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Abstract 

Non-polynomial cubic spline functions are already being used in the field 

of engineering, computer sciences, and natural sciences to solve ordinary 

differential equations (ODEs) and partial differential equations (PDEs). 

However, many of the above-mentioned problems do not have an exact, 

stable, or convergent exact solution. There are different approximations 

and methods that can be applied to solve these problems. This study 

implemented the purposed method on homogeneous parabolic PDEs having 

different dimensions. The results obtained were compared with the exact 

solution and results of other existing methods in tabular and graphical 

form. Mathematica was used to find the mathematical and graphical results. 

Keywords: Adomian decomposition method (ADM), non-polynomial cubic 

spline method (NPCSM), continuous approximation, finite difference 

approximations, fourth order homogeneous parabolic partial differential 

equations (PDEs) 

Introduction 

Splines are used to model a curve using a group of points that can be mapped 

by mathematical technique. The impact of weight is maximum at the point 

of contact between points. As the points move farther apart, the weight 

diminishes along the spine. Hence, the impact, dimension, and physical 

relation of every weight is adjusted with the help of spline. In aircraft 

industries, splines were not only used for modelling designs but were also 

used to determine flight trajectories. Depending upon the different features 

and scenarios, different kinds of spline were used in the construction of a 



Ahmad et al. 

21 
School of Science 

Volume 5 Issue 4, December 2021 

 

mathematical design [1]. There are many types of spline; however, this 

research focused on the non-polynomial cubic spline method (NPCSM). In 

the past, many complicated functions were used for estimation of value of 

non-polynomial cubic spline such as logarithmic trigonometric, statistical 

density functions. Presently, it is easier to compute the value of a function, 

draw a graph, and determine an error due to the use of mathematical 

methods [2]. One of the interpolation functions is spline interpolations. The 

rapid development of spline functions is primarily due to its vast usage in 

approximating the solutions of a variety of problems, arising in engineering 

and applied mathematics. The classes of spline functions possess many 

agreeable structural properties as well as an excellent approximation ability. 

Splines and their applications have been effectively used in data fitting, 

optimal control problems, function approximation, integrodifferential 

equation, Computer-Aided Geometric Design (CAGD), and wavelets. 

Many programs, based on spline functions, are being used in many 

computer applications [3]. Originally, splines were thin wooden or metal 

strips that were used in shipbuilding and aircraft industries to create smooth 

curves. Naval architects used thin splints pulled into place by weights 

(called knots or ducks). The wooden strips (splines) were flexible enough 

to bend accordingly when a weight was placed or removed. Boat-builders 

used to add more weights on a certain region of the spline to bend them 

where needed. Boats and ships have been built using this method for 

centuries. When conducting an experiment on the model of an airplane, 

using mathematical model for calculation can shorten the duration needed 

to measure each section of the plane. However, unlike physical models, 

mathematical methods would require data exchange to illustrate the shape 

of the curve [4].  

This study focused on examining parabolic partial differential equations 

(PDEs). Parabolic PDE significantly impacts the field of science, 

engineering, and technology. Heat conduction, reverse heat problem, 

thermal conductivity, convection-diffusion equations, and Fokker-plank 

equations are all a type of parabolic PDE. Due to their significant use, PDE 

became important in the development of physical models, such as the 

vibration of strings, electric fields, gravitational fields, and heat problems. 

In the field of differential geometry, parabolic PDE play a vital role. These 

problems were solved by different mathematicians, such as Ahmad et al, 
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2021 [1], Taiwo and Ogunlaran, 2011 [2], and Katz and Fridman, 2020 [5]. 

Many other studies have also solved the constructive method for finite-

dimensional observer-based control of 1-D parabolic PDEs. [6, 7, 8] 

sampled the data for 1-D parabolic PDEs with non-local outputs. Pervaiz 

and Ahmad also attempted to solve fourth-order parabolic two-point 

boundary value problems by using cubic spline method [9]. Few 

researchers, such as [10-14], also worked on the spline technique to solve 

different types of differential equations. 

Mathematically, a spline function comprises polynomial pieces on 

subintervals that are joined together with certain continuity conditions. A 

spline function of degree 𝑘, having knots 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛, is a function of S 

such that: 

 S is a polynomial of degree ≤ 𝑘 on each interval [𝑥𝑖−1, 𝑥𝑖]; 
 S has a continuous (𝑘 − 1)𝑠𝑡  derivative on [𝑥0, 𝑥𝑛]. 

The major objective of this study is to determine the numerical solution 

of the fourth order homogenous parabolic partial differential equation. 

2. Methods and Formulation 

A cubic spline S3,n(x) is a 𝐶2 class piecewise cubic polynomial. Thus, for 

cubic spline: 

 S3,n(x) is a piecewise cubic between successive knots 𝑥𝑖 . 

