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Anophthalmia and Microphthalmia in Pakistan: Current Genetic 
Insights and Future Perspectives 
Usman Hameed, Ammara Saleem∗, Memoona Idrees, and Muhammad Ansar 

Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan 

ABSTRACT 
Anophthalmia and microphthalmia (A/M) are genetic disorders 
characterized by the absence or reduced size of the ocular globe, as 
compared to the globe size of the normal population. These disorders can 
be inherited in both autosomal recessive and dominant patterns. Certain 
genes have been reported to contribute significantly to the emergence of 
diseased phenotypes. Mutation in Forkhead Box E3 gene has been reported 
in different studies involving the Pakistani population, where the pattern of 
inheritance is autosomal recessive. Moreover, ALDH1A3 and VSX2 have 
been associated as well with severe phenotypes of A/M. SOX2 has been 
reported in the cases of de novo mutations and syndromic microphthalmia. 
The current review summarizes the most recurrent mutations in these genes 
in patients suffering from A/M in Pakistan. It showcases the importance of 
variant studies and how the demographic location of individuals may make 
them susceptible to a particular type of mutation. It also compares mutation 
profiles between the Pakistani population and global cohorts, emphasizing 
the impact of consanguineous marriages on the high prevalence of these 
conditions in the country. More studies may prove helpful in formulating a 
diagnostic kit for this disease so that a genotype-phenotype correlation can 
be established.  
Keywords: anophthalmia, genetic diseases, genotype-phenotype 
correlation, microphthalmia, ocular disorders 

1. INTRODUCTION 
Rare genetic disorders comprise a group of diseased phenotypes that 

appear among 1 in 2000 individuals or even fewer [1]. These disorders 
affect people of all ages and demographic locations. Ocular genetic 
disorders are such disorders which cause mild to chronic blindness from 
birth to late 50s. These disorders can be categorized into three groups based 
on the malformation they cause: i) structural disorders, ii) photoreceptor 
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disorders, and iii) nervous system disorders. These include anophthalmia, 
microphthalmia, primary congenital glaucoma, Usher’s syndrome, age-
related macular degeneration, Leber congenital amaurosis, and stationary 
night blindness. People from developing countries, especially from South 
Asia, are majorly affected by these disorders because of consanguineous 
marriages and the lack of diagnosis and management. This review discusses 
the prevalence of anophthalmia and microphthalmia, the genes associated 
with these diseases, and the most common mutations of these genes in the 
Pakistani population.  

2. STRUCTURAL DISORDERS: ANOPHTHALMIA AND 
MICROPHTHALMIA  

Anophthalmia and microphthalmia (A/M) comprise the absence or the 
small size of the ocular globe (as compared to the globe size of the normal 
population of the same age), respectively (shown in Figure 1) [2, 3]. Both 
share the same clinical features, hence they are difficult to distinguish in 
multiple cases [4, 5]. Anophthalmia and microphthalmia are expected to 
affect 1 in 30000 and 1 in 7,000 children, respectively [6]. These defects 
can be unilateral or bilateral and can also be a part of a syndromic disease 
[7]. The impact on vision is determined by the degree, size, and presence of 
ocular abnormalities [6, 8]. A/M is related to ocular coloboma, a structural 
abnormality which occurs when the optic fissure is not completely fused. 
Both of these conditions are believed to have the same genetic foundation 
[7, 9–11]. Even though microphthalmia causes 3.2% to 11.2% of blindness 
in children, yet there are no therapies available to improve visual 
performance in these individuals, with the current treatment emphasizing 
increasing the remaining eyesight and enhancing aesthetics [6–8]. 

