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Pathogenicity Prediction of Potential Variants in TULP1 Gene causing 
Hereditary RP: An In-silico Approach 
Faryal Sadiq∗ 

Department of Life Sciences, University of Management & Technology, Lahore, 
Pakistan 

ABSTRACT 
Retinitis Pigmentosa (RP) is a term used to describe a group of eye disorders 
related to retina damage. Due to the formation of bone spicules inside the 
retina of the affected individuals, patients suffer from poor eye vision or 
complete blindness, rarely. The reason of the disease could be genetic 
defects or environmental factors, for instance comorbidity, light exposure, 
and ethnicity. Tubby-like protein (TULP1) is expressed in the retina of the 
eye, specifically inside rod and cone cells, and mutations inside the gene 
can cause changes in structure and function of photoreceptor cells. The 
current study may provide new insights to understand the genetic variations 
found in TULP1 gene from the genomic to proteomic level, thus predicting 
the highly pathogenic variations causing RP. Different bioinformatic tools 
employing different algorithms were used to score the pathogenic variants, 
hence cross validating the results. Twenty (20) pathogenic missense 
variants which can destroy the protein structure as discussed in the study, 
thirteen (13) splice site variants, and lastly, nine (9) frameshift, seven (7) 
stop-gained variants were concluded as highly pathogenic for the candidate 
gene.  
Keywords: computational biology, Retinitis Pigmentosa (RP), TULP1 
gene, variations 
1. INTRODUCTION 

Eye is the main organ associated with vision and is a major part of the 
sensory nervous system. Poor eye vision or blindness can directly affect the 
quality of life. Several retinal damaging conditions including glaucoma, 
retinal vascular disease, and macular degeneration associated with aging, 
are known to affect approximately 60 million people worldwide. Some eye 
disorders occur due to certain environmental factors, for instance aging and 
poor health conditions. While, some are heredity traits where RP is among 
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the most prominent. Approximately, one hundred (100) genes have been 
observed to cause hereditary RP. RP is a vast terminology used to group eye 
disorders with retinal damages leading to poor vision and in rare cases 
complete night blindness [1]. The prevalence ratio of RP is 1/3500 around 
the world [2].  

There are two types of RP stated as non-syndromic RP and syndromic 
RP. Non-syndromic RP is related to poor vision and has been found to affect 
70-80% of the people and is a more common type of RP. The incidence rate 
for non-syndromic RP is 1/5000, while carrier ratio observed is 1/1000. The 
other type of RP is syndromic RP where the retinal damage combines with 
some other systemic dysfunction. Usher syndrome is the typical example of 
syndromic RP in which vision loss conjugates with hearing disabilities [3]. 

The risk factor to transfer the hereditary disorders including hereditary 
RP as well as spastic paraplegia is high in South Asian region. As reported 
by statistical data, the autosomal recessive RP with the number of 60 genes 
is known to be involved [4]. 

TULP1 gene is an important member of TULP (Tubby-like protein) 
family and is found in retinal epithelial cells. TULP1, as a transmembrane 
protein, mainly functions in protein trafficking and has the tendency to bind 
with lipids forming phosphatidylserine, phosphatidylinositol, 3,4,5-
bisphosphate, phosphatidic acid, 4,5-bisphosphate, 3,4-bisphosphate, 
phosphatidylinositol 5-phosphate, phosphatidylinositol 4-phosphate, and 
phosphatidylinositol 3-phosphate. TULP1 also functions in the cleaning of 
dead cells inside the retina and is involved in cell apoptosis/phagocytosis 
[5].  

TULP1 gene with genomic size 14997 base pairs (15 exome count) is 
located on human chromosome 6, on the antisense strand of DNA 
(Deoxyribonucleic Acid) double helix. TULP1 gene encodes protein with 
542 amino acids (Figure 1). 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
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Figure 1. Pathogenic variants observed from cDNA (SNV) to protein. (An 
illustration of TULP1 gene (containing 15 exons, locates at 6p21.32) to 
protein translation (encoding 542 amino acid residues, region ranges 
between 298-542 covers a conserved C-Terminal domain and region 
between 1-289 linked with intrinsic disorder)) 

