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ABSTRACT 
Use of nicotine degrading bacteria (NDB) to degrade nicotine from tobacco 
waste contaminated soil is emerging as the most promising strategy. In the 
current study, three nicotine degradation associated proteins from NDB 
Paenarthrobacter nicotinovorans i. e., nicotine dehydrogenase (ndhA), 6-
hydroxypseudooxynicotine dehydrogenase (kdhL), and nicotine blue 
oxidoreductase (nboR) were characterized. For this purpose, coding 
sequences (CDS) were retrieved from Uniprot database. These sequences 
were subjected to analysis via PROTPARAM tool, Multiple Em for Motif 
Elicitation (MEME) suite, SOPMA, SwissModel, Transmembrane 
Topology Prediction and Classification (TMHMM), and Peptide cutter 
software. Characterization revealed values of alpha helix, extended strands, 
and random coil ranging between (29-44%), (14.49-21.08%), and (40.99-
53.65%), respectively. Instability index, aliphatic index, and grand average 
of hydropathy (GRAVY) were observed as 26.76-44%, 91.06-101.32%, and 
-0.176- 0.091%, respectively. All the proteins exhibited highly complex 3D 
configuration and multiple number of conserved protein motifs. The 
number of cleavage sites analyzed for nghA, kdhL, and nboR was 515, 
1313, and 313, respectively. The characteristics explored in the current 
study might be used to modify these proteins in order to maximize nicotine 
removal from environmental sources.
Keywords: Conserved, motifs, nicotine, Paenarthrobacter nicotinovorans, 
transmembrane domain 
1. INTRODUCTION

Nicotine is found in cigarette smoke and is sourced from leaves of
tobacco plants, where it is found as an alkaloid [1, 2]. Inhalation of one 
cigarette smoke causes 1 to 1.5 mg of nicotine to travel in lungs, blood, and 
brain, resulting in addiction-related effects. Nicotine addiction is a cyclic 
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process which comprises  of its absorption, arousal of mood modulation 
pleasure, physical dependence, withdrawal symptoms on drug abstinence 
and craving for nicotine, thus self-medicating withdrawal symptoms [3]. 
Once inside the liver, nicotine undergoes metabolic degradation. About 75% 
of nicotine is degraded via 5’ hydroxylation into 5’-hydroxy nicotine which 
is then converted into cotinine in the presence of aldehyde oxidase. Cotinine 
is glucuronidated and released from body as part of urine [4]. Remaining 
25% nicotine undergoes 2’ hydroxylation and is converted into 2’-
hydroxynicotine which is then transformed into 4-methylamino-1, 3-
pyridyl-1-butanone (NNK). The NNK is further converted into ketone acids 
via nitrosation reactions [5].  

Once inside the human body, nicotine causes deleterious effects, such 
as enhancement of cytopathic effects caused by SARS-COV-2 [6], 
congenital anomalies, and developmental delays [7, 8],  cardiovascular, 
endocrine, immune system and pulmonary disorders, diabetes and cancer 
[9].  

To reduce the human exposure to nicotine and its subsequent hazardous 
effects, it should be remediated from the environment. Complicated 
operations and equipments and poor degradation are the limitations of 
physicochemical remediation strategies. In comparison, bioaugmentation is 
considered superior due to the involvement of simpler technology, 
recyclability, and low cost [10]. Several bacteria and fungi have been 
explored for their biodegradation potential of nicotine for the 
implementation in bioremediation. 

Nicotine degrading bacteria (NDB) reported in literature include 
Stenotrophomonas geniculata ND16 and Arthrobacter nitrophenolicus 
ND6  [11], Agrobacterium nicotinovorans, Pseudomonas putida S16 and 
Agrobacterium tumefaciens S33 [12], Bacteroides xylanisolvens [13], 
Bacillus altitudinis J54 [14], Bacillus sp. YC7 [15] and Pseudomonas 
fluorescens strain 1206 [16].  