𝑆3,𝑛(𝑥) =

{
 
 

 
 
𝑝1(𝑥) = 𝑎1 + 𝑏1𝑥 + 𝑐1𝑥

2 + 𝑑1𝑥
3,     𝑥 ∈ [𝑥0, 𝑥1],

𝑝2(𝑥) = 𝑎2 + 𝑏2𝑥 + 𝑐2𝑥
2 + 𝑑2𝑥

3,     𝑥 ∈ [𝑥1, 𝑥2],
.
.

𝑝𝑛(𝑥) = 𝑎𝑛 + 𝑏𝑛𝑥 + 𝑐𝑛𝑥
2 + 𝑑𝑛𝑥

3,    𝑥 ∈ [𝑥𝑛−1, 𝑥𝑛].

 

 𝑆3,𝑛(𝑥)  is a class 𝐶2 , such that, 𝑆3,𝑛(𝑥)  is continuous and has 

continuous first and second derivatives all over in the interval [𝑎, 𝑏] 
, in particular, at the knots. 

Also, for cubic spline interpolation: 

 S3,n(x) interpolates the data, that is, 
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S3,n(xi) = fi,   i = 0, 1, … , n. 

The cubic polynomial is continuous for each subinterval (𝑥𝑖−1, 𝑥𝑖) and 

has continuous n - order derivatives. For this reason, in the entire 

interval [a, b], cubic spline or one of its derivatives can be discontinuous 

only at the place where these cubic polynomial pieces unite. Thus, we have 

to test the continuity at every knot 𝑥𝑖, as well as the continuity of first and 

second derivatives at each xi in the interval [a, b]. 

The continuity conditions for cubic spline at each knot  xi   can be 

written as 

𝑝𝑖
′(𝑥𝑖) = 𝑝𝑖+1

′ (𝑥𝑖) (by the condition of continuity of first order derivative) 

and 

𝑝𝑖
′′(𝑥𝑖) = 𝑝𝑖+1

′′ (𝑥𝑖)  (by the condition of continuity of first second 

derivative). 

Where i = 0,1,2, … , n − 1. 

Subsequently, we use the interpolatory conditions. These conditions are 

the function evaluation condition which will be the same for quadratic, 

cubic, or any spline of any order. That is,  

𝑝𝑖(𝑥𝑖−1) = 𝑓𝑖−1,   and   𝑝𝑖(𝑥𝑖) = 𝑓𝑖,   where 𝑖 = 0,1,2, … , 𝑛. 

As every cubic piece has four unknown coefficients; therefore, S3,n(x) 
has 4n unknown coefficients. We have to find these unknown coefficients 

in the cubic spline. Due to the continuity of the first and second derivatives, 

we get 3(n − 1) linear constraints. Moreover, interpolation imposes extra 

n + 1  linear constraints. For this reason, we have total 4n − 2n  linear 

constraints. We require two additional constraints since we have 4n − 2n 

linear constraints for 4n unknown coefficients. 

There are different methods to find two more constraints. For instance: 

 When we apply the conditions, the natural cubic spline gives  

𝑝1
′′(𝑥0) = 0, 𝑝𝑛

′′(𝑥𝑛) = 0. 

 Instead of using natural cubic spline conditions, we can use the 

correct second derivative values 
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𝑝1
′′(𝑥0) = 𝑓

′′(𝑥0), 𝑝𝑛
′′(𝑥𝑛) = 𝑓

′′(𝑥𝑛).  

If values of the second derivatives are not obtainable, then they can be 

changed by precise approximations.     

 A clear-cut and precise spline can be obtained by using the knot 

conditions. The major scheme of the knot conditions is that the 

cubic polynomials remain the same when piecewise polynomials 

cross both the first and last interior nodes, x1 and  xn−1 . These 

conditions can be expressed mathematically as  

𝑝1
′′′(𝑥0) = 𝑝2

′′′(𝑥1), 𝑝𝑛−1
′′′ (𝑥𝑛−1) = 𝑝𝑛

′′′(𝑥𝑛−1). 

The former two piecewise cubic polynomials p1(x), and p2(x) of cubic 

spline agree with the first and second derivatives at the knot x1 if p1(x) and 

p2(x) also satisfy the conditions. 

 In the whole cubic spline interpolation, the gradient conditions are 

given as 

𝑝1
′(𝑥0) = 𝑓

′(𝑥0), 𝑝𝑛
′ (𝑥𝑛) = 𝑓

′(𝑥𝑛) 

are imposed. These first derivative estimations of the data may not be 

quickly available but they can be replaced by accurate approximations. 

2.1. Construction of NPCS Technique  

For the construction of NPCS technique, 𝑆 is taken for equation (1) under 

the BC in equation (3), while the interval [0, 1] was divided in equal parts 

as 

𝑥𝑗 = 𝑥0 + 𝑗ℎ,     𝑗 = 0,1, … , 𝑛, where,  𝑥0 = 0, 𝑥𝑛 = 1 and ℎ =
1

𝑛
 .           