In the analysis of the current study, results were crossmatched using 
different tools and databases with different algorithms. The importance of 
algorithm designing was reflected upon for any biologist or healthcare 
expert. Not all the tools or software are 100% error free, however, still can 
be a helping hand for the scientists to make authentic predictions. Presently, 
scientists prefer dry lab practices before proceeding to wet lab experiments. 
This is because it is a more helpful approach in a limited time span for the 
scientists to predict the structure of any biological molecule even if it has 
not been discovered yet via using these tools or databases [6].  
2. MATERIALS AND METHODS 

TULP1 genomic variants were retrieved through gnomAD. Missense 
variants, splice site variants, frameshift, and stop-gained variants were 
analyzed for their pathogenicity grading using multiple tools. Protein 
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functioning was observed through visualization tool. Streamline followed 
for the insilico approach is shown in Figure 2. 

 
Figure 2. Flowchart to carry out TULP1 Gene Variants Analysis 
2.1. Variants Retrieval 

To study the effect of SNPs reported for TULP1 gene, these were 
retrieved from gnomAD gnomAD - Broad Institute, containing millions of 
SNVs (Single Nucleotide Variants) data available for human genome in 
both genome assemblies (GRCh37 and GRCh38) [7]. The number of 
variants obtained for TULP1 is shown in Figure 3. 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
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Figure 3. Distribution of SNPs in TULP1 Gene 
2.2. Analyzing Missense Variants  

TULP1 missense variants were scored with a very low allelic frequency. 
Combined Annotation Dependent Depletion (CADD) tool was designed on 
machine learning (ML) algorithm combining more than 63 annotations. 
Variants with CADD C-Score range between 10-20 are considered highly 
pathogenic [8]. Variants with CADD C-score ≥ 10 were further analyzed 
using multiple tools, for instance CAPICE [9], REVEL, PMut, UMD-
Predictor, and Predict SNP2.0 Mutation Assessor. Quality control of 
missense variants was verified using different parameters which included 
checking the protein stability using stability tools, (CUPSAT, iStable [10], 
DynaMut [11], MAESTRO, YASARA [12]) and Clashes finding inside the 
protein structure as well as PTM sites analysis through UCSF Chimera [13]. 
To observe the candidate gene functioning caused by variations, 
conservation ratio and secondary structures were also observed via ConSurf 
and NetSurfP-2.0 [14].  
2.3. Splice Site, Frameshift, and Nonsense Variants Analysis  

Scoring of TULP1 splice site variants was performed to screen out the 
highly pathogenic variants for disrupting the splicing mechanism. 
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SPiCEv2.15 [15], Spliceman, Mutation T@ster [16] tools were used for 
variant analysis.  
Frameshift and nonsense variants scoring was performed using CADD. 
3. RESULTS 
3.1. Analyzing Missense Variations 

Through gnomAD, total number of 324 missense variants for candidate 
gene (TULP1) (allelic frequency <0.001 and allelic count < 50) were 
obtained. CADD scored 274 variants as pathogenic variants with C score ≥ 
10. Most of the tools set a threshold value of 0.5, while variants score above 
0.5 are considered pathogenic. To filter out the highly pathogenic variants, 
multiple tools were used, that is, CAPICE [9], REVEL, PMut, UMD-
Predictor [17], Predict-SNP2.0, and Mutation Assessor. Lastly, only 20 
missense variants with CAPICE score ≥ 0.5 were filtered out as ‘highly 
pathogenic’ (Table 1). These twenty missense variants were further 
analyzed for candidate protein functioning. Graphical representation of 
CADD and CAPICE scoring of missense variants can be seen in Figure 4 
(a). 

 

https://ojs.umt.edu.pk/index.php/jmr
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Figure 4. Graphical Representation of pathogenic TULP1 genomic variants 
scoring (a) highly pathogenic missense variants using (CADD & CAPICE 
scoring). (b) protein Stability tools scoring vs missense variants (c) Splice 
site variants through SPiCE (Considering the Red line as threshold and dots 
above the threshold are variants affecting splicing while dots below 
threshold are less deleterious variants for splicing disturbance) (d)  
Pathogenic frameshift variants scoring by CADD  (e) Stopgained variants 
by CADD 
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Table 1. TULP1 Pathogenic Missense Pathogenic Variants Scoring Obtained using Different Tools 