A/M are highly heterogeneous disorders with a high degree of clinical 
heterogeneity. They are frequently coupled with additional visual 
abnormalities in the contralateral eye (complex) or microphthalmic eye, 
such as ocular coloboma, anterior segment dysgenesis (ASD), vitreoretinal 
dysplasia, and cataracts [6]. Additionally, 33-95% of A/M patients have 
other non-ocular abnormalities, while 20-45% of these patients are 
diagnosed with a syndrome [2, 12–15]. Its variability may stem from genetic 
modifiers or environmental factors, such as the lack of vitamin A and 
alcohol addiction in mothers [2, 12, 16–18].  
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Figure 1. The Patients of (a) Anophthalmia Lacking Ocular Socket and (b) 
Microphthalmia with Smaller Eye Sockets. 

Both patients in Figure 1 have corneal opacity in both eyes with vision 
loss. Ethical approval to use these images was taken from the Bioethics 
committee of the Department of Biochemistry, Quaid-I-Azam University, 
Islamabad.  

3. GENES ASSOCIATED WITH ANOPHTHALMIA AND 
MICROPHTHALMIA 

Approximately 60 genes reportedly have an association with the A/M 
phenotype. In the Pakistani population, some genes more commonly mutate 
than others. These genes include Forkhead box E3 (FOXE3), SOX2, 
STRA6, and AlDH1A3. 
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3.1.3.1 FOXE3 
Forkhead box E3 (FOXE3) is a transcription factor that belongs to the 

Forkhead box (FOX) family. It is important in the development of lenses in 
vertebrates [19–21]. Proteins that belong to the FOX family have a 
structural feature, that is, a highly conserved winged-helix DNA-binding 
domain (Forkhead domain, FHD). Based on the similarity in sequence 
within and outside FHD, these proteins are divided into subgroups (A-S). 
Phylogenetically, FOXE proteins most closely resemble the FOXD 
proteins. The FOXE family consists of FOXE1 and FOXE3. The former is 
associated with thyroid and palatal development, while the latter is 
associated with lens development. Although FOXE3 is only expressed in 
the eye lens in mouse embryos [19, 20], both mice and humans carrying 
FOXE3 variants demonstrate complex ocular phenotypes, such as A/M and 
anterior segment anomalies, in addition to lens anomalies [19, 20, 22, 23].  
Importantly, the FOXE3 gene has only one exon and its mRNA remains 
unspliced. Therefore, truncating variations are unlikely to cause nonsense-
mediated decay (NMD), which results in the normal production of the 
mutant mRNA and protein [23–26]. 

The FOXE3 gene produces a 319 amino acid long transcription factor, 
with a DNA-binding domain called the Forkhead domain (shown in Figure 
2) found between amino acids 71 and 165 [19, 22]. In humans, mice, and 
zebrafish, FOXE3 is preferentially expressed during the formation of the 
lens [19, 21, 27].  

 
(a)          (b) 

Figure 2. Forkhead Domain of FOXE3 (a) The Dark Red Color of the 
FOXE3 Protein Structure Shows the DNA Binding Domain Which is also 
called the Forkhead Domain. This Structure of FOXE3 is Predicted by 
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AlphaFold [28] and Then Reconstructed with Biovia Discovery studio®, 
(b) FOXE3 Gene Structure with Susceptible Mutation Areas. Brown Color 
Shows the Area Where Mutation Occurs Most of the Time. 
3.2. SOX2 

Heterozygous mutations in SOX2 account for 15-40% of cases. These 
variations are the most known reason for severe microphthalmia and 
bilateral anophthalmia [3, 6, 7]. Mutations in SOX2 can lead to simple or 
complex A/M, including unilateral or bilateral A/M and Syndromic 
Microphthalmia 3 (MCOPS3), respectively. MCOPS3 is mainly 
characterized by seizures, sensorineural hearing loss, brain malformation, 
neurocognitive delays, microcephaly, and genital anomalies [3, 7, 29]. 
SOX2 has over 76 disease-associated variations [2, 3, 6]. The majority 
(60%) of A/M-causing SOX2 mutations are de novo, however, it can also 
result from SOX2 haploinsufficiency, when alleles are inherited in an 
autosomal dominant fashion [2, 3, 6, 29]. Due to germinal mosaicism, 
SOX2 mutations that cause the disorder can pass down from asymptomatic 
parents, as in the case of a lady who had no ocular abnormalities but gave 
birth to a daughter who had bilateral anophthalmia and extraocular SOX2 
syndrome characteristics [30, 31]. In light of this fact, it is crucial to assess 
parents for future family planning and appropriate genetic counseling [4, 6, 
14, 15]. 

