Evaluating Software Architectures: A Comprehensive Comparative Review

Abrar Ahmad¹, Taimoor Hassan², Mehmood Anwar³
Department of Software Engineering, The University of Lahore, Lahore
ibe9212@gmail.com
taimoorhassan⁹@yahoo.com
mehmoodanwar¹⁷⁵@gmail.com³

Abstract--- Without the proper and valid software architecture, there is no software development exist in market and industries. In this review paper, we analysis and comparison the numerous architectures based on proposed models and their impact in the shape of results outcomes on the software project and their function parameters.

Keywords--- LSTM (Long Short Memory), CCN (Convolutional Neural Network), HMM (Hidden Markov Model), ANN (Artificial Neural Network), SVM (Support Vector Machines)

I. INTRODUCTION

When we talk about software development, after software requirements, design the software and system is a major part of overall software development. Without proper and valid design there is no possibility to develop the authenticated software. Software architecture play major role in software development as well as in software industries. If we talk about this paper, we analysis the Long Short Term Memory architecture (LSTM) in whole article. In this review paper, we compare three to four numerous levels of architecture and their impact on software techniques and methods. It is the sequential and organized level of model that plays in organized form working with multiple memory units. In software companies and industries, most used architecture is LSTM, but their usage level depends on their scenario and system project nature. In addition, in Section II describe the Literature Review in detail, Discussion section explained in Section III, in Section IV conclude the paper, at the end of this paper highlight the references that used in this article.

II. LITERATURE REVIEW

An Internet of Things is seen as one of the most revolutionary techniques in the field, with the ability to improve people lifestyles & housing condition [1]. Numerous internets of items apps have indeed been created in a variety of fields, including safety,

healthcare, entertainment, production, and mobility. Intelligent houses have been created because of the internet of things. Researchers could not only observe and yet also regulate the interior temperature based on customer demand by connecting tiny internet of things sensors to electric appliances. Smart internet of things gadgets may also be utilized to save electricity but only by turning upon linked machinery once it is required. Researchers present an HMM approach to estimate power usage in Korea residential properties via information compiled via smart meters in this research. As validations and interpretation of the findings, they use consumption data acquired from 4 multi-story building in Korea, South Korea. SVM, ANN, & Classification and Regression Trees are 3 popular predicting techniques that are matched with both the suggested predicted values outcomes.

By term to roots mean-squared errors measures, their suggested models are two-point ninety six percent better than artificial neural network, six points zero nine percent better than support vector machine, & higher points three percent zero classification regression trees outcomes, according to a comparison. They used chronological resolution analyses to verify & confirm on predictions outcomes of their suggested method even further. They tested their conceptual system towards hourly, day, & week clustering for such an objective. Considering hour, every day, & week information, forecast efficiency are two point six two, one point five four, & zero point four six, however, based upon that root means squared error measure. It demonstrates all of this for larger grained information, their figure's forecast efficiency improved. Increased forecast encourages everybody to investigate its applications into buildings controlling mechanisms that improved power efficiency.

People have accessed the electrified power, which is a valuable but limited commodity. These have been the inextricable component of life because human beings could never longer imagine a universe this. Numerous home gadgets consume electrical, as well as the desire for it is continually increasing. As addition, businesses are growing demands upon power of energy corporations that generate greater & energy. Based to the American Energy Agency, worldwide energy consumption is anticipated to rise by twenty eight percent by two thousand forty. Attempts are being undertaken in 2 primary ways to address an expanding global need of power generation: 1. Enlarge the volume of electricity generation via utilizing present & sustainable electricity resources and approaches. 2. Make efficient use of current electricity assets via reducing waste & inefficient use. These techniques are similarly significant & complementary to one another. As reality, efficient usage the current power supplies are preferable since this has been costeffective & simple of implement.

When commodities are used inefficiently, power are wasted that could sometimes been put to better uses. As reduce electricity waste & needless use, sophisticated measures are required with assure that electricity is used efficiently. As boosting power quality, reliability, transaction processing, & total profit maximization, IOT with Items apps has demonstrated encouraging outcomes inside the variety more fields. Intelligent house technology centered upon a network with objects is likewise highly important towards bringing this notion of intelligent houses into life.

The network with items refers the tiny gadgets that are connected onto everyday items with the aim the observing as well as regulating them. These gadgets include connectivity capabilities, allowing them to be accessible placed above a white many Webs. Its essential construction elements towards its eventual intelligent environment are its combination on a network with devices plus artificial intelligent systems. Every suitable energy-saving approach, nevertheless, must never jeopardize the customer's pleasure & efficiency. At another terms, its goal is to maximize power efficiency while maintaining customer satisfaction.