Nucleotide Change Protein   Change CADD C 
Score 

CAPICE 
Score 

REVEL 
Score 

PMut 
Predicted 

Score 

UMD-
Predictor 
Prediction 

Predict-
SNP2.0 

Prediction 

Mutation 
Assessor 

Prediction 

6:35466133T>C p.Ser534Gly 33 Deleterious 
0.775 

Deleterious 
0.917 

Deleterious 
0.91 

Pathogenic 
0.84 

Pathogenic 
1 High 3.865 

6:35466201T>C p.Glu511Gly 34 Deleterious 
0.836 

Deleterious 
0.71 

Deleterious 
0.68 

Pathogenic 
0.84 

Pathogenic 
1 High 3.02 

6:35466229T>A p.Ile502Phe 32 Deleterious 
0.722 

Deleterious 
0.914 

Deleterious 
0.79 

Pathogenic 
0.78 

Pathogenic 
0.076 High 3.06 

6:35466231T>A p.Tyr501Phe 24.9 Deleterious 
0.825 

Deleterious 
0.858 

Deleterious 
0.87 

Probably 
Pathogenic 

0.69 

Pathogenic 
0.076 

Medium 
2.945 

6:35467808C>T p.Arg482Gln* 33 Deleterious 
0.924 

Deleterious 
0.942 

Deleterious 
0.92 

Pathogenic 
0.84 

Pathogenic 
1 High 3.955 

6:35467809G>A p.Arg482Trp* 28.6 Deleterious 
0.817 

Deleterious 
0.966 

Deleterious 
0.92 

Pathogenic 
0.93 

Pathogenic 
0.122 High 3.955 

6:35467820T>G p.Asn478Thr 27 Deleterious 
0.748 

Deleterious 
0.952 

Deleterious 
0.87 

Pathogenic 
0.81 

Pathogenic 
1 High 3.905 

6:35467820T>C p.Asn478Ser 26 Deleterious 
0.764 

Deleterious 
0.949 

Deleterious 
0.92 

Pathogenic 
0.84 

Pathogenic 
1 High 3.905 

6:35467863T>G p.Lys464Gln 26.7 Deleterious 
0.751 

Deleterious 
0.93 

Deleterious 
0.92 

Pathogenic 
0.84 

Pathogenic 
1 High 3.345 

6:35467923C>T p.Asp444Asn* 28.6 Deleterious 
0.716 

Deleterious 
0.541 

Neutral 
0.44 

Probably 
Pathogenic 

0.69 

Pathogenic 
1 

Medium 
2.945 

https://ojs.umt.edu.pk/index.php/jmr
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Nucleotide Change Protein   Change CADD C 
Score 

