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Abstract 

Solutions generated through numerical techniques are great in solving 

real-world problems. This manuscript deals with the numerical 

approximation of the epidemic system, describing the transmission 

dynamics of the Vercilla Zoster Virus (VZV) through the impact of 

vaccination. To discretize the continuous dynamical system, we 

proposed a novel numerical technique that preserves the true dynamics 

of the VZV epidemic model. The proposed technique is established in 

such a manner that it sustains all necessary physical traits depicted by 

the epidemic model under study. The designed technique is named a 

nonstandard finite difference (NSFD) scheme. Theoretical analysis of 

the designed NSFD technique is presented which describes its strength 

over the standard numerical procedures which are already being used 

for such purposes. The graphical solutions of all the numerical 

techniques are presented which verify the efficacy of the proposed 

NSFDS technique.   

Keywords:  convergence, epidemiology, mathematical modeling, Non-

Standard Finite Difference (NSFD) method, sensitivity, treatment, 

vaccination, Varicella Zoster 

Introduction 

Human alphaherpesvirus 3 is a contagious virus also known as 

Varicella-Zoster Virus (VZV). It is a member of a family of 9 

herpesviruses known to spread infection in the human population. It 

causes a skin infection called chickenpox, which most commonly 

affects children, teens, and young adults.  Another name of chickenpox 

mailto:m.rafiq@ucp.edu.pk
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is Varicella, a disease that is easily transmitted to others through the 

virus Varicella Zoster Virus [1]. The symptoms of the disease are skin 

rash, blisters, itching and scabbing. Initially, it affects the face, then the 

chest and finally the whole body. The infected person may also feel 

tiredness, fever, vomiting and loss of hunger which often remain for 

five to ten days [2]. If the disease complicates then the inflammation of 

the brain and an infection on the skin is also caused by bacteria [3]. 

Chickenpox is an airborne disease that is very easily transmitted by the 

infected person. With the invention of the VZV vaccine, the harm of 

the disease has been reduced [4]. Using the vaccine, about 70 to 90 

percent of the patients have recovered [5]. A person is usually attacked 

once by the chickenpox virus in a lifetime [6]. If the kids have a good 

immune system they can cover within three days [7]. Cure of Varicella 

is through antiviral medicines, paracetamol, and calamine lotion [6]. In 

1990, globally, 8900 peoples died due to Varicella but in 2013 the 

number reduced to 7000, which occurred at a rate of 1 death per 60,000 

cases [8].  

Mathematical models of infectious diseases are hard to analyze due 

to their highly non-linear behavior. Most of the standard numerical 

techniques to handle these problems are inadequate and do not depict a 

true picture of the epidemic spread. Public health professionals and 

policymakers, however, are keen on getting reliable results produced 

by mathematical modeling of infectious diseases. Yet, they also require 

results that are very close to real-world scenarios of disease dynamics. 

In this work, a reliable numerical analysis of the VZV epidemic is 

proposed. The proposed work gives some useful conclusions regarding 

the epidemic spread. Moreover, this work overcomes the discrepancies 

caused by existing techniques and remains consistent with the 

biological nature of a continuous dynamical system. The works 

presented in [13-15] have also been examined to validate and 

authenticate the results proposed in this work.  

2. Mathematical Model  

2.1. Assumptions 

• A constant population of humans. 

• All newborns are susceptible. 

• All newborns should take two doses of vaccine to get full 

immunity. 
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There are four compartments of the underlying epidemic model 

named susceptible population, infected population, vaccinated 

population and recovered population. The population which can get an 

infection but is not yet infected is still susceptible. The population 

which gets the infection is termed infected. The population which 

recovers from the infection is termed recovered. Vaccinated individuals 

have received the dose of the vaccine. The human population is divided 

into four compartments susceptible, infected, recovered and 

vaccinated.  