Researchers may gather required contextual data regarding the interior atmosphere utilizing connected technologies, such as temperatures, lighting, customer occupation, equipment working condition, and such so forth. Several machines training methods may be used the anticipate potential circumstances & power requirements using acquired contextual information. Electricity demand forecasting are beneficial to alike residential consumers & current generation firms. Where practicable, consumers could pick for alternative ways in lower overall electricity costs, such the automatic shifting between outside into inside electricity resources. Moreover, precise forecasting about anticipated electricity needs could aid in the identification & management of maximum electricity usage hrs.

Enhanced capacities modeling that controlling location sustainable power production may be accomplished, which will aid is reaching a lowest energy construction goal. Likewise, electricity firms may utilize electricity forecast information that change its producing capability & improve electrical burden dispersion within real times. Based per research statement through the Korea Electric Economy Unit, business & domestic electric usage accounts for forty percent of total nationwide electricity usage within South Korea. Because power accounts up the large portion in the household's month costs, even tiny improvements to power efficiency could result into significant savings. Like a result, it is extremely desired to design a smart network with things-based approach towards attaining power efficiency that is a focus of the study.

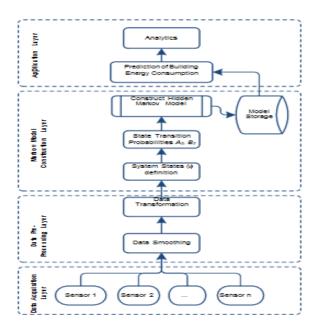


Figure 1:Proposed Energy Prediction model using HMM

A goal of this study is to create the HMM based method for predicting electricity usage in household structures. Regarding power forecasting within intelligent houses, they created an HMM-based tiered framework. There are 4 levels in the suggested design. 1. An information acquiring element collects info such as interior ecological variables, solenoid prestige, & consumer accommodation details; 2. The pre-processing element readies the contextual details for such top tiers; 3. The HMM are then produced & saved; 4.and the calculated designs are eventually utilized for electricity prognostication at the implementation coating. They utilized information of 4 multi-story structures throughout Korea, South Korea, during their empirical investigation. The suggested approach outperformed the SVM, ANN, & Classification & Prediction Tree in a comparison

A goal in the study is to create HMM based algorithms that can estimate electricity usage in domestic buildings. They offer the HMM based technique towards predicting electricity usage within intelligent houses within this research. As algorithm verification & outcomes assessment, they utilized actual information obtained from intelligent meters within chosen residences within Korea, Korea. The outcomes of the suggested design forecast are contrasted to 3 famous prediction methods. They used chronological resolution analyses to better

verify & confirm that forecast outcomes of their suggested system. They examined their outcomes over hour, every day, & week information aggregate towards the objective. The forecast reliability of hour, day, & week information are two point six two, one point five four, & zero point four six, however, on units the roots means squared errors. It demonstrates as with granular information, their designer's forecast reliability improved.

Greater forecast reliability provides researchers a confidence that investigate a suggested designer's use in architectural management networks that improve power efficiency. They chose Hidden Markov model as predictions above others Intelligence systems because of its intrinsic advantages. Given the total power spent, the Hidden Markov model placed training algorithm may be utilized to detect the fundamental devices. Moreover, via analyzing specific gadget power usage patterns, HMM algorithms may conduct automatic defect tracking & equipment quality assessments. The first stage was that prove the Hidden Markov model could reliably estimate power usage that is what the study has about. They have been now researching numerous possibilities & gathering information for expand our study based upon those first outcomes. [1]

In this article is related to energy consumption prediction using machine learning techniques [2]. The author develops a strong framework that is used for several electrical energy consumptions predicting of smart buildings by using two techniques one is transfer learning and the second is LSTM. Energy consumption gets the attention of researchers in recent years because of the significance of a maintainable environment. Energy consumption for casting is a challenge in the domain of intelligent energy management [3]. Machine learning uses two main approaches for casting electrical energy consumption which is occupant-centric energy/device-centric. Occupant-centric method usage occupancy estimate and ID (identification), human movement recognition, and approximation of preferences. Energy/device-centric techniques consider energy and devices characteristics, including damage estimation, energy, and device profiling and inferring on sensors.