CAPICE 
Score 

REVEL 
Score 

PMut 
Predicted 

Score 

UMD-
Predictor 
Prediction 

Predict-
SNP2.0 

Prediction 

Mutation 
Assessor 

Prediction 

6:35471398T>C p.Met421Val 25.5 Deleterious 
0.707 

Deleterious 
0.949 

Deleterious 
0.9 

Probably 
Pathogenic 

0.72 

Pathogenic 
1 High 3.935 

6:35471539C>T p.Arg400Gln* 31 Deleterious 
0.951 

Deleterious 
0.964 

Deleterious 
0.8 

Probably 
Pathogenic 

0.72 

Pathogenic 
1 High 3.455 

6:35473518C>T p.Arg371Lys 34 Deleterious 
0.745 

Deleterious 
0.897 

Deleterious 
0.71 

Pathogenic 
1 

Pathogenic 
1 

Medium 
2.945 

6:35473528C>T p.Gly368Arg 31 Deleterious 
0.847 

Deleterious 
0.965 

Deleterious 
0.91 

Pathogenic 
1 

Pathogenic 
1 High 3.89 

6:35473542C>T p.Gly363Glu 25.8 Deleterious 
0.843 

Deleterious 
0.948 

Deleterious 
0.79 

Pathogenic 
0.99 

Pathogenic 
1 High 3.42 

6:35473554A>C p.Leu359Arg 26.8 Deleterious 
0.815 

Deleterious 
0.993 

Deleterious 
0.83 

Pathogenic 
0.93 

Pathogenic 
1 High 3.64 

6:35473572G>A p.Ser353Phe 28.7 Deleterious 
0.902 

Deleterious 
0.981 

Deleterious 
0.77 

Pathogenic 
0.96 

Pathogenic 
1 High 3.205 

6:35473605C>T p.Arg342Gln* 27.8 Deleterious 
0.713 

Deleterious 
0.855 

Deleterious 
0.89 

Pathogenic 
0.84 

Pathogenic 
1 High 3.32 

6:35473606G>C p.Arg342Gly 25.8 Deleterious 
0.778 

Deleterious 
0.724 

Deleterious 
0.89 

Pathogenic 
1 

Pathogenic 
1 High 3.665 

6:35473848G>A p.Arg311Trp* 26.1 Deleterious 
0.808 

Deleterious 
0.885 

Deleterious 
0.89 

Pathogenic 
0.93 

Pathogenic 
1 High 3.12 

(UMD predictor score predictions were divided by 100 to homogenize the data.) 
Mutations with Asterisk (*) sign have already been reported in ClinVar and the rest are novel.  
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3.3.1. Effect of Missense Variations on Protein Stability. Highly 
pathogenic missense variants were analyzed by CUPSAT, i-Stable, 
DynaMut, MAESTRO, and YASARA scoring methods for stability check 
against each variant. Negative scores indicate the destabilizing effect of 
mutations on protein structure and vice versa for positive scores. In 
YASARA, variants with positive scores show decreasing protein energy 
due to the variant (Table 2).  

Graphical representation of stability scores by tools used can be seen in 
Figure 4(b). 

3D structure was modeled for TULP1 protein with missense variations 
through UCSF Chimera (Figure 5). 
Table 2. Stability Score using Stability Tools to Analyze the Effect of 
Missense Mutations on Protein 

Protein 
Change 

CUPSAT  
Predicted 

ΔΔG 
(kcal/mol) 

iStable 
Predicted 

ΔΔG 
(kcal/mol) 

DynaMut 
Predicted 

ΔΔG 
(kcal/mol) 

MAESTRO 
Predicted 

ΔΔG 
(kcal/mol) 

YASARA 
Stability 

Prediction 
(kcal/mol) 

p.Arg400Gln Stabilizing 
1.73 

Decrease     
-0.640 

Destabilizing 
-0.519 

Increase  
1.645 

Increasing   -
0.718972 

p.Arg482Gln Destabilizing    
-0.69 

Increase 
0.458 

Destabilizing 
-0.404 

Increase  
1.424 

Decreasing 
2.3409 

p.Ser353Phe Stabilizing 
3.73 

Increase 
0.071 

Stabilizing 
1.217 

Decrease       
-0.896 

Increasing    -
2.1339 

p.Gly368Arg Destabilizing    
-1.42 

Decrease     
-0.639 

Destabilizing 
-0.933 

Decrease       
-0.393 

Decreasing 
19.9686 

p.Glu511Gly Destabilizing    
-2.9 

Decrease         
-0.535 

Destabilizing 
-0.328 

Increase 
0.645 

Decreasing 
1.43369 

p.Tyr501Phe Stabilizing 
2.68 

Decrease      
-0.230 

Destabilizing 
-0.161 

Increase 
0.529 

Decreasing 
0.67915 

p.Arg482Trp Destabilizing    
-1.56 

Decrease               
-0.009 

Stabilizing 
0.051 

Increase 
0.385 

Decreasing 
2.77073 

p.Arg311Trp Stabilizing 
0.22 

Decrease       
-0.345 

Stabilizing 
0.29 

Decrease        
-0.183 

Decreasing 
6.73481 

p.Arg342Gly Stabilizing 
1.22 

Decrease      
-1.052 

Destabilizing 
-0.655 

Increase 
1.054 

Decreasing 
0.735874 

p.Ser534Gly Stabilizing 
1.02 

Decrease      
-1.283 

Destabilizing 
-0.47 

Increase 
1.401 

Decreasing 
1.09835 

p.Asn478Thr Stabilizing 
2.95 

Decrease      
-0.230 

Destabilizing 
-0.125 

Increase 
0.632 

Decreasing 
0.1565 

https://ojs.umt.edu.pk/index.php/jmr
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Protein 
Change 