Substitutional mutations in DNA-binding or transactivation domains 
(Figure 3) may cause postnatal growth retardation and non-penetrance, or a 
milder form of the disease with ocular symptoms, such as ocular coloboma 
[3, 7, 14].  

  
(a)                                                                         (b) 

Figure 3. (a) The Structure of SOX2 Protein is Predicted by PDB and 
Modified with Biovia Discovery Studio® [28], (b) SOX2 Gene Structure 
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(With Susceptible to Mutation Areas) Highlighted. The Structure is 
Determined by AlphaFold for the Most Vulnerable Positions for Mutations 
According to Literature. Brown Color Shows the Area Where Mutation 
Occurs Most of the Time. 
3.3.STRA6 

STRA6 can lead to A/M when both alleles are mutated. This mutation 
may include missense, frameshift, nonsense, indel, and whole gene deletion. 
MCOPS9 is frequently caused by pathogenic recessive STRA6 mutations 
and further causes pulmonary, diaphragmatic, and cardiac problems. These 
are syndromic traits and mortality occurs during the first two years of life 
[7, 32, 33]. Moreover, patients with homozygous missense STRA6 
mutations may also show isolated A/M and milder symptoms, such as a 
patient with bilateral anophthalmia and moderate syndromic characteristics 
[12]. However, no connection between genetics and phenotype has been 
discovered yet [3, 33, 34].  

STRA6 is a retinol-binding protein transmembrane receptor that 
mediates the absorption of vitamin A into cells [3, 12, 35–38]. A missense 
mutation in STRA6 causes the malabsorption of vitamin A, according to 
cellular research [12]. Additionally, zebrafish models replicate the clinical 
phenotype, with the suppression of retinoic acid causing microphthalmia 
and other developmental abnormalities [12]. Individuals affected with 
STRA6 mutations show diverse phenotypes, as seen in one family which 
showed a spectrum of phenotypes, including anophthalmia and 
microphthalmia with contralateral ocular coloboma. This implies that 
phenotypic diversity may be impacted by both genetic and environmental 
influences, such as the variability in vitamin A intake [34]. 

The severity of the abnormalities brought on by STRA6 mutations 
(Figure 4) shows how crucial retinoic acid signaling is for development 
[35]. By regulating the expression of genes involved in development, 
retinoids can control how an individual develops [12, 37, 38]. STRA6 
deficiency in zebrafish affects gene regulation and retinoic acid receptor 
signaling, leading to abnormalities in the development of craniofacial and 
cardiac structures, as well as microphthalmia [37]. Animal and cellular 
models show that STRA6 mediates the intake of vitamin A and its 
discontinuity causes A/M by disrupting the retinoic acid signaling pathway, 
reducing the gene expression essential for eye development [38]. 
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(a) (b) 

Figure 4. Structure of STRA6 and Position of Mostly Reported Mutations. 
(a) PDB Structure of STRA6 Determined by X-ray Crystallography and (b) 
The Structure Determined by AlphaFold for the Most Vulnerable Positions 
for Mutations According to Literature. Brown Color Shows the Area Where 
Mutation Occurs Most of the Time. 
3.4.ALDH1A3 