2.2 Parameters involved in the epidemic system 

𝑆= Population size of susceptible 

𝑉 = Population size of vaccinated 

𝐸 = Population size of exposed 

𝐼 = Population size of infected 

𝑅 = Population size of recovered 

𝑁= Total population size 

𝑟= Parameter which describes the recovery rate 

a = Rate of arrival 

c =Rate of contact per capita 

= The proportion of the susceptible population who get the first 

vaccine dose 

=The proportion of individuals who get vaccine dose and 

recovered 

= Per capita rate of natural death 

= Rate of birth per capita 

= Rate of the population who recovered from infection after getting 

treatment 

= The rate of recruitment 

f= Proportion of individuals who get second dose Vaccine 

 = Lessening rate of vaccine 

= The rate at which exposed population become infectious 

= Conversion rate from latent to infectious 

=Vaccinated newborns population 

=Vaccinated immigrants’ individuals 

The compartmental diagram of transmission of Varicella Zoster 

Virus is shown in the following flow chart: 
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Figure 1. Flow chart of Varicella Zoster Virus in population  

2.3. Transmission Model of Varicella Zoster Virus  

We presume that chickenpox disease is transferred to the human 

population through infection. We defined the following system of 

differential equations developed with the help of the flow chart diagram 

given in Figure 1 [9]. 

𝑑𝑆

𝑑𝑡
= (1 − ∅)𝜋𝑁 + (1 − 𝜌)Λ + (1 − 𝑓)𝛼𝑉

− (𝜆 + 𝜇 + 𝜃1)𝑆                                       
𝑑𝑉

𝑑𝑡
= 𝜌Λ + 𝜙𝜋𝑁 + 𝜃1𝑆 − ((1 − 𝑓)𝛼 + 𝑓𝜃2 + 𝜇)𝑉  

𝑑𝐸

𝑑𝑡
=  𝜆𝑆 − (𝜇 +  𝛿)𝐸  

𝑑𝐼

𝑑𝑡
=  𝛿𝐸 − (𝜂 +  𝜇)𝐼 

𝑑𝑅

𝑑𝑡
=  𝜂𝐼 + 𝑓𝜃2𝑉 − 𝜇𝑅 

Where 𝜆 =  
𝛽𝑐𝐼

𝑁
 and the total population size is  

𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

Besides the above equations, 
𝑑𝑁

𝑑𝑡
=  Λ + (𝜋 −  𝜇) 

When normalizing the system, we have 
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 𝑣 =
𝑉

𝑁
 , 𝑠 =

𝑆

𝑁
  ,𝑒 =

𝐸

𝑁
 ,𝑖 =

𝐼

𝑁
 ,  𝑟 =

𝑅

𝑁
 

After normalization, the system becomes 

𝑑𝑠

𝑑𝑡
= (1 − ∅)𝜋 + (1 − 𝜌)𝑎 + (1 − 𝑓)𝛼𝑣 − (𝜆 + 𝜃1 + 𝑎 + 𝜋)𝑠   (1) 

𝑑𝑣

𝑑𝑡
= 𝜌𝑎 + 𝜙𝜋 + 𝜃1𝑠 − ((1 − 𝑓)𝛼 + 𝑓𝜃2 + 𝑎 + 𝜋)𝑣        (2)  

𝑑𝑒

𝑑𝑡
=  𝜆𝑠 − (𝑎 + 𝜋 +  𝛿)𝑒            (3) 

𝑑𝑖

𝑑𝑡
=  𝛿𝑒 − (𝜂 +  𝑎 + 𝜋)𝑖            (4) 

𝑑𝑟

𝑑𝑡
=  𝜂𝑖 + 𝑓𝜃2𝑣 − (𝑎 + 𝜋)𝑟            (5) 

Where 𝜇 = 𝑎 +  𝜆 and  𝑎 =  
𝜆

𝑁
 , 

3. Analysis of the Mathematical Model 

3.1. Fixed Points of the Model without EIP 

The equilibrium points/fixed points can be found by setting the above 

system equal to zero. 

Now, for disease-free equilibrium (DFE) we put  

𝑑𝑠

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
=

𝑑𝑒

𝑑𝑡
=

𝑑𝑖

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
= 0 

 𝐸0 = (𝑠0, 0,0,0, 𝑟0) is the disease-free equilibrium point, where 

𝑠0 =
𝛼(𝑎 + 𝜋)(1 − 𝑓) + (𝑓𝜃2 + 𝑎 + 𝜋){(1 − 𝜙)𝜋 + (1 − 𝜌)𝑎}

𝜃1(𝑓𝜃2 + 𝑎 + 𝜋) + (𝜆 + 𝑎 + 𝜋){𝛼(1 − 𝑓) + 𝑓𝜃2 + 𝑎 + 𝜋}
 

𝑟0 =
𝑓𝜃2(𝜃1 + 𝜙𝜋 + 𝑎𝜌)

