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Abstract 

Wavelets play an essential part in numerical analysis. In this study, a 

novel numerical technique to solve fractional differential equations 

(FDEs) corresponding to initial conditions is presented using Haar 

wavelet approximations. Haar wavelet is first presented with an 

operational matrix of fractional order integration. Then, illustrative 

examples are presented to signify the validity and applicability of the 

proposed method.    

Keywords: fractional differential equations (FDEs), fractional order 

integration, Haar wavelet collocation method (HWCM), operational 

matrix.  

Introduction 

Fractional differential equations (FDEs) are overviews of ordinary 

differential equations to an arbitrary (non-integer) order. FDEs have 

attracted significant attention because of their ability to model composite 

phenomena, such as visco-elastic materials [1], economics [2], continuum 

and statistical mechanics [3], solid mechanics [4], and many more. Due to 

extensive application of FDEs in science and engineering, considerable 

research has been conducted in this area. Hence, significant efforts to 

develop numerical techniques to solve FDEs are currently underway. 

Some of these include Fourier transforms [5], Laplace transforms [6], 

Adomian decomposition method [7], Variational iteration method [8], and 

Homotopy analysis method [9]. Further research conducted on FDEs is 

reflected in [10-15]. 

Orthogonal functions have been used when dealing with various 

problems of dynamical systems. The approach deployed while using 

orthogonal functions is to convert the underlying differential equation into 
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an integral equation through integration, approximating various signals 

involved in the equation using truncated orthogonal functions, and using 

the operational matrix of integration to eliminate integral operations. This 

matrix can be uniquely determined based on the particular orthogonal 

functions performed using Haar wavelet.  

Wavelet theory is a relatively novel area in mathematical research. It is 

useful in a wide range of science and engineering disciplines. Wavelets are 

effectively applied in signal analysis for creating waveform 

representations and segmentations, time–frequency analysis, and fast 

algorithms for easy implementation [16]. Wavelets allow the accurate 

representation of a variety of functions and operators [17, 18]. 

Furthermore, they establish a connection of wavelets with fast numerical 

algorithms [19].  

In the current study, we present Haar wavelet collocation method 

(HWCM) for the solution of multi-term linear and nonlinear FDEs. 

Wavelets have been in use since 1980 to solve ordinary differential 

equations (ODEs) and partial differential equations (PDEs). Wavelet 

algorithms used to solve ODEs and PDEs are based on Galerkin 

techniques or on the collocation method. Evidently, attempts to simplify 

wavelet solutions for ODEs and PDEs are in vogue. One possibility is to 

make use of the Haar wavelet family. Haar wavelets (which are 

Daubechies of order one) consist of piecewise constant functions and are, 

therefore, the simplest orthonormal wavelets with a compact support. 

Recently, the Haar wavelet method was applied to solve some ODEs and 

PDEs by selected researchers [20-27]. HWCM [28] was used to solve 

multi-term FDEs. In this study, we apply HWCM to solve specific classes 

of linear and nonlinear FDEs and obtain solutions for different fractional 

orders. 

The outline of this paper is as follows: Haar wavelets and their 

operational matrix of integration of fractional order are presented in 

Section 2. The method of solution is discussed in Section 3. Numerical 

solutions with error analysis of the given problems are given in Section 4. 

Lastly, Section 5 deals with the conclusion drawn by applying the 

proposed technique. 
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2. Haar Wavelets 

We use the simplest wavelet function known as the Haar wavelet. The 

scaling function 1( )H t  for the family of Haar wavelets is defined as  

 
1

1 0,1 ,
( )

0 .
 

for t
t

Otherwise
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                                                                  (2.1) 
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Here, 2lm  , 0,1,..., ,l J  is the resolution level of the wavelet and 

integer 0,1,..., 1k m   that denotes the translation parameter. The level 

of maximum resolution is J . The index i  in the left-hand side (LHS) of 

Eq. (2.2) is measured by 1i m k   . In case of minimal values 

1, 0m k   then 2i  . The maximum value of i  is 12JN  . Now, we 

define the collocation points 
0.5

, 1,2, ,j

j
j Nt

N


    and discretize the 

Haar function ( )iH t . In this way, we get Haar matrix H( , ) ( )i ji j H t  with 

the dimension N N . 

If 2 8J N   , then using Eq. (2.2) we have Haar matrix 

 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
H 8,8

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

 
 

    
  
 

  
 
 

 
 
 
   . 
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2.1. Operational Matrix of Integration of Fractional Order 

Now, we establish an operational matrix of integration using Haar 

wavelets. The operational matrix F
 
of integration of fractional order   

using Eq. (2.2) is given by 

1
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The integral matrix F  has the elements  , ( , )iF F jt i  , 

if 2 8J N    from Eq. (2.3). 

