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ABSTRACT 
Computer Aided Design (CAD) and Computer Aided Geometric Design 
(CAGD) applications use Bezier, Ball curves, B-splines, and non-uniform 
rational B-splines (NURBS) for fairing curves. Unfortunately, in many 
instances, the fairness of curves is not satisfactory. Hence, spiral curves 
were used to design an improved form of curves known as fair curves. These 
fair curves are suitable for several sophisticated applications such as 
designing the routes of high ways and railways as well as mobile robot 
trajectories. This study attempted to develop a polynomial cubic Ball spiral 
segment with a degree of freedom. It also observed the outcome of its shape 
parameters. The findings of the study are presented in a graphical form.  
Keywords: cubic ball basis functions, curvature, fair curves, polynomial 
spiral segment 

INTRODUCTION 
Continuous curves with undesirable curvature extrema are attributed to 
specific applications such as for designing the trajectories of mobile robot 
and high ways or railway routes [1, 2]. Such curves are called fair curves 
[3]. These curves are equally important in Computer Aided Design (CAD) 
and Computer Aided Geometric Design (CAGD) applications such as [3, 
4]. B-spline, Bezier, Ball curves, and non-uniform rational B-splines 
(NURBS) are also used in CAD and CAGD applications. However, their 
fairness may not be guaranteed. Polynomial spirals were developed to 
resolve this problem. 

We studied spiral in terms of a curved line segment having variation of 
a signed curvature in a monotonic way. Spiral segment may refer to any 
segment of a curve that exists between two consecutive curvature extrema, 
between the first endpoint and first curvature extremum, between the last 
endpoint, or the last curvature extremum. A great deal of work has been 
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done on Bezier spiral. In one of such studies, the planar cubic Bezier curve 
was developed [5] and was examined [6, 7] to have point of zero curvature 
at one end point. It was also noted that cubic Spiral segments without any 
point of zero curvature also exists [8] and are used for shape control [9]. 

In this paper, we have proposed a polynomial spiral segment (cubic Ball 
spiral) using cubic Ball basis functions by incorporating two spiral segment 
options (zero curvature at one end or non-zero curvature at both ends). The 
advantage of Ball basis functions can be broadly divided in two, when 
comparing it with Bezier basis functions. 

Initially, to evaluate the Ball curve, a robust algorithm, that is suitable 
for the interactive design environment, was established [10]. Furthermore, 
a generalized Ball basis is much suited to study degree elevation and 
reduction since it eases data portability and curve approximation in CAD 
systems [11, 12]. 

The first section of this study explained the notation and conventions 
used in this work.  The second section described cubic Ball curves. The 
development of the cubic Ball spiral is accomplished in the third section, 
which is followed by a section that deals with graphical presentation and 
conclusions. 