[𝜃1(𝑓𝜃2 + 𝑎 + 𝜋) + (𝑎 + 𝜋){𝛼(1 − 𝑓) + 𝑓𝜃2 + 𝑎 + 𝜋}]
 

Where 𝑅𝑒 is the basic reproductive number of the disease given by 

𝑅𝑒 =
𝛽𝑐𝛿

(𝛿 + 𝑎 + 𝜋)(𝜂 + 𝑎 + 𝜋)
 

3.2. Numerical Method 

In this section, we will design numerical techniques for the epidemic 

model under study.  

For discretization, time (𝑡 ≥ 0) with 𝑡𝑚 = 𝑚ℎ for 𝑚 =
0, 1, 2, 3, …… and the step size of time is considered as ℎ. The nodal 
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points of 𝑆, 𝑉, 𝐸, 𝐼 and R at 𝑡𝑚 are 𝑆(𝑡𝑚), 𝑉(𝑡𝑚), 𝐸(𝑡𝑚), 𝐼(𝑡𝑚), 𝑅(𝑡𝑚) 

which will be denoted by 𝑆𝑚, 𝑉𝑚, 𝐸𝑚, 𝐼𝑚and 𝑅𝑚 respectively. 

The proposed NSFDS technique is the discrete portrayal of 

differential equations which are summed up based on the rules given 

by R.E. Mickens. These rules benefit in designing the dynamically 

consistent numerical schemes which hold the stability of equilibria and 

positive solution of the underlying system [10-12].    

The proposed NSFDS method emerged as an effective numerical 

scheme for the solution of various physical problems involving 

ordinary and partial differential equations.  

First, we make an approximation to 
𝑑𝑆

𝑑𝑡
,
𝑑𝑉

𝑑𝑡
,
𝑑𝐸

𝑑𝑡
,
𝑑𝐼

𝑑𝑡
𝑎𝑛𝑑

𝑑𝑅

𝑑𝑡
 using 

first-order forward differences. 

𝑑𝑆

𝑑𝑡
=

𝑠𝑛+1 − 𝑠𝑛

h
 

𝑑𝑉

𝑑𝑡
=

𝑣𝑛+1 − 𝑣𝑛

h
 

𝑑𝐸

𝑑𝑡
=

𝑒𝑛+1 − 𝑒𝑛

h
 

𝑑𝐼

𝑑𝑡
=

𝑖𝑛+1 − 𝑖𝑛

h
 

𝑑𝑅

𝑑𝑡
=

𝑟𝑛+1 − 𝑟𝑛

h
 

 

Solving the above equations for 𝑠𝑛+1,  𝑣𝑛+1, 𝑒𝑛+1, 𝑖𝑚+1𝑎𝑛𝑑 𝑟𝑛+1 we 

have 

𝑠𝑛+1 =
𝑠𝑛+ℎ[(1−∅)𝜋+(1−𝜌)𝑎+(1−𝑓)𝛼𝑣𝑛]

(1+ℎ(𝜆+𝜃1+𝑎+𝜋))
     (6) 

𝑣𝑛+1 =
𝑣𝑛+ℎ[∅𝜋+𝜌𝑎+𝜃1𝑠𝑛+1]

(1+ℎ((1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋))
      (7) 

𝑒𝑛+1 =
𝑒𝑛+ℎ𝜆𝑠𝑛+1

(1+ℎ(𝛿+𝑎+𝜋))
       (8) 

𝑖𝑛+1 =
𝑖𝑛+ℎ𝛿𝑒𝑛+1

(1+ℎ(𝜂+𝑎+𝜋))
       (9) 

𝑟𝑛+1 =
𝑟𝑛+ℎ(𝜂𝑖𝑛+1+𝑓𝜃2𝑣𝑛+1)

(1+ℎ(𝑎+𝜋))
               (10) 
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The discrete system is given by equations (5)-(9) is the proposed 

Non-Standard Finite Difference (NSFD) scheme for the continuous 

model (2). 

