD. The study of gene 
expression using RNA-sequencing technology is a promising technique to 
achieve a deeper insight into the possible molecular mechanisms of the 
disease [32]. 

In the current study, integrated bioinformatics approach was 
implemented to find out the potential biomarkers involved in AD. A 
significant number of DEGs were screened from the analyzed dataset.  

GO terms enrichment analysis of DEGs identified Protein Kinase B 
(PKB) signaling, angiogenesis, and negative regulation of apoptotic process 
as significant biological processes. The activation of PKB signaling is 
involved in the progression of AD because the increased level of PKB 
corresponds to the increased level of hyperphosphorylated tau protein 
involved in neurofibrillary degeneration [33]. Negative regulation of 
apoptotic processes is associated with therapeutic effects on the progression 
of the disease [34]. If this process is disrupted, the disease progresses. 
Activated angiogenesis in neurons results in the accumulation of Aβ and 
hence is linked with cognitive decline in AD [35]. Among the molecular 
functions, metal ion binding, actin binding, growth factor activity, 
microtubule binding, and sequence specific DNA binding were found to be 
significant. For normal brain function, the hemostasis of metal ion needs to 
be established. Both the deficiency and excessive deposition of metal ions 
including Zn, Cu, and Mg are correlated with AD. The reason is that they 
may either induce oxidative stress or stimulate the overproduction and 
accumulation of Aβ [36]. Actin binding function of the proteins also has 
functional importance. For example, Cofilin-1 protein is an actin binding 
protein and a major regulator for actin cytoskeleton (CSK). It is involved in 
the development of AD because when it is phosphorylated it causes 
synaptotoxicity and synaptic impairment [37]. The activity of growth 
factors, especially the nerve growth factors (NGFs), is important in the 
progression of AD. When the metabolism of NGFs is altered it becomes 
involved in an imbalance between the NGF precursor mediated pro 
apoptotic signaling and TrkA mediated survival pathway which causes 
cholinotrophic neuronal dysfunction [38]. Microtubule associated proteins 
(MAPs) like tau have clear implications in AD. A characteristic of the 
pathological condition is the detachment of tau from microtubules and the 
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formation of intracellular inclusions through its aggregation as paired 
helical filaments (PHFs) [39]. In neurodegenerative diseases, the 
accumulation of hyperphosphorylated and conformationally changed tau 
has been proved by different studies [40]. Hence, the molecular functions 
related to microtubule are important in AD.  

The KEGG pathways enrichment analysis exhibited that DEGs were 
primarily enriched in PI3K-Akt signaling, hippo signaling, MAPK 
signaling, TGF-beta signaling, and sphingolipid signaling pathways. The 
inhibited PI3K-Akt signaling pathway is linked with the progression of AD. 
Aβ oligomers inhibit this pathway, thus inhibiting the activities of PDK1 
and RTKs. It leads to the increased activity of GSK-3β which results in 
excessive tau phosphorylation and consequently induces neurodegenerative 
disorders [41]. This pathway can be treated as a potential target in the 
treatment of AD. Activated MAPK signaling pathway was found to be 
involved in AD because it induces tau hyperphosphorylation, thus 
preventing synaptic plasticity and inducing neural apoptosis [42]. Impaired 
TGFβ signaling results in decreased clearance of extracellular Aβ 
aggregations and increased neuroinflammation, leading to 
neurodegeneration [43]. Aberrant Fc-gamma receptor-mediated 
phagocytosis was also found to be involved in the pathophysiology of AD 
[44].  

A total of 12 hub genes were found in the dataset, as shown in Table 1. 
In the current study, these hub genes were found to be involved in different 
pathways. These pathways mainly included PI3K-Akt signaling, focal 
adhesion, Hippo signaling, MAPK signaling, ECM-receptor interaction, 
TGF-beta signaling, and regulation of actin cytoskeleton. Among these hub 
genes, a higher expression of TIMP1 gene was observed in the 
cerebrospinal fluid of the patients with neurodegenerative disorders [45]. 
The second hub gene SPARC was also colocalized with the deposition of 
Aβ protein. Its upregulation is likely involved in innate immune response 
triggered by the neuropathology of AD [46]. It has been established that the 
upregulation of SPARC is linked with destructive effects on blood-brain 
barrier (BBB) which worsens the AD condition [47]. As far as another hub 
gene GAS6 is concerned, a recent study [48] confirmed the association of 
its upregulation with the progression of AD, although the mechanism was 
not described. The upregulation of COL6A1 and COL6A2 genes from the 
collagen VI family has been detected in the brain samples of AD patients. 
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Their upregulation is associated with neuroprotective effects in AD. The 
possible mechanism for this effect is the ability of these genes to block the 
interaction between neurons and Aβ oligomers [49]. The role of TGFB1 has 
been established in developing late-onset AD (LOAD). Several studies have 
suggested that single nucleotide polymorphisms (SNPs) in neurotrophic 
factors such as TGFB1 and BDNF pose an increased risk of developing 
LOAD [50, 51]. It has been demonstrated that the overexpression of ITGA5 
may indicate the reduced risk of dementia [52, 53].  

The analysis of miRNA and hub genes revealed that there may be a 
strong association of miRNAs with hub genes in the pathogenesis of AD. 
Figure 6 shows that 9 miRNAs were found to interact with 10 hub genes. 
Among these 9 miRNAs, miR-603 has a protective effect in AD [54], while 
miR-10b-5p has an antiapoptotic effect. Hence, it may also have 
neuroprotective effect [55]. Another miRNA namely miR-124-3p reverses 
the neurodegenerative process in the brain by inhibiting the process of tau 
protein’s abnormal hyperphosphorylation when it targets Caveolin-1 and 
regulates Coveolin-PI3K/Akt/GSK3β. MiR-1-3p, which was found to 
interact with 5 hub genes, acts as a direct regulator of an anti-apoptotic 
molecule known as Fas apoptotic inhibitory molecule (FAIM). This 
microRNA regulated protein may act as a therapeutic target against 
neurodegenerative disorders [56]. MiR-137 negatively correlates with the 
expression levels of SPTLC1 and SPTLC2 which results in increased 
production of Aβ in AD [57]. Dysregulated miR-21-5p is related with the 
pathology of Aβ in AD [58]. Hence, the interacting microRNAs were 
determined to have a significant role in neurodegenerative disorders. Drug-
gene interaction analysis of hub genes using DGIdb retrieved 77 FDA 
approved drugs which showed a strong relation with hub genes (see Figure 
7). TGFB1 gene was found to interact with 40 drugs which is the highest 
number among the identified interactions. The figure shows that P4HB and 
ITGA5 were found to interact with a significant number of drugs (with 14 
and 8 drugs, respectively). 
4.1. Conclusion 

The current research helps to improve our understanding about the 
progression of AD. The currently identified hub genes and pathways may 
be targeted as biomarkers for diagnostic and treatment purposes. It was also 
found that nervous-tissue specific miRNAs have a significant role in AD 
and may be used as therapeutic agents. FDA approved drugs that interact 
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with the hub genes may be explored further to find new treatments against 
the disease. Taken together, the integrated bioinformatics approach has 
provided several GO terms, pathways, hub genes, miRNAs, and drugs 
related to AD which may lead towards new strategies to treat this disease. 
4.2. Limitations  

The current study has some limitations as well since the dataset 
consisted of only 8 samples. Hence, these findings need to be tested on a 
broader scale as well as through in vitro and in vivo studies to check their 
validity.  
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