2. NOTATION AND CONVENTIONS 
We took a typical Cartesian coordinate system with x-axis and y-axis, 
whose direction of angle measurement is anticlockwise, Its vectors and 
points are represented as 𝑊𝑊���⃗ . Here, the order pair notation can also be used 
to represent points and vectors, e.g, (𝑥𝑥,𝑦𝑦). The components of a vector may 
be designated as �𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦�, or for a subscripted vector, e.g, 𝑊𝑊���⃗ 𝑏𝑏,0 as 
�𝑊𝑊0,𝑥𝑥,𝑊𝑊0,𝑦𝑦� or �𝑊𝑊𝑏𝑏,0,𝑥𝑥,𝑊𝑊𝑏𝑏,0,𝑦𝑦� for a doubly subscripted vector, 𝑊𝑊���⃗ 𝑏𝑏,0. The 
dot product of two vectors, 𝑢𝑢�⃗  and �⃗�𝑣 is denoted as 𝑢𝑢�⃗ ⋅ �⃗�𝑣. The vector norm or 
length 𝑢𝑢�⃗  is denoted as ∥ 𝑢𝑢�⃗ ∥= √𝑢𝑢�⃗ ⋅ 𝑢𝑢�⃗ . The derivative of a function (scalar or 
vector valued) is denoted with a prime, e.g 𝑃𝑃�⃗ ′(𝜓𝜓). The set of points 𝑃𝑃�⃗ (𝜓𝜓) =
(𝑋𝑋(𝜓𝜓),𝑌𝑌(𝜓𝜓)) for real 𝜓𝜓 defines a planar parametric curve. The symbol × is 
used to denote the signed z-component of the usual three-dimensional cross-
product of two vectors in the xy plane, namely i.e, 𝑢𝑢�⃗ × �⃗�𝑣 = 𝑢𝑢𝑥𝑥𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑦𝑦𝑣𝑣𝑥𝑥. 
For a plane parametric curve, the tangent vector 𝑃𝑃�⃗ ′(𝜓𝜓) is represented by 
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𝑃𝑃�⃗ ′(𝜓𝜓) = (𝑋𝑋′(𝜓𝜓),𝑌𝑌′(𝜓𝜓)). If 𝑃𝑃�⃗ ′(𝜓𝜓) ≠ 0�⃗ = (0,0), then the signed curvature 
of 𝑃𝑃�⃗ (𝜓𝜓) is defined as [3] 

𝑐𝑐(𝜓𝜓) =
𝑃𝑃�⃗ ′(𝜓𝜓) × 𝑃𝑃�⃗ ′′(𝜓𝜓)

∥∥𝑃𝑃�⃗ ′(𝜓𝜓)∥∥
3 . (2.1) 

Differentiation of Eq. (2.1) yields 

𝑐𝑐′(𝜓𝜓) =
𝑤𝑤(𝜓𝜓)

∥∥𝑃𝑃�⃗ ′(𝜓𝜓)∥∥
5. 

(2.2) 

where, 

𝑤𝑤(𝜓𝜓) = �𝑃𝑃�⃗ ′(𝜓𝜓) ⋅ 𝑃𝑃�⃗ ′(𝜓𝜓)��𝑃𝑃�⃗ ′(𝜓𝜓) × 𝑃𝑃�⃗ ′′′(𝜓𝜓)�
− 3�𝑃𝑃�⃗ ′(𝜓𝜓) × 𝑃𝑃�⃗ ′′(𝜓𝜓)��𝑃𝑃�⃗ ′(𝜓𝜓) ⋅ 𝑃𝑃�⃗ ′′(𝜓𝜓)�. 

(2.3) 

3. CUBIC BALL BASIS CURVE 
The cubic Ball polynomial basis was first proposed by Ball [12] for CAD 
systems application. The Ball basis functions are defined as 

𝑆𝑆0(𝜓𝜓) = (1 − 𝜓𝜓)2,                  𝑆𝑆1(𝜓𝜓) = 2𝜓𝜓(1 − 𝜓𝜓)2,
𝑆𝑆2(𝜓𝜓) = 2𝜓𝜓2(1 − 𝜓𝜓),           𝑆𝑆3(𝜓𝜓) = 𝜓𝜓2.

      (3.1) 

 
Figure 1. Ball basis functions 

Figure 1 illustrates these functions against its parameter 𝜓𝜓. The cubic 
Ball curve 𝑃𝑃(𝜓𝜓) with control points 𝐴𝐴𝚤𝚤���⃗  is defined as 
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𝑃𝑃(𝜓𝜓) = 𝐴𝐴0(1 − 𝜓𝜓)2 + 2𝐴𝐴1����⃗ (1 − 𝜓𝜓)2𝜓𝜓 + 2𝐴𝐴2����⃗ (1 − 𝜓𝜓)𝜓𝜓2 + 𝐴𝐴3����⃗ 𝜓𝜓2, 0 ≤
𝜓𝜓 ≤ 1             (3.2) 

The Ball basis functions and curve obey all the properties of curve like 
linearly independent, non-negativity, symmetric, monotonicity, partition of 
unity, convex hull property and affine under linear transformation. 