3.3. Convergence Analysis 

This section is devoted to the convergence analysis of the designed 

NSFDS technique. For this, let us suppose  

𝐹1 = 
𝑆 + ℎ[(1 − ∅)𝜋 + (1 − 𝜌)𝑎 + (1 − 𝑓)𝛼𝑣]

(1 + ℎ(𝜆 + 𝜃1 + 𝑎 + 𝜋))
 

𝐹2 =
𝑣 + ℎ[∅𝜋 + 𝜌𝑎 + 𝜃1𝑠]

(1 + ℎ((1 − 𝑓)𝛼 + 𝑓𝜃2 + 𝑎 + 𝜋))
 

𝐹3 = 
𝑒 + ℎ𝜆𝑠

(1 + ℎ(𝛿 + 𝑎 + 𝜋))
 

𝐹4 =
𝑖 + ℎ𝛿𝑒

(1 + ℎ(𝜂 + 𝑎 + 𝜋))
 

𝐹5 = 
𝑟+ℎ(𝜂𝑖+𝑓𝜃2𝑣)

(1+ℎ(𝑎+𝜋))
   

The Jacobian for this system is: 

𝐽(𝑠, 𝑣, 𝑖, 𝑒, 𝑟) =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝑠
𝜕𝐹2

𝜕𝑠
𝜕𝐹3

𝜕𝑠
𝜕𝐹4

𝜕𝑠
𝜕𝐹5

𝜕𝑠

𝜕𝐹1

𝜕𝑣
𝜕𝐹2

𝜕𝑣
𝜕𝐹3

𝜕𝑣
𝜕𝐹4

𝜕𝑣
𝜕𝐹5

𝜕𝑣

𝜕𝐹1

𝜕𝑖
𝜕𝐹2

𝜕𝑖
𝜕𝐹3

𝜕𝑖
𝜕𝐹4

𝜕𝑖
𝜕𝐹5

𝜕𝑖

𝜕𝐹1

𝜕𝑒
𝜕𝐹2

𝜕𝑒
𝜕𝐹3

𝜕𝑒
𝜕𝐹4

𝜕𝑒
𝜕𝐹5

𝜕𝑒

    

𝜕𝐹1

𝜕𝑟
𝜕𝐹2

𝜕𝑟
𝜕𝐹3

𝜕𝑟
𝜕𝐹4

𝜕𝑟
𝜕𝐹5

𝜕𝑟 ]
 
 
 
 
 
 
 
 
 
 

 

The numerical scheme (6)-(10) will be unconditionally convergent 

if the absolute eigenvalue of the Jacobian matrix is less than unity i.e., 

 |𝜆𝑖| < 1, 𝑖 = 1,2,3,4,5. 

The Jacobian matrix at disease-free point of equilibrium 
(𝑠, 𝑣, 𝑖, 𝑒, 𝑟) = (𝑠0, 0,0,0, 𝑟0) is given by: 



Rafiq et al. 

39 
School of Science 

Volume 4 Issue 4, 2020 

𝐽(𝑠, 𝑣, 0,0, 𝑟) =

[
 
 
 
 
𝑗11

𝑗21

0
0
0

𝑗12

𝑗22

0
0
𝑗52

𝑗13

0
𝑗33

𝑗43

𝑗53

0
0
𝑗34

𝑗44

0

0
0
0
0
𝑗55]

 
 
 
 

 

Where  

𝑗11 =
1

1 + ℎ(𝜃1 + 𝑎 + 𝜋)
 

𝑗12 =
ℎ(1 − 𝑓)𝛼

1 + ℎ(𝜃1 + 𝑎 + 𝜋)
 

𝑗13 =
−ℎ𝛽𝑐{𝑠 + ℎ[(1 − ∅)𝜋 + (1 − 𝜌)𝑎 + (1 − 𝑓)𝛼𝑣]}

[1 + ℎ(𝛽𝑐𝑖 + 𝜃1 + 𝑎 + 𝜋)]2
 

𝑗21 =
ℎ𝜃1

1 + ℎ((1 − 𝑓)𝛼 + 𝑓𝜃2 + 𝑎 + 𝜋)
 

𝑗22 =
1

1 + ℎ((1 − 𝑓)𝛼 + 𝑓𝜃2 + 𝑎 + 𝜋)
 

𝑗33 =
ℎ𝛽𝑐𝑠

1 + ℎ(𝛿 + 𝑎 + 𝜋)
 

𝑗34 = 
1

1 + ℎ(𝛿 + 𝑎 + 𝜋)
 