So far, three nicotine degrading pathways have been explored in NDB 
i. e., pyridine pathway, pyrrolidine pathway, and a variation of the pyridine
and pyrrolidine (VPP) pathway. First two pathways mainly occur in
Arthrobacter and Pseudomonas, respectively [10]. Proteins associated with
these pathways have been identified which include molybdenum nicotine
dehydrogenase (NdhMSL), 6-hydroxy-L-nicotine oxidase (6Hlno),
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heterotrimeric ketone hydrogenase (KdhMSL), 2, 6-
dihydroxypseudooxynicotine hydrolase (Ponh), 2, 6-dihydroxypyridine-3-
hydroxylase (Dhph), 2, 3, 6THP hydrolase (HpoH), 2-ketoglutaramate 
amidase (HpoI), 4-methylaminobutyrate oxidase (MABO), amine 
oxidase/monoamine oxidase (AO/MAO), succinic semi-aldehyde 
dehydrogenase (SsaDH), nicotine oxidoreductase (NicA2), 
pseudooxynicotine amidase (Pnao), 3-succinoylsemialdehyde pyridine 
dehydrogenase (Sapd), 3-succinoylpyridine monooxygenase (SpmABC, 6-
hydroxy-3-succinoyl pyridine hydroxylase (HspB), N-formylmaleamete 
deformylase (Nfo), maleamate amidohydrolase (Ami), maleate cis/trans 
isomerase (Iso), and 6-HPON amine oxidase (HisD) [17]. Additionally, five 
key proteins. i. e.,  nicotine dehydrogenase (ndhA), (S)-6-hydroxynicotine 
oxidase (nctB), 6-hydroxypseudooxynicotine dehydrogenase (kdhL), 
nicotine blue oxidoreductase (nboR), and 2,6-dihydroxypseudooxynicotine 
hydrolase (dhponh), were reported while investigating the rhizospheric 
dwelling NDB Paenarthrobacter nicotinovorans [11].  

The current study was conducted keeping in view the health hazards 
associated with nicotine and limited knowledge about the proteins 
associated with its degradation. Three nicotine degradation associated 
bacterial proteins were selected i.e., ndhA, kdhL, and nboR for detailed 
characterization. Analyzing the properties of these proteins might help in 
manipulating them to enhance their expression and role in nicotine 
breakdown.  
2. METHOD
2.1. Proteins Sequence Retrieval-Uniprot Database

To retrieve the sequences of proteins i.e., ndhA, kdhL, and nboR, 
Uniprot database (https://www.uniprot.org/, accessed on 31st July 2024) was 
accessed. The accession IDs of proteins and their sequences are shown in 
Supplementary Data Table S1. 
2.2. Physicochemical Properties 

PROTPARAM tool (https://web.expasy.org/protparam/, accessed on 
31st July 2024) was consulted to analyze the physicochemical properties of 
proteins documented in present study. The properties documented included 
number of amino acids, molecular weight, isoelectric point (pI), extinction 
coefficient, instability index, aliphatic index, and GRAVY.  
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2.3. Primary Structure Analysis 
Multiple Em for Motif Elicitation (MEME) suite 5.5.5 (https://meme-

suite.org/meme/tools/meme, accessed on 31st July 2024) was used to predict 
the conserved protein motifs of nicotine degradation associated proteins. 
2.4. Secondary Structure Analysis 

SOPMA protein secondary structure prediction, Network Protein 
Sequence Analysis (NPS@) server (https://npsa.lyon.inserm.fr/cgi-
bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html, accessed on 31st July 
2024) was employed to predict the secondary (2D) configuration of 
proteins. 
2.5. Tertiary Structure Analysis 

Expasy homology modelling web server, SWISSMODEL 
(https://swissmodel.expasy.org/interactive, accessed on 1st August 2024) 
was consulted to predict the tertiary (3D) configuration of current study 
proteins.  
2.6. Functional Analysis 