4. CUBIC BALL SPIRAL 

In Eq. (3.2) assume the control points 𝐴𝐴0,𝐴𝐴1,𝐴𝐴2 and 𝐴𝐴3 are distinct. 
Without loss of generality, translate, rotate, and if necessary, reflect the 
curve such that 𝐴𝐴0 is at the origin, 𝐴𝐴1 is on the positive x-axis and 𝐴𝐴3 is 
above the 𝑥𝑥-axis, Eq. (3.2) may now be written as 

𝑃𝑃�⃗ (𝜓𝜓) = (𝑋𝑋(𝜓𝜓),𝑌𝑌(𝜓𝜓) (4.1) 

where, 

𝑋𝑋(𝜓𝜓) = 2ag 𝜓𝜓(1 − 𝜓𝜓)2 + 2(𝑔𝑔 + 𝑘𝑘cos (𝜃𝜃) − 𝑏𝑏𝑘𝑘cos (𝜃𝜃))𝜓𝜓2(1
− 𝜓𝜓) + (𝑔𝑔 + 𝑘𝑘cos (𝜃𝜃))𝜓𝜓2,  

𝑌𝑌(𝜓𝜓) = 2(𝑘𝑘sin (𝜃𝜃) − 𝑏𝑏𝑘𝑘sin (𝜃𝜃))𝜓𝜓2(1 − 𝜓𝜓) + (𝑘𝑘sin (𝜃𝜃))𝜓𝜓2. (4.2) 

∥∥𝐴𝐴1 − 𝐴𝐴0∥∥ > 0,

∥∥𝐴𝐴2 − 𝐴𝐴1∥∥ > 0,

∥∥𝐴𝐴3 − 𝐴𝐴2∥∥ > 0

           (4.3)  

where 𝜃𝜃 is a angle between 𝐴𝐴3 − 𝐴𝐴2 and 𝑥𝑥-axis. The curvature at 𝜓𝜓 = 0 and 
𝜓𝜓 = 1 using Eq. (2.1) is 

𝑐𝑐(0) =
(3 − 2𝑏𝑏)𝑘𝑘sin (𝜃𝜃)

2𝑎𝑎2𝑔𝑔2
, 

and 

𝑐𝑐(1) =
(3 − 2𝑎𝑎)𝑔𝑔sin (𝜃𝜃)

2𝑏𝑏2𝑘𝑘2
. 

Theorem 1. The curvature of 𝑃𝑃�⃗ (𝜓𝜓) is 0 at 0 iff 𝑏𝑏 = 3/2. 
Now by using the above theorem, Eq. (4.2) becomes 
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𝑋𝑋(𝜓𝜓) = 2𝑎𝑎𝑔𝑔𝜓𝜓(1 − 𝜓𝜓)2 + 2(𝑔𝑔 − 1/2𝑘𝑘cos (𝜃𝜃))𝜓𝜓2(1 − 𝜓𝜓) + (𝑔𝑔
+ 𝑘𝑘cos (𝜃𝜃))𝜓𝜓2 (4.4) 

𝑌𝑌(𝜓𝜓) = −𝑘𝑘sin (𝜃𝜃))𝜓𝜓2(1 − 𝜓𝜓) + 𝑘𝑘sin (𝜃𝜃))𝜓𝜓2. (4.5) 

and curvature becomes 
𝑐𝑐(0)  = 0,

𝑐𝑐(1)  =
2(3 − 2𝑎𝑎)𝑔𝑔sin (𝜃𝜃)

9𝑘𝑘2
.
 