An estimated 10% of A/M cases are presumably caused by mutations in 
the retinaldehyde dehydrogenase gene ALDH1A3 [18, 39]. Missense, 
nonsense, and exon-skipping variants are all its disease-associated 
variations (Figure 5) [39–42]. Bilateral A/M is frequently accompanied by 
biallelic ALDH1A3 mutations, which can be isolated or complex [7]. 
Neurocognitive phenotypes are frequently linked to biallelic pathogenic 
A/M ALDH1A3 alleles, although other extraocular symptoms are relatively 
rare [3, 7, 39]. In an instance of autosomal recessive ALDH1A3 variations, 
a sister without symptoms had the same homozygous mutation as her two 
siblings who had bilateral A/M. This is one example of non-penetrance with 
ALDH1A3 disease-associated variations [41, 43]. ALDH1A3 oxidizes 
retinaldehyde to retinoic acid [3, 39, 44]. One of the three retinaldehyde 
dehydrogenases found in humans, ALDH1A3 has distinct spatial and 
temporal expression patterns [44–46]. Pax6 regulates the expression of 
ALDH1A3, as demonstrated by mice model studies [44, 47]. The periocular 
mesenchyme expresses the mouse retinaldehyde dehydrogenase gene 
Raldh2 (human ALDH1A2) [45, 46]. Optic cup invagination is prevented 
by Raldh2 loss-of-function mutations [45]. Raldh3-/- mouse mutant 
embryos start the development of the optic cup, however, because the 
ventral optic cup lacks retinoic acid, the ventral retina shortens [46, 47]. As 
a result, ALDH1A3 seemingly plays a conserved function in retinoic acid 
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synthesis in developing the ventral optic cup. These variations cause 
abnormalities in optic cup development, such as invagination [44, 46]. 

  
(a) (b) 

Figure 5. Structure of ALDH1A3 and Positions of Mostly Reported 
Mutations. (a) PDB Structure of ALDH1A3 Determined by X-ray 
Crystallography and (b) Structure Determined by AlphaFold for the Most 
Vulnerable Positions for Mutations According to Literature. Brown Color 
Shows the Area Where Mutation Occurs Most of the Time. 
3.5.VSX2 

Visual System Homeobox 2 (VSX2) is a homeodomain-containing 
transcription factor expressed in the retina in humans, mice, and zebrafish 
embryo development [48]. VSX2 deficiency leads to microphthalmia with 
ocular anomalies across species, indicating its evolutionary conservation 
[49, 50].  

Homozygous mutations in VSX2 result in 2% non-syndromic 
microphthalmia. Pathogenic variants of VSX2 include substitution, pre-
termination condon, exon skipping, and splice-site variations [51]. In most 
cases, VSX2 follows a recessive mode of inheritance [7]. The structure of 
VSX2 is shown in Figure 6.  
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(a) (b) 

Figure 6. Structure of VSX2 and Positions of Mostly Reported Mutations. 
(a) PDB Structure of VSX2 Determined by X-ray Crystallography and (b) 
The Structure Determined by AlphaFold for the Most Vulnerable Positions 
for Mutations According to Literature. Brown Color Shows the Area Where 
Most of the Time Mutation Occurs. 

4. MUTATIONS ASSOCIATED WITH A/M IN THE 
PAKISTANI POPULATION 

Many A/M families have been screened for genetic mutations. The most 
recurrent mutated gene in autosomal recessive families is the FOXE3 gene. 
In this gene, DNA binding domain is mutated in most cases, while in some 
affected individuals a pre-termination codon results in diseased phenotypes. 
Two mutations located at c.720C>A and c.289A>G are the most common. 
VSX2 is also associated with bilateral anophthalmia, and its pathogenic 
variants have been found in some Pakistani families. In some studies, 
ALDH1A3 and STRA6 have been reported to be pathogenic in autosomal 
recessive families. In the case of autosomal dominant and sporadic 
mutations, the SOX2 gene is involved, resulting in syndromic unilateral or 
bilateral microphthalmia. Table 1 describes the most reported mutations in 
microphthalmia and anophthalmia.  
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Table 1. Commonly Mutated Genes in A/M Patients among the Pakistani Population 
Gene Physical Location Exon 

Number 
DNA 

Change c. Position Amino Acid 
Change p. Position Reference 

FOXE3 chr1:47882009 1 Nonsense c.21_24delGGA
T Frameshift p.Met7Ilef*

216 [52] 