Deep Learning model for Transmembrane Topology Prediction and 
Classification (TMHMM) 1.0.39 tool (www.cbs.dtu.dk/services/TMHMM, 
accessed on 1st August 2024) was employed to predict membrane topology 
and level of configuration of the current study proteins. To identify the 
disordered sequences in proteins, GlobPlot 2.3 (http://globplot.embl.de/, 
accessed on 1st August 2024) was consulted. Peptide characterization 
software, Peptide cutter (http://web.expasy.org/peptide_cutter/, accessed on 
1st August 2024) was used for proteolytic cleavage sites prediction.  
3. RESULTS
3.1. Prediction of Physiochemical Properties

The kdhL protein was the longest with 794 amino acids. Highest pI 
(6.58) was observed in nboR (Table 1). Half-life was same in all three 
proteins. The extinction coefficient was highest (68425) in kdhL protein. 
The highest (44) and lowest (26.76) values of instability index were found 
in ndhA and nboR, respectively. Aliphatic index was comparable among the 
three documented proteins. The kdhL exhibited very small value for 
GRAVY as compared to ndhA (0.011) and nboR (0.091).  
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Table 1. Prediction of Physicochemical Properties of Current Study Proteins 
using PROTPARAM Tool 

3.2. Prediction of Primary Structure 
In protein ndhA, ten conserved motifs. i. e., HPQIRN, HATIVN, 

KHLPMM, FVGPYM, NGWGYGEF, HGDAAGEW, NGMVEVQ, 
MAMRLAQ, DACDLLSTDEDSK, and DAEDVLNGSELSP with p-
values of 3.41e-9, 2.49e-7, 1.10e-8, 2.93e-8, 2.06e-11, 5.10e-9, 1.26e-9, 
1.20e-7, 3.47e-16, and 1.19e-12, respectively were found. In protein kdhL, 
eleven motifs. i. e., MPNVDCF, MNNAMNY, QLHMRIV, QIFSRCQ, 
QAHARIV, MKDEIFHNHGAYFRQ, GYHEIYENIEDFSHP, GSFKVK, 
GSFGVK, NFSEWL, and SFMDYL with p-values 9.31e-11, 1.46e-9, 
3.66e-9, 8.45e-9, 2.50e-8, 4.27e-18, 2.05e-16, 1.38e-8, 4.92e-8, 6.32e-9, 
and 1.40e-7, respectively were predicted. In protein nboR, ten motifs. i. e., 
FLRQKPWLVDLIDCSDESTGE, CARANLEPYRIVVNHDWSSGM, 
HTKNHI, HRPGRI, DTVEQM, DAAETM, CHEVVI, GHPMVI, 
MGDTDLPC, and YSSLDSPR with p-values 1.07e-23, 3.30e-21, 3.28e-9, 
9.41e-8, 6.26e-9, 2.17e-7, 1.85e-8, 5.63e-8, 1.46e-10, and 1.90e-7, 
respectively were found. (Figure 1 and Table 2). 
Table 2. Conserved Motif Sequences of the current Study Proteins, their E-
values, and P-values Predicted based on MEME Suite 

No. of 
domains 

E-
value 

p-
value Conserved Domain Sequences 

ndhA 

1 3.8e+
001 

3.41
e-9 MMAAAGRHIA HPQIRN RGTLGGSLAH

 

2 2.49
e-7 DYVRFGPMVT HATIVN SPAVAKHLPM

 

3 1.8e+
001 

1.10
e-8 ATIVNSPAVA KHLPMM AAAGRHIAHP

 

Protein 

No. 
of 

amino 
acid 

Molecular 
wt. pI Extinction 

coefficients 
Half 
life 

Instability 
index 

Aliphatic 
index GRAVY 

ndhA 283 30011.12 5.40 26930 >10
hr 44 98.98 0.011 

kdhL 794 86370.70 5.14 68425 >10
hr 34.35 91.06 -0.176

nboR 204 21536.67 6.58 18700 >10
hr 26.76 101.32 0.091 
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No. of 
domains 