The derivatives of Eq. (4.4) are 
𝑋𝑋′(𝜓𝜓) = 2𝑎𝑎𝑔𝑔(1 − 𝜓𝜓)2 − 4ag (1 − 𝜓𝜓)𝜓𝜓 + 4(1 − 𝜓𝜓)𝜓𝜓(𝑔𝑔 − 1/2𝑘𝑘cos (𝜃𝜃)) …

 −2𝜓𝜓2(𝑔𝑔 − 1/2𝑘𝑘cos (𝜃𝜃)) + 2𝜓𝜓(𝑔𝑔 + 𝑘𝑘cos (𝜃𝜃))

𝑋𝑋′′(𝜓𝜓) =  −8𝑎𝑎𝑔𝑔(1 − 𝜓𝜓) + 4𝑎𝑎𝑔𝑔𝜓𝜓 + 4(1 − 𝜓𝜓) �𝑔𝑔 −
1

2𝑘𝑘 cos(𝜃𝜃)� − 8𝜓𝜓(𝑔𝑔 − 1/2𝑘𝑘cos (𝜃𝜃)) + 2(𝑔𝑔 + 𝑘𝑘cos (𝜃𝜃))

𝑋𝑋′′′(𝜓𝜓) = 12𝑎𝑎𝑔𝑔 − 12 �𝑔𝑔 −
1

2𝑘𝑘 cos(𝜃𝜃)�                              (4.6)

𝑌𝑌′(𝜓𝜓) = 2𝑘𝑘𝜓𝜓sin (𝜃𝜃) − 2𝑘𝑘(1 − 𝜓𝜓)𝜓𝜓sin (𝜃𝜃) + 𝑘𝑘𝜓𝜓2sin (𝜃𝜃)
𝑌𝑌′′(𝜓𝜓) = 2𝑘𝑘 sin(𝜃𝜃) − 2𝑘𝑘(1 − 𝜓𝜓) sin(𝜃𝜃) + 4𝑘𝑘𝜓𝜓 sin(𝜃𝜃)                                                                          (4.7)
𝑌𝑌′′′(𝜓𝜓) = 6𝑘𝑘sin (𝜃𝜃)

 

Using Eq. (4.4), Eq. (4.6) and Eq. (4.7) we can write 
𝑃𝑃�⃗ ′(𝜓𝜓) ⋅ 𝑃𝑃�⃗ ′(𝜓𝜓) = (9𝑘𝑘2)𝜓𝜓4 + (+36𝑔𝑔𝑘𝑘cos (𝜃𝜃) − 8𝑎𝑎𝑔𝑔𝑘𝑘cos (𝜃𝜃))𝜓𝜓3(1 − 𝜓𝜓) …

 +(36𝑔𝑔2 − 32𝑎𝑎𝑔𝑔2 + 12𝑎𝑎𝑔𝑔𝑘𝑘cos (𝜃𝜃))𝜓𝜓2(1 − 𝜓𝜓)2 + ⋯
(24𝑎𝑎𝑔𝑔2 − 16𝑎𝑎2𝑔𝑔2)𝜓𝜓(1 − 𝜓𝜓)3 + 4𝑎𝑎2𝑔𝑔2(1 − 𝜓𝜓)4

𝑃𝑃�⃗ ′(𝜓𝜓) ⋅ 𝑃𝑃�⃗ ′′(𝜓𝜓) = (−18𝑔𝑔𝑘𝑘cos (𝜃𝜃) + 18𝑘𝑘2 + 12𝑎𝑎𝑔𝑔𝑘𝑘cos (𝜃𝜃))𝜓𝜓3 + (+46𝑔𝑔𝑘𝑘cos (𝜃𝜃) …
−4𝑘𝑘2 + 32𝑎𝑎𝑔𝑔2 − 40𝑔𝑔2 − 24𝑎𝑎𝑔𝑔𝑘𝑘cos (𝜃𝜃))𝜓𝜓2(1 − 𝜓𝜓) + (32𝑔𝑔2 − 84𝑎𝑎𝑔𝑔2 − 8𝑔𝑔𝑘𝑘
cos(𝜃𝜃) …− 4𝑘𝑘2 + 40𝑎𝑎2𝑔𝑔2 + 12𝑎𝑎𝑔𝑔𝑘𝑘𝑎𝑎 cos(𝜃𝜃))𝜓𝜓(1 − 𝜓𝜓)2 + (12𝑎𝑎𝑔𝑔2 − 16𝑎𝑎2𝑔𝑔2)(1 − 𝜓𝜓)3