CUPSAT  
Predicted 

ΔΔG 
(kcal/mol) 

iStable 
Predicted 

ΔΔG 
(kcal/mol) 

DynaMut 
Predicted 

ΔΔG 
(kcal/mol) 

MAESTRO 
Predicted 

ΔΔG 
(kcal/mol) 

YASARA 
Stability 

Prediction 
(kcal/mol) 

p.Lys464Gln Stabilizing 
1.11 

Decrease        
-0.592 

Destabilizing 
-0.233 

Increase 
0.911 

Decreasing 
1.09376 

p.Asn478Ser Stabilizing 
0.22 

Decrease       
-0.054 

Stabilizing 
0.114 

Increase 
0.553 

Decreasing 
0.424982 

p.Arg371Lys Destabilizing    
-1.62 

Decrease      
-0.911 

Destabilizing 
-0.721 

Increase 
0.831 

Decreasing 
0.071761 

p.Ile502Phe Destabilizing    
-0.07 

Decrease      
-0.545 

Stabilizing 
1.305 

Increase 
0.510 

Decreasing 
1.53253 

p.Asp444Asn Destabilizing     
-0.39 

Increase 
0.752 

Destabilizing 
-0.176 

Increase 
1.108 

Decreasing 
1.22898 

p.Arg342Gln Stabilizing 
0.33 

Decrease       
-0.639 

Destabilizing 
-0.48 

Increase 
0.810 

Increasing   -
0.285053 

p.Met421Val Destabilizing     
-3.23 

Decrease       
-1.213 

Destabilizing 
-0.816 

Increase 
1.324 

Decreasing 
1.67459 

 
Figure 5. TULP1 3D Structure Visualization by Angle Rotation of 180 
Degrees (red area marked the mutated sites) 

3.3.2. Clashes Finding due to Missense Variations. Clashes can be 
simply termed as unnecessary/unwanted contacts due to mutations,thereby 
changing the confirmation. Clashes were observed using UCSF Chimera. 
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Clashes were determined in mutations reported; p.Gly368Arg in which 
no clashes/contacts were found in wild type structure, while for mutated 
type 46, contacts were found. 

p.Glu511Gly: no clashes were found for both wild type and mutant type, 
p.Tyr501Phe: no clashes were found for wild type. Whereas, 9 contacts 
including interaction with water molecule were observed for mutant type 
(Yellow color indicating the wild type of residue and purple color showing 
the mutant residue whereas red lines showing the contacts found, blue 
colored balls showing the water molecules) (Figure 6). 

 
Figure 6. Clashes Findings due to Missense Mutations in Candidate 
Protein Structure using UCSF Chimera 

3.3.3. PTM Site Disruption by Missense Variants. PTM sites inside 
candidate protein were confirmed using PROSITE database.  
Phosphorylation sites with different protein kinase were observed and 
visualized in protein structure using UCSF Chimera. Some of the missense 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
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variations were found to disturb some phosphorylation sites, hence 
hindering the cellular processes (Figure 7). 

 
Figure 7. PTM sites Disruptions Visualization through UCSF Chimera 

3.3.4. Protein Conservation and Secondary Structure Prediction. 
Candidate protein (TULP1) has a single C-Terminal domain. To observe the 
conservation, ConSurf was used for analysis. ConSurf prediction scoring is 
done in terms of color grading (1-9) in which 1-4 grades are variables, grade 
5 as average, and 6-9 color grade indicates highly conserved amino acid 
residues inside protein sequence.  

NetSurfP-2.0 predicts surface accessibility as RSA (Relative Surface 
Accessibility), ASA (Absolute Surface Accessibility) and also provides 
information for secondary structures (coil, helix, strand) present in a 
protein. For secondary structures (loops or coils) inside TULP1 protein and 
to observe that amino acids are buried/exposed to the surface in sequence, 
NetSurfP-2 was used. Table 3, visuals seen in Figure 8. 
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Table 3. TULP1 Protein Conservation Prediction due to Missense 
Mutations using ConSurf and Solvent Accessibility, Secondary Structure 
Prediction by NetSurfP-2.0 

ConSurf NetSurfP-2.0 

Protein Change Score Grade RSA ASA 
(Å) 