For instance, 1/ 2  , we have 

   1 1
2

,
2

0.2821    0.4886    0.6308    0.7464    0.8463    0.9356    1.0171    1.0925

0.2821    0.4886    0.6308    0.7464    0.2821   -0.0416   -0.2445  -0.4002

0.2821    0.4886    0.0666 

8,

  -0.230

8
i

F Ft  

9   -0.1332   -0.0685  -0.0447   -0.0323

    0         0         0         0    0.2821    0.4886   0.0666   -0.2309

0.2821   -0.0756   -0.0643   -0.0266   -0.0156   -0.0106  -0.0078   -0.0061

    0         0    0.2821   -0.0756   -0.0643   -0.0266  -0.0156   -0.0106

    0              0             0             0         0.2821   -0.0756  -0.0643   -0.0266

    0              0             0             0             0         0             0.2821  -0.0756
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and for 3/ 2  , we have 
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   3 3
2

,
2

0.0118    0.0611    0.1314    0.2177    0.3174    0.4288    0.5509    0.6828

0.0118    0.0611    0.1314    0.2177    0.2938    0.3067    0.2881    0.2475

0.0118    0.0611    0.1079

8,

    0.09

8
i

F Ft  

55    0.0663    0.0545    0.0476    0.0429

     0         0         0         0    0.0118    0.0611    0.1079    0.0955

0.0118    0.0376    0.0210    0.0159    0.0134    0.0118    0.0107    0.0098

     0         0    0.0118    0.0376    0.0210    0.0159    0.0134    0.0118

     0         0         0         0    0.0118    0.0376    0.0210    0.0159

     0         0         0         0         0         0    0.0118    0.0376

 
 
 
 
 
 
 
 
 
 
 
 
   

3. Method of Solution 

In this section, we discuss the method of solution for the proposed 

technique. Consider the linear or nonlinear FDEs of the form 

   1 22,, , ,uD f u Dt t u u  , 1 21 2, 0 1                                (3.1) 

with initial conditions (0) , '(0)u a u b  , where  22, , ,,f u Dt u u  is a 

function of independent or dependent variables or constants. The solution 

 u t of the Eq. (3.1) can be obtained using the following procedure. 

Step 1: Assume that                           

 1

i

1

c ( )
N

i

i

u t HD t




 ,                                                                              (3.2) 

where ic ’s,    1,2,...,i N  are Haar coefficients to be calculated.  

Step 2: By integrating Eq. (3.2) and using initial conditions, we have 

 2

2i

1

,c ( )
N

i

i

u t FD b t





                                                                       (3.3) 

and again, by integrating Eq. (3.3) with the condition, we get 

 
1

1

,ic ( )
N

i

i

u bt Fa t t


   .                                                                    (3.4) 

Step 3: Substituting Eq. (3.2) with Eq. (3.4) in Eq. (3.1), we get the 

following system of equations. 
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1 1 2, ,

2

i i i i

1 1 1 1

,c ( ) c ( ), c ( ) , c ( ),,
N N N N

i i i i

i i i i

t f a bt t a bt t bH F tt F F  

   

  
          
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Step 4: Solving Eq. (3.5) using MATLAB, we obtain the Haar wavelet 

coefficients ic ’s. On substituting the values of ic ’s in Eq. (3.4), we get the 

desired HWCM-based numerical solution of the problem given in Eq. 

(3.1). The error can be calculated by using e aE u u   and 

max max e aE u u  , where &e au u  are exact and approximate solutions, 

respectively. 

4. Numerical Examples 

In this section, we apply HWCM to solve some classes of linear and 

nonlinear FDEs, as discussed in Section 3, using the following examples. 

Example 1. Consider the FDE 

1 22

2 1( ) 3 ( ) 2 ( ) ( ) 5 ( ( ), 1) 0u t Du t D u t D uD f tt u t
                       (4.1) 

with the initial conditions (0) 1, '(0) 0 u u , where 

1 2

2
2 2

1 2

2 1
( ) 1 3 5 1

(3 ) (3 ) 2

t
f t t t t

 

 

   
      

       

and 

2 10.0159, 0.1379   .                                                                          

As per the method explained in Section 3, we obtain the desired HWCM 

solution u(t) of Eq. (4.1). It agrees with the exact solution  
2

1
2

u t
t

   by 

increasing the collocation points
 
and is presented in Fig. 1. Error analysis 

is given in Table 1 and also depicted via Figure 2.  
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Figure 1. Comparison of HWCM solution with the exact solution 

for 32N   (Example 1). 
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Table 1. Error analysis of HWCM (Example 1) 

N 
max max e aE u u   

16 1.3314e-08 

32 2.1100e-08 

64 7.3833e-08 

128 2.4203e-14 

256 8.9262e-14 
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0
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1
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2.5
x 10

-8

t

e
rr

o
r

 
   Figure 2. Error analysis (Example 1). 