𝑃𝑃�⃗ ′(𝜓𝜓) × 𝑃𝑃�⃗ ′′(𝜓𝜓) =  (18𝑔𝑔𝑘𝑘sin (𝜃𝜃) − 8𝑎𝑎𝑔𝑔𝑘𝑘sin (𝜃𝜃))𝜓𝜓2 − 4𝑎𝑎𝑔𝑔𝑘𝑘𝜓𝜓3Sin (𝜃𝜃) …
 +8𝑎𝑎𝑔𝑔𝑘𝑘𝜓𝜓(1 − 𝜓𝜓)Sin (𝜃𝜃) + 4𝑎𝑎𝑔𝑔𝑘𝑘(1 − 𝜓𝜓)2Sin (𝜃𝜃) − 4𝑎𝑎𝑔𝑔𝑘𝑘(1 − 𝜓𝜓)3 Sin(𝜃𝜃)                   (4.8)

𝑃𝑃�⃗ ′(𝜓𝜓) × 𝑃𝑃�⃗ ′′′(𝜓𝜓) =  (36𝑔𝑔𝑘𝑘sin (𝜃𝜃) − 24agksin (𝜃𝜃))𝜓𝜓 − 12𝑎𝑎𝑔𝑔𝑘𝑘𝜓𝜓2sin (𝜃𝜃) + 12𝑎𝑎𝑔𝑔𝑘𝑘(1 − 𝜓𝜓)2sin (𝜃𝜃)

 

Substitution of Eq. (4.8) into Eq. (2.3), followed by some algebraic 
maipulation yields 𝑤𝑤(𝜓𝜓) = 12𝑔𝑔𝑘𝑘𝑔𝑔(𝜓𝜓)sin (𝜃𝜃) where 

𝑔𝑔(𝜓𝜓) = � 
6

𝑖𝑖=0

𝑔𝑔𝑖𝑖(1 − 𝜓𝜓)6−𝑖𝑖𝜓𝜓𝑖𝑖 ,  0 ≤ 𝜓𝜓 ≤ 1 (4.9) 
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with 

𝑔𝑔0 = 4𝑎𝑎3𝑔𝑔2 (4.10) 

𝑔𝑔1 = 24𝑎𝑎3𝑔𝑔2 (4.11) 

𝑔𝑔2 = −2𝑎𝑎((21 + 2𝑎𝑎(−94 + 25𝑎𝑎))𝑔𝑔2 − 6𝑘𝑘2 + 12(−1
+ 𝑎𝑎)𝑔𝑔𝑘𝑘Cos (𝜃𝜃)) (4.12) 

𝑔𝑔3 = 2(−2(9 + 𝑎𝑎(−87 + 14𝑎𝑎))𝑔𝑔2 + 3(3 + 2𝑎𝑎)𝑘𝑘2 + 2(9
+ 10(−3 + 𝑎𝑎)𝑎𝑎)𝑔𝑔𝑘𝑘Cos (𝜃𝜃)) (4.13) 

𝑔𝑔4 = 6(24 + 𝑎𝑎(21 + 4𝑎𝑎(−14 + 5𝑎𝑎))𝑔𝑔2 + 3(12 − 19𝑎𝑎)𝑘𝑘2
+ (−63𝑔𝑔4
= 6(24 + 𝑎𝑎(21 + 4𝑎𝑎(−14 + 5𝑎𝑎))𝑔𝑔2 + 3(12
− 19𝑎𝑎)𝑘𝑘2 + (−63 + 4(6 − 5𝑎𝑎)𝑎𝑎)𝑔𝑔𝑘𝑘Cos (𝜃𝜃)
+ 4(6 − 5𝑎𝑎)𝑎𝑎)𝑔𝑔𝑘𝑘Cos (𝜃𝜃) 