Sec. 
Structure/exposed/Buried 

p.Arg400Gln* -0.905 8 51% 116 Coil/Exposed 
p.Arg482Gln* -1.199 9 52% 119 Coil/Exposed 
p.Ser353Phe -0.962 9 4% 4 Strand/Buried 
p.Gly368Arg -0.866 8 3% 2 Strand/Buried 
p.Glu511Gly 0.225 4 82% 144 Coil/Exposed 
p.Tyr501Phe 0.338 4 34% 73 Coil/Exposed 
p.Arg482Trp* -1.199 9 52% 119 Coil/Exposed 
p.Arg311Trp* -1.102 9 26% 59 Strand/Exposed 
p.Arg342Gly -0.577 7 32% 73 Strand/Exposed 
p.Ser534Gly -1.115 9 10% 12 Helix/Buried 
p.Asn478Thr -0.932 8 39% 57 Strand/Exposed 
p.Lys464Gln -0.9 8 36% 74 Coil/Exposed 
p.Asn478Ser -0.932 8 39% 57 Strand/Exposed 
p.Arg371Lys -0.881 8 30% 68 Strand/Exposed 
p.Ile502Phe -0.467 7 8% 16 Strand/Buried 
p.Asp444Asn* 0.225 4 52% 74 Coil/Exposed 
p.Arg342Gln* -0.577 7 32% 73 Strand/Exposed 
p.Met421Val -1.063 9 3% 6 Strand/Buried 

 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
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Figure 8. TULP1 Protein Secondary Structure Prediction by NetSurfP-2.0. 
Surface Accessibility=Red high ground indicating exposed amino acids 
while sky blue downward high areas showing the buried residue in protein, 
considering threshold as 25%. Secondary Structure= straight pink line 
depicting coil, orange spirals are helix, colored arrow (indigo) indicating 
strand. Disorder= just under the secondary structure prediction line is thick 
black line showing the chances of disordered residues, the thicker the line, 
the higher the risk of disordered residues there. (as shown in figure 1) 
3.2. Splice Site Variants Analysis 

By gnomAD, 57 splice site variants were obtained for candidate gene 
(TULP1). Seven (7) variants were canonical splice site variants (splice site 
donor=4, splice site acceptor=3). The remaining 50 variants were scored 
using CADD. Thirteen (13) variants with CADD score ≥ 15 were scored by 
splicing tools (SPiCE v2.1.5, Spliceman, Mutation T@ster) (Table 4 & 
Figure 4 (c)). 
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Table 4. TULP1 Pathogenic Splice Site Variants Score 

Nucleotide 
Change 

Transcript 
Consequence 

CADD 
C Score 

Mutation T@ster 
Prediction 

Spliceman 
Prediction SPiCE Prediction 

Score L1 
distance 

Rank 
(L1) delta_MES delta_SSF probability inter_thrRes 

6:35466243G>T c.1496-6C>A* 17.15 (Polymorphism) 
0.999 32669 55% -0.16 0.014 0.06131 low 

6:35467757C>T c.1495+1G>A* 35 (deleterious) 1 33807 61% -0.905 -1 1 high 
6:35471626C>G c.1113-1G>C 33 0 36693 76% 0 0 0.02686 low 
6:35477091T>C c.719-2A>G 33 (Deleterious) 1 36552 75% -1.139 -1 1 high 

6:35477096G>T c.719-7C>A 21.4 (Polymorphism) 
0.999 34935 67% 0.133 0.009 0.00688 low 

6:35477534G>C c.602-7C>G* 15.05 (Polymorphism) 
0.999 32943 57% 0 0 0.02686 low 

6:35477600T>C c.601+4A>G 17.8 (Deleterious) 
0.999 35062 68% -0.057 -0.12 0.68004 low 

6:35477602A>C c.601+2T>G 32 (Deleterious) 1 36446 75% -1 -0.108 0.9997 high 

6:35478633C>G c.499+5G>C 22.9 (Deleterious) 
0.538 34706 66% 0 0 0.02686 low 

6:35478636A>C c.499+1dupG 26.6 (Deleterious) 
0.997 36014 72% -1 -0.154 0.99993 high 

6:35479590C>T c.191-7G>A 21.6 (Polymorphism) 
0.999 35880 72% 0.626 0.072 2.00E-05 low 