For each segment [xj, xj+1], we considered a non-polynomial spline Sj(x), 

j=0, 1…. n, which is written as 

𝑆𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗𝑠𝑖𝑛𝑘(𝑥 − 𝑥𝑗) + 𝑑𝑗𝑐𝑜𝑠𝑘(𝑥 − 𝑥𝑗), 𝑗 =

0, 1, … , 𝑛 − 1,      (7) 

where aj, bj, cj, and dj are arbitrary constants and k is a free parameter. 

Let  𝑆𝑗(𝑥𝑗) = 𝑀𝑗,   𝑆𝑗(𝑥𝑗+1)=𝑀𝑗+1,    𝑆𝑗
′′(𝑥𝑗) = 𝐿𝑗, and 𝑆𝑗

′′(𝑥𝑗+1) = 𝐿𝑗+1.  

(8) 
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Using the first interpolation condition, that is, 

 𝑆𝑗(𝑥𝑗) = 𝑈𝑗, and setting 𝑥 = 𝑥𝑗 in equation (7), we had 

𝑆𝑗(𝑥𝑗) = 𝑎𝑗 + 𝑏𝑗(𝑥𝑗 − 𝑥𝑗) + 𝑐𝑗𝑠𝑖𝑛𝑘(𝑥𝑗 − 𝑥𝑗) + 𝑑𝑗𝑐𝑜𝑠𝑘(𝑥𝑗 − 𝑥𝑗),

𝑗 = 0, 1, … , 𝑛 − 1, 

 𝑆𝑗(𝑥𝑗) = 𝑎𝑗 + 𝑑𝑗, 

where from the equation (8),  

 𝑀𝑗 = 𝑎𝑗 + 𝑑𝑗.    (9)                                   

Equation (7) becomes 

𝑆𝑗(𝑥𝑗+1) = 𝑎𝑗 + 𝑏𝑗(𝑥𝑗+1 − 𝑥𝑗) + 𝑐𝑗  𝑠𝑖𝑛𝑘(𝑥𝑗+1 − 𝑥𝑗)

+ 𝑑𝑗  𝑐𝑜𝑠𝑘(𝑥𝑗+1 − 𝑥𝑗), 

Again, after using equation (8) and replacing 𝑥𝑗+1 − 𝑥𝑗 = ℎ, the length of 

the interval, we determined 

𝑀𝑗+1 = 𝑎𝑗 + 𝑏𝑗ℎ + 𝑐𝑗𝑠𝑖𝑛𝑘ℎ + 𝑑𝑗𝑐𝑜𝑠𝑘ℎ.        (10)                   

To find the condition of continuity of the slop of the curve, we 

differentiated the non-polynomial spline Sj(x) defined in equation (7) with 

respect to 𝑥 as 

𝑆𝑗
′(𝑥) = 𝑏𝑗 + 𝑘𝑐𝑗𝐶𝑜𝑠𝑘(𝑥 − 𝑥𝑗) − 𝑘𝑑𝑗𝑆𝑖𝑛𝑘(𝑥 − 𝑥𝑗).       (11)                  

To find the slope of the curve at point  𝑥𝑗,  

𝑆𝑗
′(𝑥𝑗) = 𝑏𝑗 + 𝑘𝑐𝑗 .         (12)                                                               

Again, to find the slope of the curve at point 𝑥𝑗+1, 

𝑆𝑗
′(𝑥𝑗+1) = 𝑏𝑗 + 𝑘𝑐𝑗  𝑐𝑜𝑠𝑘ℎ − 𝑘𝑑𝑗  𝑠𝑖𝑛𝑘ℎ, 

but from equation (12),   

 𝑏𝑗+1 + 𝑘𝑐𝑗+1 = 𝑏𝑗 + 𝑘𝑐𝑗  𝑐𝑜𝑠𝑘ℎ − 𝑘𝑑𝑗  𝑠𝑖𝑛𝑘ℎ.        (13)                          

Hence, the curvature of the non-polynomial cubic spline function was 

determined as  
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𝑆𝑗
′′(𝑥) = −𝑘2𝑐𝑖 𝑠𝑖𝑛𝑘(𝑥 − 𝑥𝑗) − 𝑘

2𝑑𝑖 𝑐𝑜𝑠𝑘(𝑥 − 𝑥𝑗).     (14)                    

At (𝑥𝑗 , 𝑥𝑗+1), we put 𝑥 = 𝑥𝑗 and 𝑥 = 𝑥𝑗+1 in equation (14). 