FOXE3 chr1:47882231 1 Missense c.244A>G M>V p.M82V [52] 
FOXE3 chr1:47882276 1 Missense c.289A>G I>V p.I97V [53] 
FOXE3 chr1:47882093 1 Nonsense c.106G>T PTC p.E36fs* [54] 
FOXE3 chr1:47882707 1 Nonsense c.720C>A PTC p.C240X [55] 

ALDH1A3 chr15:101425544 2 Insertion c.172dup Frameshift p.E58Gfs*5 [56] 
ALDH1A3 chr15:101427837 3 Missense c.265C > T C>T p.R89C [57] 
ALDH1A3 chr15:101440860 9 Missense c.964G>A V>M p.V322M [53] 
ALDH1A3 chr15:101447332 11 Missense c. 1240G > C G>C p.G414R [56] 

ALDH1A3 chr15:101447403 11 Nonsense c.1310_1311del
AT PTC p.Y437Wfs

*44 [53] 

STRA6 chr15:74490127 4 Deletion c.145_147delC PTC p.G50AfsX
22 [58] 

STRA6 chr15:74488486 6 Missense c.269C>T P>L p.P90L [58] 
STRA6 chr15:74483230 12 Missense c.878C>T P>L p.P293L [58] 
STRA6 chr15:74481585T 13 Missense c.961A>C T>P p.T321P [58] 
STRA6 chr15:74472462 20 Missense c.1963C>T R>C p.R655C [58] 
STRA6 chr15:74472494 20 Missense c.1931C>T T>M p.T644M [58] 
VSX2 chr14:74707928 1 Deletion c.413_425del Frameshift p.S138fs* [55] 
VSX2 chr14:74726393 3 Missense c.668G>C G>C p.G223A [50] 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr


Hameed et al. 

 
27 Department of Knowledge and Research Support Services 

 Volume 5 Issue 1, Spring 2025 
 

5. MUTATIONS ASSOCIATED WITH A/M IDENTIFIED 
GLOBALLY 

There have been multiple cases of A/M spectrum, either syndromic or 
non-syndromic, in different remote regions of Pakistan. Such cases often 
remain undiagnosed because of a lack of medical records and a proper 
healthcare system. Properly assigned individual numbers are followed 
worldwide to identify an individual’s medical history. Our country’s 
healthcare system is in developing stages and there are very few facilities 
for genetic testing. Consequently, the rate of genetic testing is very low. A/M 
patients are only sequenced for the mutations of the FOXE3 gene, as shown 
in Table 3.1. There is no mutation reported for syndromic cases in the 
Pakistani population, although many mutations are available worldwide for 
other genes, as shown in Table 5.1. There is a need for the screening of other 
genes reported globally in unsolved A/M cases reported in Pakistan. This 
would help to better understand the spectrum of A/M in Pakistan. It may 
also help to set up a diagnostic kit for genome screening to study the large 
cohort of A/M in different regions of Pakistan. In Europe, multiple cohort 
studies attempted to establish a genotype-phenotype correlation and found 
that FOXE3 is majorly mutated in non-syndromic biallelic microphthalmia 
[59]. Mutations in SOX2 are associated with syndromic anophthalmia, 
accompanied by Peter’s anomaly or autism [2]. Some mutations in 
ALDH1A3 have been proven to cause monoallelic anophthalmia or biallelic 
microphthalmia in association with intellectual disability, showcasing the 
role of retinoic acid in brain development in starting years [40]. STRA6 has 
not been identified to a significant extent in A/M conditions in Europe. 
However, its presence in the Pakistani population suggests that a high rate 
of consanguineous marriages might be the ultimate cause of this diseased 
condition. 
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Table 2. Most Common Mutations Involved in A/M Worldwide 