𝑗43 =
1

1 + ℎ(𝜂 + 𝑎 + 𝜋)
 

𝑗44 =
ℎ𝛿

1 + ℎ(𝜂 + 𝑎 + 𝜋)
 

𝑗52 =
ℎ𝑓𝜃2

1 + ℎ(𝑎 + 𝜋)
 

𝑗53 =
𝜂ℎ

1 + ℎ(𝑎 + 𝜋)
 

𝑗55 =
1

1 + ℎ(𝑎 + 𝜋)
 

𝜆1 =
1

1+ℎ(𝑎+𝜋)
< 1. The remaining eigenvalues are given by the matrix: 

𝐽∗ = [

𝑗11

𝑗21

0
0

𝑗12

𝑗22

0
0

𝑗13

0
𝑗33

𝑗43

0
0
𝑗34

𝑗44

] 
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To calculate the eigenvalues of 𝐽∗, we will use the following lemma: 

Lemma 1[16]: For the quadratic equation 𝝀𝟐 − 𝝀𝑨 + 𝑩 = 𝟎, both 

roots satisfy |𝝀𝒊| < 1, 𝑖 = 2,3 if and only if the following conditions 

are satisfied: 

1. 1 − 𝐴 + 𝐵 > 0 

2. 1 + 𝐴 + 𝐵 > 0 

3. 𝐵 < 1 

𝑓𝑜𝑟 𝑗∗∗ = [
𝑗11 𝑗12

𝑗21 𝑗22
] 

Let us define 𝐴 = 𝑇𝑟𝑎𝑐𝑒𝐽∗∗ and  𝐵 = 𝐷𝑒𝑡𝐽∗∗. Therefore, 

𝐴 =
1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]+1+ℎ(𝜃1+𝑎+𝜋)

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
> 0  

𝐵 =
1

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
−

ℎ2𝛼𝜃1(1−𝑓)

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
  

 𝐵 =
1−ℎ2𝛼𝜃1(1−𝑓)

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
< 1  

if    𝑅0 < 1 

⇒ 𝐵 < 1      

1 + 𝐴 + 𝐵 = 1 +
1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]+1+ℎ(𝜃1+𝑎+𝜋)

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
+

1−ℎ2𝛼𝜃1(1−𝑓)

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
  

⇒ 1 + 𝐴 + 𝐵 > 0      

Now, for 

1 − 𝐴 + 𝐵 = 1 −
1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]+1+ℎ(𝜃1+𝑎+𝜋)

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
+

1−ℎ2𝛼𝜃1(1−𝑓)

{1+ℎ(𝜃1+𝑎+𝜋)}{1+ℎ[(1−𝑓)𝛼+𝑓𝜃2+𝑎+𝜋]}
  

⇒ 1 − 𝐴 + 𝐵 > 0      

Now, 𝑓𝑜𝑟 𝑗∗∗∗ = [
𝑗33 𝑗34

𝑗43 𝑗44
] 

Let us define 𝐴 = 𝑇𝑟𝑎𝑐𝑒𝐽∗∗∗ and  𝐵 = 𝐷𝑒𝑡𝐽∗∗∗. Therefore, 

A=
ℎ𝛽𝑐𝑠{1+ℎ(𝜂+𝑎+𝜋)}+ℎ𝛿{1+ℎ(𝛿+𝑎+𝜋)}

{1+ℎ(𝜂+𝑎+𝜋)}{1+ℎ(𝛿+𝑎+𝜋)}
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B=
ℎ2𝛽𝑐𝑠−1

{1+ℎ(𝛿+𝑎+𝜋)}{1+ℎ(𝜂+𝑎+𝜋)}
 

Now, consider 

1 + 𝐴 + 𝐵 > 0  

1 + 
ℎ𝛽𝑐𝑠{1+ℎ(𝜂+𝑎+𝜋)}+ℎ𝛿{1+ℎ(𝛿+𝑎+𝜋)}

{1+ℎ(𝜂+𝑎+𝜋)}{1+ℎ(𝛿+𝑎+𝜋)}
+ 

ℎ2𝛽𝑐𝑠−1

{1+ℎ(𝛿+𝑎+𝜋)}{1+ℎ(𝜂+𝑎+𝜋)}
> 0    

Now, consider 1 − 𝐴 + 𝐵 > 0  

1 + 𝐵 > 𝐴  

1 + 
ℎ2𝛽𝑐𝑠−1

{1+ℎ(𝛿+𝑎+𝜋)}{1+ℎ(𝜂+𝑎+𝜋)}
>

ℎ𝛽𝑐𝑠{1+ℎ(𝜂+𝑎+𝜋)}+ℎ𝛿{1+ℎ(𝛿+𝑎+𝜋)}

{1+ℎ(𝜂+𝑎+𝜋)}{1+ℎ(𝛿+𝑎+𝜋)}
 

  