Example 2. Now, consider another FDE 

1 2 ( (( ) ) )u t uD ttD f
 

   , 1 21 2, 0 1                                        (4.2)  

with the initial conditions 1(0) 0, '(0) 1u u e   , where 1( ) 1tf t e    .                                                                                 

As per the procedure explained in Section 3, we obtain the desired 

HWCM solution u(t) of Eq. (4.2) for different values of 1 . It agrees with 

the exact solution   1(1 )tttu e   , when 1 2   and is presented in Fig. 

3. Error analysis is given in Table 2 and also depicted via Fig. 4 for 

different values of 1 . 
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Figure 3. Comparison of HWCM solution for different values of 1  with 

exact solution for 32N   (Example 2). 

Table 2. Error analysis of HWCM for different values of 1 (Example 2) 

max max e aE u u   

N 
1 1.75   1 1.85   1 1.95   1 2   

16 3.2739e-01 1.7263e-01 5.1858e-02 1.0113e-03 

32 3.3675e-01 1.7737e-01 5.2776e-02 2.6116e-04 

64 3.4202e-01 1.8011e-01 5.3468e-02 6.6365e-05 

128 3.4482e-01 1.8159e-01 5.3877e-02 1.6728e-05 

256 3.4626e-01 1.8235e-01 5.4098e-02 4.1993e-06 
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Figure 4. Error analysis for different values of 1  (Example 2). 
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Example 3. Now, consider nonlinear FDE 

2( ) 1( )tD uu t    , 0 1                                                                  (4.3) 

with the initial condition (0) 0u  .                                                                                

In line with the previous examples, we obtain the desired HWCM solution 

u(t) of Eq. (4.3) for different values of  . It agrees with the exact solution 

 
2

2

1

1

t

t

e
u

e
t





, when 1   and is presented in Fig. 5. Error analysis is 

given in Table 3 and also depicted via Fig. 6 for different values of  . 
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Figure 5. Comparison of HWCM solution for different values of   with 

exact solution for 32N   (Example 3) 

Table 3. Error analysis of HWCM for different values of   (Example 3)  

max max e aE u u   

N 0.7   0.8   0.9   1   

16 1.3854e-01 9.0638e-02 4.4261e-02 1.9711e-04 

32 1.3914e-01 9.0943e-02 4.4575e-02 4.9411e-05 

64 1.3918e-01 9.1016e-02 4.4641e-02 1.2361e-05 

128 1.3925e-01 9.1040e-02 4.4652e-02 3.0908e-06 

256 1.3927e-01 9.1045e-02 4.4657e-02 7.7272e-07 
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Figure 6. Error analysis for different values of   (Example 3) 

Example 4. Lastly, consider another nonlinear FDE 

2 2 4( ) ( ) 2 cos(2 ) sin ( )D u t u t t t      , 1 2                                    (4.4) 

with the initial conditions (0) 0, '(0) 0u u  .                                                                                 

Similar to the previous examples, we obtain the desired HWCM solution 

u(t) of Eq. (4.4) for different values of  . It agrees with the exact solution 

  2sin ( )u t t , when 2   and is presented in Fig. 7. Error analysis is 

given in Table 4 and also depicted via Fig. 8 for different values of  .   
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Figure 7. Comparison of HWCM solution for different values of   with 

exact solution for 32N   (Example 4) 
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Table 4. Error analysis of HWCM for different values of   (Example 4)  

max max e aE u u   

N 1.7   1.8   1.9   2   

16 4.9948e-01 3.0727e-01 1.4018e-01 6.7256e-03 

32 5.0470e-01 3.1240e-01 1.4524e-01 1.6823e-03 

64 5.0736e-01 3.1419e-01 1.4629e-01 4.2073e-04 

128 5.0795e-01 3.1451e-01 1.4669e-01 1.0518e-04 

256 5.0806e-01 3.1462e-01 1.4678e-01 2.6296e-05 
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Figure 8. Error analysis for different values of   (Example 4) 

5. Conclusion 

In this study, we applied the Haar wavelet collocation method (HWCM) to 

solve linear and nonlinear fractional differential equations (FDEs). A 

general formulation for the Haar wavelet operational matrix of integration 

of fractional order was used to approximate the numerical solution of 

FDEs. The obtained numerical results agree with exact solutions, as   

approaches an integer value, the method gives solutions for integer-order 

differential equations. The solutions obtained using the present technique 

show that this methodology can solve the problems more efficiently.     
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