E-
value 

p-
value Conserved Domain Sequences 

4 2.93
e-8 GRRTIEADDL FVGPYM TSLAADEIIT

 

5 9.1e+
001 

2.06
e-11 ITDVWIPSRP NGWGYGEF ARRSGDYGLA

 

6 5.10
e-9 NRGTLGGSLA HGDAAGEW PLVLLALNGM

 

7 3.3e+
002 

1.26
e-9 GEWPLVLLAL NGMVEVQ SVRGRRTIEA

 

8 1.20
e-7 IAGGQSLLPV MAMRLAQ PSVVIDLGNV

 

9 3.7e+
002 

3.47
e-16 IRYASPASIE DACDLLSTDEDSK IIAGGQSLLP

 

10 1.19
e-12 GAVGKIQRVP DAEDVLNGSELSP ERAEAASEAG

 

kdhL 

1 1.1e+
000 

9.31
e-11 MDYLLPSAQE MPNVDCF VTEDAKSPDN

 

2 1.46
e-9 EPGLAADAVY MNNAMNY PYGVTLVQIE

 

3 

2.6e+
001 

3.66
e-9 TFAGDLGVPG QLHMRIV RSTQAHARIV

 

4 8.45
e-9 HTDRLPVTPE QIFSRCQ GLNKAER

 

5 2.50
e-8 QLHMRIVRST QAHARIV SIDATEAEKT

 

6 2.8e+
002 

4.27
e-18 ALDAEGRILG MKDEIFHNHGAYFRQ AEPLVSDITA

 

7 2.05
e-16 HLGSVLLEEL GYHEIYENIEDFSHP VLAVDKVLYV

 

8 3.3e+
002 

1.38
e-8 ADPDDLELTA GSFKVK GTDQQISLYE

 

9 4.92
e-8 NVRMKHVEIG GSFGVK GGVFPENVVA

 

10 2.5e+
002 

6.32
e-9 KHFNEALEAA NFSEWL EESKRLRADG

 

11 1.40
e-7 YEEDGQPITT SFMDYL LPSAQEMPNV

 

nboR 

1 
7.3e+
000 

1.07
e-23

TVSGDAGA
RV 

FLRQKPWLVDLIDCSDES
TGE 

DVDTVEQM
YR 

 

2 3.30
e-21

IVLGANAQ
AV 

CARANLEPYRIVVNHDWS
SGM 

GSSYLAGD
AA 

 

3 4.2e+
001 

3.28
e-9 SSYLAGDAAA HTKNHI LVALVDQPGL

 

4 9.41
e-8 VTTVGRLLVS HRPGRI SSAAYSSLDS
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No. of 
domains 

E-
value 

p-
value Conserved Domain Sequences 

5 5.8e+
001 

6.26
e-9 CSDESTGEDV DTVEQM YRLL

 

6 2.17
e-7 LPYRGRTLVE DAAETM LVGGCHEVVI

 

7 6.9e+
001 

1.85
e-8 DAAETMLVGG CHEVVI VLGANAQAVC

 

8 5.63
e-8 SLDSPRVLRR GHPMVI DAGLRPAVAS

 

9 2.1e+
003 

1.46
e-10 MGDTDLPC VTGVLLAAGA

10 1.90
e-7 HRPGRISSAA YSSLDSPR VLRRGHPMVI

 

Figure 1. Assessment of Conserved Motifs of the Current Study Proteins 
using MEME Suite 
3.3. Prediction of Secondary (2D) Structure 

Three aspects of 2D structure were addressed i. e., alpha helix, extended 
strand, and random coil. Highest values for all these aspects were observed 
in kdhL as compared toother two (Table 3, Figure 2). Lowest number of 
amino acids (70) participating in alpha helix formation were found in nboR. 

https://ojs.umt.edu.pk/index.php/jmr
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Least number of amino acids (16) forming random coil were observed in 
ndhA.  
Table 3. Prediction of 2D Configuration of Proteins Documented in the 
Current Study using SOPMA Tool 