Since 𝑅𝑒 < 1, and 𝑠 < 1, 

So, the above inequality holds. 

Now, considering the 𝐵 < 1 

ℎ2𝛽𝑐𝑠 − 1

{1 + ℎ(𝛿 + 𝑎 + 𝜋)}{1 + ℎ(𝜂 + 𝑎 + 𝜋)}
< 1 

Since𝑅𝑒 < 1 𝑎𝑛𝑑 𝑠 < 1, the inequality holds. 

Now, it can be seen from the above that the lemma 1 holds. For 

each step size of value ℎ, both eigenvalues of a matrix 𝐽∗ are less than 

1 if 𝑅e < 1. 

Thus, it proves that the proposed NSFDS method is unconditionally 

convergent for all values of ℎ. 

Table 1. Values of the Parameters 

Parameters Values 

 0.6 

 0.7 

 0.7 

 0.8 

A 0.2 

C 10 

 0.5 

 1 

 0.1 

 0.36 

F 0.5 

 0.45 
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3.4. Graphs for Transmission of Varicella Zoster Virus 

 

 
Figure 2. Numerical solutions of the infected population of the system 
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Figure 5. Numerical solutions of the infected population 
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Figure 3. Numerical solutions 

of the infected population 

Figure 4. Numerical solutions 

of the infected population 
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4. Results and Discussion 

In this paper, we have examined the behavior of chickenpox disease 

through a dynamical analysis of the Varicella Zoster Virus model. As 

it is clear from the graphs that both the models show dissimilar 

behaviors although they converge to the same equilibrium points in 

Figure 2. But for the same system when we are solving it with the help 

of the ‘EULER’ method which is given in Fig 3, it shows that the 

solution of the same system is not stable and demonstrates unsteady 

oscillations. Fig 4 shows that for a little higher value of the step size 

the graphical solution presented with the help of the ‘EULER’ method 

depicts divergence. When we solved the same system with the help of 

the ‘RK-4’ method, the solution of the system also diverges as shown 

in figure Fig 5. Next, we implemented the NSFDS method to solve the 

system of ordinary differential equations numerically and graphical 

behavior is presented for various values of ‘ℎ’ in Fig 2. The results are 

compared with the existing and classical numerical schemes, i.e., Euler 

and RK-4. It is verified from the graphical behavior that the underlying 

existing techniques give convergence solutions for very small values of 

‘h’ but fails for a large ‘ℎ’. On the other hand, the proposed NSFDS 

scheme behaves well and gives convergent solutions for very large 

values of step size ‘h’, i.e., h=1000. For more clarification, table 2 is 

presented below which demonstrates the effect of various time steps ℎ 

for all the underlying methods at disease-free and endemic equilibrium 

points. 

Table 2. Comparison of Schemes 

𝒉 Euler RK-4 NSFD scheme 

0.1 Convergence Convergence Convergence 

0.6 Divergence Convergence Convergence 

1.2 Divergence Divergence Convergence 

100 Divergence Divergence Convergence 

1000 Divergence Divergence Convergence 

5. Conclusion 

In this article, a reliable technique called NSFDS is designed for the 

numerical approximation of the transmission dynamics of the 

chickenpox epidemic model of Vercilla Zoster Virus. This technique 

depicts the solution required in the underlying epidemic model, as the 

state variables involved in it represent the population densities. The 
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developed NSFDS technique describes the convergence solution at 

each time step size. While the classical Euler and RK-4 show 

unbounded solutions for even very small time steps. The NSFDS 

technique is an explicit numerical scheme, therefore, easy to 

implement, shows stable behavior numerically and demonstrates a 

good agreement with analytic results possessed by the continuous 

model. It describes that NSFDS is more reliable as compared to the 

other two techniques.   
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