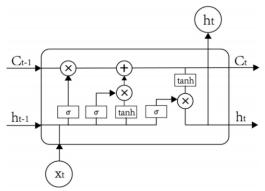


Figure 2:LSTM memory cell at time step t [1]

LSTM architecture processes information through gates for maintaining and updating the memory cells state. Three categories of gates are used in this process which are input gate, output gate, and forgot gates. Sigmoid ($\sigma(.)$) activation function and tanh nonlinear activation function are employees by every memory cell. Forgot gate identifies which cell state is discarded. Every cell of memory gets the output from earlier step h_{t-1} and external data in present step X_t as input. Using the sigmoid function this gate is then combined into a long vector as shown follows.

$$f_t = \sigma(Wf \cdot [h_t-1, X_t] + b).$$

 W_f and B_f are used as weight matrices, b shows a bias vector for forgot gate. Forgot gate records number of the cell state $C_{t\text{-}1}$ of the earlier step reserve to the state of cell C_t of the present step. The gate output can be 0 to 1. The next input gate is used to decide how much current input X_t is reserved into a state of cells C_t . The function of this gate is to prevent the entering of useless information into cells. Two functions of this gate are following.

$$I_t = \sigma (W_t \cdot [h_{t-1}, X_t] + b_t),$$

This equation is used to discover the cells state that needed to be updated.

$$C_{t} = \tanh (W_{c}.[h_{t-1}, X_{t}] + b_{c}),$$

This equation aims to update the data to the states of the cell.

$$Ct = \mathbf{f}t \cdot Ct - 1 + \mathbf{i}t \cdot C0$$

This equation is used to update the state of the cell for memory cells. The function of the output gate is to control how many cell states are discarded at this stage. Equation of output gate is:

$$O_t = \sigma (W_0 \cdot [h_{t-1}, X_t] + b_0).$$

After that state of a cell is processed using tanh and multiplying the output with O_t . Hence, the ultimate output is obtained.

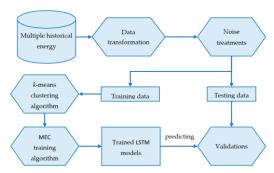


Figure 3:MEC-TLL framework

Firstly, multiple historical energy consumption data is collected in a form of datasets and then converted to several time series data in a daily demand of electrical energy consumption in the smart buildings. This dataset is then transformed into a meaningful way. Incomplete values are addressed, and our liars are removed. After this process noise treatment techniques are applied to remove noise from the dataset. In the very next step, the dataset is separated into two parts where the first is used for training purposes and the second one is used for validation of the model.

The machine is trained using a training dataset and a k-mean algorithm for clustering is used to make several clusters. The number of clusters is determined using silhouette analysis. Using silhouette analysis number of clusters are interpreted for validation of consistency within the data. Silhouette is a measure of in what way comparable points in a cluster can be compared to another cluster. Silhouette method also makes available graphs with scores wherever an extraordinary score shows that a point can be the best match through the cluster to which it was belonging. The score shows in the range from -1 to +1. In the next step, training data is forwarded to the MEC training algorithm. MEC is a multiple electrical energy consumption forecast training algorithm.

From the cluster of the training, the data set n cluster is passed as an input to this algorithm. For every cluster, MEC trained data model is through the center point time series which denotes an LSTM-MODEL base. This is used for training the base model. Due to the benefit of transfer learning, the overall computational time of this architecture is reduced. Therefore, this method provides performs well concerning computational time. In the end, the LSTM trained model is used for the prediction of testing data. The validation module is used to compare the actual values and predicted values by use of different prediction measures including computational time [2].

In this article, we suggest a CNN-LSTM standard for vigorous as well as effective anticipating of domestic power utilization [4]. Our standard rapidly as well as precisely forecasts electric power utilization by obtaining characteristics from variable quantity that impact energy utilization. The suggested model is associated to other system understanding techniques to explain its effectiveness and superiority. We utilized CNN-LSTM to model finding variable quantity along with sequential data as of multivariate time-series. We comparison the expected outcome chart together with the linear regression towards verify that CNN-LSTM expects glowing the regional elements of the time series. As well, we established that it accomplishes improved functioning than current standards with no reliance on top of moment motion.

After all, we have established the method of cutting the sound of energy utilization data through CNN-LSTM core study and examined the variable quantity that have significant impact on power utilization calculation utilizing class stimulation map. The CNN-LSTM model suggested in this article foresees abnormal styles in electric power utilization that might not be expected in current system understanding techniques. The outcomes of this article signify that the CNN-LSTM model expects domestic capacity energy need effectively and soundly, and displays the greatest operation associated with the current good standards. We have as well tried to clarify the variable quantity that influence the forecast [5].

- 1) We suggest a CNN-LSTM network to approximate the electrical power utilization in true domestic homes along with a constant execution of 0.37 MSE.
- 2) Our prototype forecasts complicated electrical power utilization with the maximum performing in the entire instances of exhaustively, (hourly, daily, and weekly) component motions matched to additional approaches.
- 3) We say examined planned technique along with discovered variable quantity of electrical water radiator and mid-air conditioner that have got the best impact going on the forecast model. Instead, the possible restriction of the CNN-LSTM standard remains appearing in comparatively big attempts by way of test and mistake to ascertain the ideal hyperparameters. To run away this trouble, we want to computerize seeking used for the most excellent hyperparameters, and right now we remain in work on a natural process that be able to routinely explore used for the hyperparameter deep space out of CNN LSTM's. As well, we want on the way to gather power utilization information as of many of residences to authenticate the standard.