Protein Alpha helix (%) Extended strand (%) Random coil (%) 
ndhA 126 (44.52) 41 (14.49) 16 (40.99) 
kdhL 238 (29.97) 130 (16.37) 426 (53.65) 
nboR 70 (34.31) 43 (21.08) 91 (44.61) 

Figure 2. Secondary Structure Assessment of the Current Study Proteins via 
SOPMA Tool 
(A) ndhA (B) kdhL (C) nboR
3.4. Prediction of Tertiary (3D) Structure

The 3D configuration revealed complex tertiary configuration in all 
three proteins. However, the kdhL exhibited highest complex level of 
folding followed by ndhA and then nboR (Figure 3). 
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Figure 3. Prediction of 3D Configuration of Proteins Documented in the 
Current Study using SWISSMODEL. (A) ndhA (B) kdhL (C) nboR 
3.5. Prediction of Functional Aspects 

The transmembrane domain analysis revealed that all three proteins 
were localized inside the cell without any transmembrane domain 
(Supplementary Data Figure S1).  

Non-disordered sequence was observed in ndhA protein ranged from 
108-118 (RGTLGGSLAHG), 171-185 (IPSRPNGWGYGEFAR), and 279-
283 (AGART). In kdhL, this region was found in amino acids 9-19
(IPDNGRAGADE), 45-49 (FAGDL), 268-274 (SFGVKGG), 427-435
(PGLDIVHEP), 505-510 (KTGGSS), 543-554 (LIPDGVGSWSSR), 619-
624 (ARADND), and 730-745 (V TEDAKSPDNP FGAKG). In nboR, non-
ordered amino acids found were 1-10 (MGDTDLPCVT), 22-28
(LGRGPKA), and 81-90 (WSSGMGSSYL) (Figure 4).

In ndhA protein, multiple number of cleavage sites were observed i. e., 
21 sites (Arg-C proteinase), 17 (Asp-N endopeptidase, 34 (Asp-N 
endopeptidase+ N terminal Glu), 34 (Asp-N endopeptidase+ N terminal 
Glu), 3 (BNPS-Skatole), 8 (CNBR), 1 (Caspase 10), 12 (Chymotrypsin-low 
specificity), 48 (Chymotrypsin-high specificity), 21 (Clostripain), 17 
(Glutamyl endopeptidase), 37 (pepsin), 2 (proline endopeptidase), 146 
(proteinase K), 89 (Thermolysin), and 25 (Trypsin). In protein kdhL, 52 
cleavage sites were observed. i. e. (Arg-C proteinase), 49 (Asp-N 
endopeptidase), 2 (Caspase-1), 50 (Chymotrypsin-high specificity), 145 
(Chymotrypsin-low specificity), 67 (Glutamyl endopeptidase), 121 
(Pepsin), 1 (Proline endopeptidase), 434 (Proteinase K), 61 (Staphylococcal 
peptidase I), 251 (Thermolysin), 1 (Thrombin), and 79 (Trypsin). In nboR, 
16 sites were observed i. e. (Arg-C proteinase), 14 (Asp-N endopeptidase), 
8 (Chymotrypsin-high specificity), 38 (Chymotrypsin-low specificity), 7 
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(Glutamyl endopeptidase), 28 (Pepsin), 4 (Proline-endopeptidase), 101 
(Proteinase K), 7 (Staphylococcal peptidase I), 72 (Thermolysin), 1 
(Thrombin), and 17 (Trypsin).  