6:35479952C>T c.190+5G>A 21.1 (Polymorphism) 
0.999 35427 69% -1.091 -0.162 0.99998 high 

6:35480415C>T c.99+1G>A* 33 (Deleterious) 1 34481 65% -0.908 -1 1 high 
Asterisk (*) marked protein substitutions have already been reported in ClinVar, while the rest of mutations 
are novel. 

https://ojs.umt.edu.pk/index.php/jmr
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3.3. Frameshift and Nonsense Variants Scoring  
Nine (9) frameshift variants and seven (7) nonsense variants with the 

Allelic frequency filter (≤0.002) were retrieved for TULP1 and scored using 
CADD. Nine (9) frameshift variations were filtered as highly pathogenic 
(Table 5). While, stop-gained variations were scored high as compared to 
frameshift variants. (Table 6) Figure 4(d) and Figure 4(e) show the CADD 
scoring for frameshift and nonsense variants, respectively. 
Table 5. Pathogenic Frameshift Variants in TULP1 Gene 

Nucleotide Change Protein Consequence 
Transcript 

Consequence 
CADD C 

Score 
6:35466151AG>A p.Phe528SerfsTer55 c.1581delC 30 
6:35466177CG>C p.Arg519GlyfsTer64 c.1555delC 34 
6:35471403CG>C p.Arg419GlyfsTer3 c.1255delC 27.8 
6:35473799TG>T p.His327ThrfsTer44 c.979delC 33 
6:35476986CT>C p.Lys274ArgfsTer36 c.821delA 32 

6:35477079TTTGG>T p.Pro242GlnfsTer16 c.725_728delCCAA 25.4 
6:35477680T>TG p.Pro176ThrfsTer7 c.524dupC 21.1 
6:35479998TC>T p.Glu50AsnfsTer59 c.148delG 22.9 
6:35480447AG>A p.Leu23Ter c.67delC 18.02 

Table 6. Pathogenic Stop-gained Variants in TULP1 Gene 

Nucleotide Change 
Protein 

Consequence 
Transcript 

Consequence 
CADD C 

Score 
6:35466173G>T p.Tyr520Ter* c.1560C>A 40 
6:35471341G>A p.Arg440Ter* c.1318C>T 39 
6:35473549G>A p.Arg361Ter c.1081C>T 35 
6:35473827G>A p.Arg318Ter c.952C>T 36 
6:35478764C>A p.Glu125Ter c.373G>T 33 
6:35479536G>A p.Gln80Ter* c.238C>T 32 
6:35479960C>A p.Gly63Ter c.187G>T 34 

Asterisk (*) marked protein substitutions have already been reported in 
ClinVar, while the rest of mutations are novel. 
4. DISCUSSION  

TULP1 gene variants are very rare and could be responsible for causing 
autosomal recessive RP. Protein native structure is important for proper 
functioning. If any sudden change or mutation occurs inside the amino acid 
sequence of protein, it directly affects its function. The wild structure type 
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is more stable and mutation inside a protein structure can destabilize it. 
Stability is important for proteins’ proper functioning [18].  

TULP1 gene variants (missense, frameshift, nonsense, splice site) were 
scored according to their degree of pathogenicity using CADD. CADD 
scores the variants on three different ranks, that is, highly pathogenic, 
moderate, and lower pathogenic, referring to the main score PHRED (C 
Score). Variants with C score range between 10-20 are considered highly 
pathogenic [8]. CAPICE (Consequence Agnostic Pathogenicity 
Interpretation of Clinical Exome) based on ML algorithm outperformed 
compared to other tools, due to a low false positive rate [9].  

After selecting highly pathogenic missense TULP1 variants, the amino 
acid substitutions were tested for stability. DynaMut predicts scores in two-
step algorithms. The first step is utilizing ‘Holdout Random Sampler’ which 
calculates the energy change represented as Cumulative distribution 
function. While in the second step, there comes the authentic stability score 
using cumulative distribution function which trains the final algorithm-
‘Neural network model’ [11]. istable works on ‘Support Vector machine 
algorithm’. Due to its uniquely designed algorithm, this tool proved a better 
option as compared to other tools’ output for stability check. Both structural 
or sequential information of protein can be used as input methods [10] 
(Figure 4 (b)). 