Domestic attributes such being as residence along with performance get a huge impact upon forecasting electrical power utilization. However, there is no data about the domestic attributes in our recent data. We should have accumulated the domestic features, an essential variable quantity that suggests the amount and performance of citizens and validate the effect of the variable quantity.

In adding, more study is wanted to settle the model method of sequential quality through evaluation of LSTM layer in CNN-LSTM. Such as a strategy connotation, electrical power estimate has a fantastic impact on stable energy source, effective function administration, and protection of energy production structure. To handle rising power utilization, the strategy will establish an energy utilization calculation process to reduce expenses. Therefore, the suggested technique can reduce power waste and financial damage triggered by unscheduled energy plant function.

III. DISCUSSION

In this paper, we analysis three different level of articles that complete based on architecture system. In [1] defined the Markov model-based step and step process for assume the power utilization in little level of buildings. In this presented model, compared the three different algorithms ANN, SVM, CART and shows different level of results. Furthermore, explain the HMM models can accurate the assume level of power utilization and their definite results. That results gave us more confident and very helpful for collecting numerous tasks and extend them in multiple directions. In the following figure 4, proposed the multiple predicated results in compare with actual utilization for 1 year weekly based data.

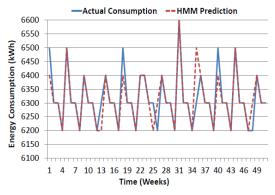


Figure 4:Proposed Model Assume Results

In this paper, we utilized CNN-LSTM to model finding variable quantity along with sequential data as of multivariate time-series [4]. We comparison the

expected outcome chart together with the linear regression towards verify that CNN-LSTM expects glowing the regional elements of the time series. As well, we established that it accomplishes improved functioning than current standards with no reliance on top of moment motion. The overall proposed architecture of CNN-LSTM structure is described in figure 5.

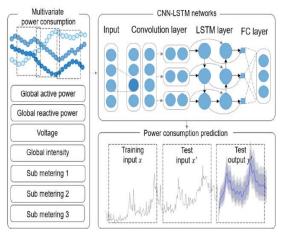


Figure 5:Proposed Architecture CNN-LSTM

In this CNN-LSTM structure describe the voltage level, global active and reactive power, global intensity, and different level of sub metering on all basis on multivariate power consumption. Furthermore, on the right side in CNN-LSTM networks showing the input, convolution layer, LSTM layer and FC layer and their output in power consumption prediction in training input and different level of outputs.

Machine learning uses two main approaches for casting electrical energy consumption which is occupant-centric and energy/device-centric [2]. Occupant-centric method usage occupancy estimate and ID (identification), human movement recognition, and approximation of preferences. Energy/device-centric techniques consider energy and devices characteristics, including damage estimation, energy, and device profiling and inferring on sensors.

In the following figure 6, detailed explain the different comparison with element A and element B that one is traditional machine learning and other is transfer learning.

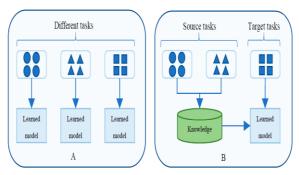


Figure 6:Comparison with A-machine and B Transfer Learning

The above figure explains the different tasks that are implemented on element A and B. In A showing the learned models in different formats, in B represents the source tasks and target tasks with the help of central repository that is called knowledge that interact with learned model. Overall, it's a comparison with transfer learning and machine learning [6].

IV. CONCLUSION

In this review paper, we compare the different level of architecture like long-short term memory, artificial neural network, hidden Markov model, support vector machines in literature review and discussion section. With the help of different level of figures, we explore the numerous architectures and their impact on multiple parameters and tasks that assigned to develop the software project in different software companies.

REFERENCES

- [1] Ullah, I., Ahmad, R., & Kim, D. (2018). A prediction mechanism of energy consumption in residential buildings using hidden markov model. Energies, 11(2), 358.
- [2] Le, T., Vo, M. T., Kieu, T., Hwang, E., Rho, S., & Baik, S. W. (2020). Multiple electric energy consumption forecasting using a cluster-based strategy for transfer learning in smart building. Sensors, 20(9), 2668.
- [3] Djenouri, D.; Laidi, R.; Djenouri, Y.; Balasingham, I. Machine Learning for Smart Building Applications: Review and Taxonomy. ACM Comput. Surv. 2019, 52, 24:1–24:36. [CrossRef]
- [4] Kim, T. Y., & Cho, S. B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72-81.
- [5] Cervantes, H., & Kazman, R. (2024). Designing software architectures: a practical approach. Addison-Wesley Professional.
- [6] Richards, M., & Ford, N. (2025). Fundamentals of Software Architecture: A Modern Engineering Approach. "O'Reilly Media, Inc.".