Figure 4. Prediction of Non-disordered Amino Acid Sequences in the 
Current Study Proteins via GlobPlot. (A) ndhA (B) kdhL (C) nboR 
4. DISCUSSION

In the current study, nicotine degradation associated proteins of
Paenarthrobacter nicotinovorans were targeted. It is gram positive NDB. 
Several strains of this bacterium have been characterized and explored for 
nicotine metabolism in literature [18–22].  With the help of nicotine 
inducible gene (nic) cluster, it may use nicotine as carbon and energy 
source. The nic cluster encodes enzymes nicotine dehydrogenase (ndh), 6-
hydroxy-L-nicotine oxidase (6HLNO), 6-hydroxy-D-nicotine oxidase 
(6HDNO), ketone dehydrogenase (kdh), 2, 6-dihydroxypseudooxynicotine 
hydrolase (DHPONH), 2,6-dihydroxypyridine-3-hydroxylase (DHPH), 
nicotine blue oxidoreductase (nboR), ϒ-N-methylaminobutyrate oxidase 
(MABO), methylene tetrahydrofolate dehydrogenase (FolD), formyl-
tetrahydrofolate deformylase (PurU), monoamine oxidase (MAO), succinic 
semialdehyde dehydrogenase (SsaDH), putative polyketide cyclase (PKC), 
and omega amidase (NIT) [21]. 

Pathway of nicotine degradation in P. nicotinovorans was explored [21]. 
According to this pathway, initially, L-nicotine is hydroxylated into 6-
hydroxynicotine (6-HNic) in the presence of nicotine dehydrogenase 
(NDH). This step is followed by the formation of 6-hydroxyl 
methylmyosamine (6-HMM). Reaction is catalyzed by 6-hydroxy-D-
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nicotine oxidase (6-HDNO) and 6-hydorxy-L-nicotine oxidase (6-HLNO). 
Afterwards, 6-HMM is hydrated and 6-hydroxyl-pseudooxynicotine (6-
HPON) is formed. The 6-HPON is hydroxylated into 2,6-
dihydroxypeudooxynicotine (2,6-DHPON) in the presence of ketone 
dehydrogenase (KDH). 2,6-dihydroxypseudooxynicotine hydrolase 
(DHPONH) catalyzes the transformation of 2,6-
dihydroxypeudooxynicotine (2,6-DHPON) into 2,6-dihydroxypyridine 
(2,6-DHP). This is followed by the formation of 2,3,6-trihydroxypyridine 
(2,3,6-THP) in the presence of 2,6-dihydroxypyridine-3-hydroxylase 
(DHPH) through hydroxylation. The 2,3,6-THP is oxidized into leuco form 
of nicotine blue which may be further processed either spontaneously or in 
the presence of nicotine blue oxidoreductase (NBOR). Then, putative 
polyketide cyclase (PKC) catalyzed the transformation of nicotine blue into 
alpha keto-glutaramate (alpha-KGA) which is converted into alpha-
ketoglutarate (alpha-KG). The alpha-KG ultimately enters into krebs cycle. 

Among these nic cluster proteins, ndhA, kdhL, and nboR were 
documented in the current study. In the current investigation, the molecular 
wt. of ndhA was found 30011.12 which is consistent with previous study 
reporting the same value for this subunit of ndh protein [23]. Isoelectric 
point (pI) reflects the alkaline or acidic nature of protein. The ndhA and 
kdhL were acidic with pI of 5.40 and 5.14, while nboR was found slightly 
alkaline with pI close to 7 [24]. Instability index value below 40 reflects the 
stable nature of protein [25]. According to this study, kdhL and nboR were 
stable as compared to ndhA protein. Aliphatic index value was directly 
related with the thermostability of protein and the values documented in the 
current study indicated high thermostability of all the three documented 
proteins [26]. All these proteins were thermostable with aliphatic index 
ranging between 91.06 and 101.32. 
4.1. Conclusion 

The exploration of nicotine degradation pathways associated proteins 
might help in the manipulation of these proteins. Moreover, the enzymes 
may be purified to produce nanoparticles or the desired genes can be cloned 
into eco-friendly expression systems. Extracellular and intracellular 
enzymes associated with nicotine degradation can be purified and coated on 
nanoparticles. These nanoparticles enhance the efficiency of enzymes via 
immobilization. Hence, the enzymes might contribute to sustainable green 
remediation of nicotine.  
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