Gene Disease Spectrum Exon 
Number 

DNA 
Change c. Position Amino Acid 

Change p. Position Reference 

FOXE3 Non-syndromic 1 Insertion c.148_170dup Frameshift p.G58RfsX174 [23] 
FOXE3 Non-syndromic 1 Missense c.232G>A A>T p.A78T [59] 
FOXE3 Non-syndromic 1 Missense c.269G>T R>L p.R90L [59] 
FOXE3 Non-syndromic 1 Missense c.291C > G I>M p.I97M [23] 
FOXE3 Non-syndromic 1 Missense c.292T>C Y>H p.Y98H [60] 
FOXE3 Non-syndromic 1 Missense c.310C>T R>C p.R104C [59] 
FOXE3 Non-syndromic 1 Nonsense c.345G>A PTC p.W115X [59] 
FOXE3 Non-syndromic 1 Missense c.358C>G R>G p.R120G [61] 
FOXE3 Non-syndromic 1 Missense c.359G > C R>P p.R120P [23] 
FOXE3 Non-syndromic 1 Missense c.371C > T T>M p.T124M [23] 
FOXE3 Non-syndromic 1 Missense c.472G>C G>R p.G158R [59] 
FOXE3 Non-syndromic 1 Nonsense c.557delT Frameshift p.F186SfsX38 [62] 
FOXE3 Non-syndromic 1 Deletion c.691_693delGG Frameshift p.231delG [63] 
FOXE3 Non-syndromic 1 Nonsense c.705delC Frameshift p.E236SfsX71 [62] 
ALDH1

A3 Non- Syndromic 3 Missense c.211G>A V>M p.V71M [64] 

ALDH1
A3 Non-Syndromic 5 Nonsense c.521G>A C>Y p.C174Y [65] 

ALDH1
A3 Syndromic 6 Deletion c.666G>A Exon Skipping p.W180_E222d

el [43] 

ALDH1
A3 Non-Syndromic 6 Nonsense c.568A>G PTC p.K190X [66] 

ALDH1
A3 Non-syndromic 9 Nonsense c.888G>T PTC p.E300X [40] 

ALDH1
A3 Non-syndromic 9 Missense c.1064C>G P>R p.P355R [40] 
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Gene Disease Spectrum Exon 
Number 

DNA 
Change c. Position Amino Acid 

Change p. Position Reference 

ALDH1
A3 Non-syndromic 10 Missense c.1144G>A G>R p.G382R [40] 

Gene Disease Spectrum Exon 
Number 

DNA 
Change c. Position Amino Acid 

Change p. Position Reference 

ALDH1
A3 Non-Syndromic 10 Nonsense c.1165A>T PTC p.K389X [66] 

ALDH1
A3 Non-syndromic 10 Missense c.1231G>A E>K p.E411K [40] 

ALDH1
A3 Syndromic 12 Missense c.1398C>A N>K p.N466K [43] 

ALDH1
A3 Non-Syndromic 13 Missense c.1477G>C A>P p.A493P [57] 

SOX2 Syndromic 1 Deletion c.(?_-
30)_(*220_?)del Frameshift SOX2 del [2] 

SOX2 Syndromic 1 Missense c.151T>C W>R p.W51R [2] 
SOX2 Syndromic 1 Missense c.221G>C R>P p.R74P [2] 
SOX2 Syndromic 1 Missense c.236G>C W>S p.W79S [2] 

SOX2 Syndromic 1 Deletion c.245delT Frameshift p.Leu82CysfsX
20 [2] 