(4.14) 

𝑔𝑔5 = −6(−2(−3 + 2𝑎𝑎)(−5 + 4𝑎𝑎)𝑔𝑔2 + (6 + 5𝑎𝑎)𝑘𝑘2 + (3
+ 2𝑎𝑎(−5 + 4𝑎𝑎))𝑔𝑔𝑘𝑘Cos (𝜃𝜃)) (4.15 

𝑔𝑔6 = 9𝑘𝑘(3(−2 + 𝑎𝑎)𝑘𝑘 + (3 − 2𝑎𝑎)2𝑔𝑔Cos (𝜃𝜃)) (4.16) 

5. RESULTS AND DISCUSSION 
This section illustrated the different possibilities of cubic Ball spiral curve 
using proposed Cubic Ball spiral. As the proposed curve has 5 degrees of 
freedoms, namely a, b, g, k, and θ. In Theorem 1 we fixed b = 3/2 to get the 
zero curvature at 0. We also constructed the different possible Ball spiral 
curves. In Figure 2, we fixed the θ = π/4, g = 0.996 and k = 0.24 randomly 
and changed the free parameter a. Figure 3 shows that curvature of Ball 
spiral curves was monotone. Similarly, Figure 4 and Figure 5 shows the 
different curves with their monotone curvature graphs. Figures 6 and 7 
displays the comparison between different Ball spiral curves and curvature, 
while keeping the values of g, θ, and k constant and changing the value of 
a. Figure 8 presents the different Ball spiral curves with different angles. 
Figure 9(a) shows a cubic Ball curve, while Figure 9(b) displays the 
curvature of Ball curve. From Figure 9, we can conclude that the simple 
cubic Ball curve looks smooth but it is not fair since the curvature graph 
was not monotone. 
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(a) a = 0.54    (b)𝑎𝑎 = 0.654

   
(c) 𝑎𝑎 = 0.754    (d) 𝑎𝑎 = 0.9 

Figure 2. Cubic Ball spiral with g = 0.996, k = 0.24 

 
(a) 𝑎𝑎 = 0.54     (b) 𝑎𝑎 = 0.654 

 
(c) a = 0.754    (d) a = 0.9 
Figure 3. Monotone curvature with g = 0.996, k = 0.24 
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 (a) 𝑎𝑎 = 0.459    (b) 𝑎𝑎 = 0.59 

 
(c) 𝑎𝑎 = 0.69    (d) 𝑎𝑎 = 0.312 
Figure 4. Cubic Ball spiral with g = 0.996, k = 0.4 

 
(a) 𝑎𝑎 = 0.45    (b) 𝑎𝑎 = 0.59 

 
(c) 𝑎𝑎 = 0.69    (d) a = 0.312 
Figure 5. Monotone curvature with g = 0.996, k = 0.4 
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Figure 6. Ball spiral curves with different Values of 𝑎𝑎 

 
Figure 7. Curvature graph with different values of 𝑎𝑎 

 
Figure 8. Ball spiral curves with different angles 
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(a) Cubic ball curve   (b) Cubic ball curvature 
Figure 9. Cubic ball curve with curvature graph 

6. CONCLUSION 
In this paper, a cubic Ball spiral segment with free parameters was 
developed. It was identified that the curvature of the spiral curve is always 
monotone. Whereas, the point of zero curvature introduces flat spots at 
points where they may not be desirable. Using proposed cubic Ball spiral 
curve, such flat spots can be avoided. We also compared the cubic Ball 
curve with the cubic Ball spiral curve. Although, the cubic Ball curve may 
or may not be fair; however, the cubic Ball spiral is always a fair curve. 
Similarly, the cubic Ball curve may or may not be monotone, although the 
curvature of cubic Ball spiral curve is always monotone. 
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