Protein with its native folds is crucial for its proper functioning. 
Mutations change its structure and, hence function. TULP1 encodes 542 
amino acids contained protein structure which was visualized using 
Chimera. 3D structure with pathogenic missense mutations was modeled 
[13] (figure 5). Variants predicted as pathogenic for TULP1 were also 
visualized, disturbing PTM sites by 3D modeling (Figure 7).  

TULP1 protein is a transmembrane protein involved in cellular 
trafficking. Therefore, its nearby interactions, cellular contents, and surface 
accessibility were observed using NetSurfP-2.0 [14]. In ConSurf, MSA is 
performed followed by constructing a phylogenetic tree and it also shows 
the conserved regions inside protein structure with colors [19] (Figure 8). 

To find out about variants which can directly affect the splicing 
mechanisms, splicing variants retrieved through gnomAD were analyzed by 
Spliceman, SPiCE, and Mutation T@ster. 

https://ojs.umt.edu.pk/index.php/jmr
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Spliceman based on ‘distance matrix calculation methods’ provides the 
output as L1 distance. If position vectors are close enough, it denotes high 
ranks (high L1 distance). The higher the rank, the higher the chances of 
disturbing splicing sites [20]. SPiCE (Splicing Prediction in the Consensus 
Elements) tool designed on ML classifier ’Logistic Regression’ predicting 
two scores MaxEntScan(MES) and Splice-Site Finder-Like(SSF-Like) also 
provides output in a graphical form. In graphical representation (Figure 4c), 
variants above threshold line are considered as highly pathogenic. While, 
dots denoting the variants below the threshold line are considered neutral. 
Geneticists can easily apply this in diagnostics for the analysis of NGS 
results [20]. 

Probably, more than 100 genes have been found to be involved in 
causing RP. In the sub-continent, the custom of consanguineous marriages 
raises the risk of hereditary autosomal recessive RP. ABCA4, RHO, 
SPATA7, CRB1, and TULP1 gene families are important in Pakistan and 
Indian populations. This is because they can be the carrier to cause 
autosomal recessive RP [21]. 

Some novel genes, for instance ENSA, DDR1, CCDC188, and DACT2 
were found to have an important role in vision cycle and ion channeling in 
photoreceptor cells. In 2020, a study was conducted to highlight the 
correlation of these four genes (ENSA, DDR1, CCDC188, DACT2) and the 
study concluded that the two genes (ENSA, DDR1) co-express and correlate 
in causing RP [22]. 

Recently, research was conducted to determine the pathogenic variants 
in TULP1. The results concluded two heterozygous mutations p. Arg482Trp 
and p. Leu504fs* as highly pathogenic and can cause autosomal recessive 
RP [23]. 

Finding the cure for hereditary disorders has always been a challenging 
task for the scientists. However, the options which have captured the 
attention of scientists include, cell therapy, retinal prostheses, and gene 
therapy. Gene therapy involves removing the genetic errors using viral or 
non-viral vectors followed by gene silencing pathways. Gene therapy 
implemented using phase3 voretigene neparvovec vector showed a better 
efficacy rate against inherited RPE65 mediated retinal dystrophy [24]. 

In 2020, a finding based on statistical data revealed that probably, 2.7 
billion people around the globe (about 36% population) may be the healthy 
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carriers for having at least one of the gene variants which may cause RP in 
future generations [25]. If scientists consider the cases of visual 
impairment/inherited blindness for detailed experiments, then this could be 
the road map in discovering new loci and genes causing RP [26]. 
4.1. Conclusion 

RP is generically referred to as a group of heterogeneous eye disorders, 
where its complicated genetic patterns make it a complex class to study. 
TULP1 gene is expressed in rod and cone cells of the retina and contributes 
to 1% autosomal recessive RP. TULP1 gene variants were analyzed through 
an insilico approach to study the molecular basis of RP and highly 
pathogenic TULP1 variants were predicted. Predicted pathogenic variants 
for TULP1 can provide new insights for the scientists to design a treatment 
line for RP if caused by TULP1 gene variants. Candidate gene variants were 
cross-checked with different pathogenicity, predicting algorithms using 
different tools or databases to make predicted pathogenic scoring more 
authentic and reliable. Predicted pathogenic variants can be confirmed 
following wet lab experiments from blood sampling to sequencing.  
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