SOX2 Syndromic 1 Nonsense c.310G>T PTC p.E104X [2] 
SOX2 Syndromic 1 Missense c.434C>T A>V p.A145V [67] 
SOX2 Syndromic 1 Nonsense c.513C>G PTC p.Y171X [2] 
SOX2 Syndromic 1 Deletion c.70_86del Frameshift p.A29GfsX66 [2] 
SOX2 Syndromic 1 Missense c.845G>C G>A p.G282A [68] 
SOX2 Syndromic 1 Duplication c.86_95dup Frameshift p.N33GfsX66 [2] 
VSX2 Non-syndromic 1 Insertion c.71_72insG Frameshift p.A25RfsX101 [2] 
VSX2 Non-syndromic 1 Deletion c.249delG Frameshift p.L84SfsX57 [51] 
VSX2 Non-syndromic 4 Missense c.667G>A G>R p.G223R [2] 
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6. OTHER FACTORS ASSOCIATED WITH A/M 
A/M is mainly caused by genetic dispositions. However, certain factors 

can trigger or impact the severity of the disease. These factors include 
maternal vitamin A deficiency, malnutrition, and environmental exposure. 
6.1. Maternal Vitamin A Deficiency 

Vitamin A is critical for the proper functioning of the eye and its 
deficiency can impair the visual cycle. Various studies have demonstrated 
that severe maternal vitamin A deficiency during pregnancy disrupts 
retinoid signaling pathways, impairing optic vesicle formation and leading 
to structural anomalies, such as microphthalmia or coloboma [69]. 
Similarly, a longitudinal study of 91 children with early severe malnutrition 
revealed persistent visual impairments, including astigmatism, myopia, and 
retinal pigment epithelium atrophy, underscoring the lifelong consequences 
of nutritional deprivation during critical developmental windows [70]. 
These findings highlight the importance of maternal vitamin A levels for the 
ocular health of newborns. However, no animal model studies have 
confirmed any correlation between vitamin A deficiency and 
microphthalmia. 
6.2. Macronutrient Deficiency and Epigenetic Modification 

Protein-energy malnutrition (PEM) during pregnancy compromises 
fetal growth through epigenetic mechanisms. Animal models demonstrate 
that PEM alters DNA methylation patterns in genes regulating eye 
development, such as PAX6 and SOX2, which are crucial for lens and retinal 
progenitor cell differentiation [71]. Therefore, maternal malnutrition may 
result in A/M phenotype. However, no such cases have been reported yet. 
6.3. Pharmaceutical Exposure 

Prenatal exposure to teratogenic substances significantly elevates the 
risk of anophthalmia and microphthalmia. Isotretinoin, a vitamin A 
derivative used for severe acne, disrupts cranial neural crest cell migration, 
leading to ocular malformations when used during the first trimester [72]. 
Similarly, thalidomide—a notorious teratogen—interferes with angiogenic 
processes in the developing eye, resulting in anophthalmia or 
microphthalmia in up to 40% of exposed fetuses [73]. Maternal smoking 
and alcohol consumption further exacerbate risks; nicotine constricts 
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placental blood flow, impairing nutrient delivery, while ethanol metabolites 
directly damage retinal ganglion cells [74]. 

7. CONCLUSION 
Anophthalmia and microphthalmia are the leading cause of congenital 

blindness. Environmental factors and maternal health can increase the risk 
of A/M, but genetic dispositions remain the major role players for the 
diseased phenotype. In the Pakistani population, mutations in the FOXE3 
gene are the leading cause of A/M and the most recurrent pathogenic variant 
p. C240X has been reported across multiple families. AlphaFold also 
predicts the pathogenicity of these variants which indicates the future 
impact this algorithmic model may have on disease-causing variant studies. 
The role of STRA6, ALDH1A3, and VSX2 genes is critical in better 
understanding the genetics of A/M. Interestingly, while SOX2 mutations are 
commonly associated with A/M in European and American populations, no 
studies to date have reported this association in Pakistan. This discrepancy 
provides a unique opportunity to explore why SOX2 appears conserved in 
the Pakistani population but is more mutation-prone in Western cohorts. 
Unfortunately, due to socioeconomic crises in the country, the A/M 
phenotype has not been thoroughly studied. Certainly, more studies will 
yield more information about genes involved in the eye formation pathway. 
It would also help to form a diagnostic kit for the early detection of A/M in 
Pakistani families. Moreover, translational research is required to validate 
these findings and for the identification of drug targets for future therapies.  
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