𝐿𝑗 = −𝑘
2𝑑𝑗,       (15)                                                                        

𝑑𝑗 = −
𝐿𝑗

𝑘2
                                                                       (16) 

𝐿𝑗+1 = −𝑘
2𝑐𝑗  𝑠𝑖𝑛𝑘ℎ − 𝑘

2𝑑𝑗  𝑐𝑜𝑠𝑘ℎ.     (17)                                             

From equation (15), we had 

𝑑𝑗+1 = 𝑐𝑗  𝑠𝑖𝑛𝑘ℎ + 𝑑𝑗  𝑐𝑜𝑠𝑘ℎ.          (18)                                                  

Next, we made suitable substitutions in equations (9-18) to determine 

the remaining unknown coefficients 𝑎𝑗 , 𝑏𝑗 and 𝑐𝑗, respectively. 

First, we substituted the value of 𝑑𝑗 from equation (16) to equation (9) 

to get 

𝑀𝑗 = 𝑎𝑗 −
𝐿𝑗

𝑘2
⟹ 𝑎𝑗 = 𝑀𝑗 +

𝐿𝑗

𝑘2
    (19)                                                      

Now, equation (17) can be solved to find 𝑐𝑗. 

𝑐𝑗 =
1

𝑘2𝑆𝑖𝑛𝜃
(𝐿𝑗𝑐𝑜𝑠𝜃 − 𝐿𝑗+1).        (20)                                                   

Finally, for 𝑏𝑗, we substituted the values of 𝑎𝑗 , 𝑏𝑗 , and 𝑐𝑗 in equation (10) to 

get 

𝑏𝑗 =
1

ℎ
(𝑀𝑗+1 −𝑀𝑗) −

1

ℎ𝑘2
(𝐿𝑗 − 𝐿𝑗+1).                               (21) 

Hence, all the unknowns 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 ,  and 𝑑𝑗   were determined and are 

shown in equations (19-21) and (16), respectively. 

Subsequently, we used the continuity condition of the first derivative at 

grid point (𝑢𝑗 , 𝑥𝑗)  to check consistency relationship, also known as 

recurrence relationship. 

For this, we took the continuity of the spline function 𝑆𝑗(𝑥) at point 𝑥𝑗 

as 

𝑆𝑗−1
′ (𝑥𝑗) = 𝑆𝑗

′(𝑥𝑗)                                                  (22) 
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Next, we took the non-polynomial cubic spline function 𝑆𝑗(𝑥) in the 

interval [𝑥𝑗 , 𝑥𝑗+1] from equation (7), 

𝑆𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗𝑠𝑖𝑛𝑘(𝑥 − 𝑥𝑗) + 𝑑𝑗𝑐𝑜𝑠𝑘(𝑥 − 𝑥𝑗), 𝑗 =

0, 1, … , 𝑛 − 1. 

Similarly, we wrote the spline function 𝑆𝑗−1(𝑥) in the interval [𝑥𝑗−1, 𝑥𝑗] as, 

𝑆𝑗−1(𝑥) = 𝑎𝑗−1 + 𝑏𝑗−1(𝑥 − 𝑥𝑗−1) + 𝑐𝑗−1𝑠𝑖𝑛𝑘(𝑥 − 𝑥𝑗−1) + 𝑑𝑗−1𝑐𝑜𝑠𝑘(𝑥 −

𝑥𝑗−1).                                                                                                (23) 

From equation (23) we had 

𝑆𝑗−1
′ (𝑥) = 𝑏𝑗−1 + 𝑘𝑐𝑗−1𝑐𝑜𝑠𝑘(𝑥 − 𝑥𝑗−1) − 𝑘𝑑𝑗−1𝑠𝑖𝑛𝑘(𝑥 − 𝑥𝑗−1).     (24) 

Afterwards from equation (24), we had 

𝑆𝑗−1
′ (𝑥𝑗) = 𝑏𝑗−1 + 𝑘𝑐𝑗−1𝑐𝑜𝑠𝜃 − 𝑘𝑑𝑗−1𝑠𝑖𝑛𝜃.                                (25) 

From equation (22), we had 

𝑏𝑗−1 + 𝑘𝑐𝑗−1𝑐𝑜𝑠𝜃 − 𝑘𝑑𝑗−1𝑠𝑖𝑛𝜃 = 𝑏𝑗 + 𝑘𝑐𝑗 ,                                 (26) 

Where, 𝑏𝑗−1 , 𝑐𝑗−1  and 𝑑𝑗−1  are the unknown coefficients for spline 

function 𝑆𝑗−1(𝑥), whose values can be determined by a similar pattern as 

for spline function 𝑆𝑗(𝑥). 

The values of unknown coefficients  𝑏𝑗−1 , 𝑐𝑗−1 , and 𝑑𝑗−1  are given as 

follows: 

𝑏𝑗−1 =
1

ℎ
(𝑀𝑗 −𝑀𝑗−1) −

1

ℎ𝑘2
(𝐿𝑗−1 − 𝐿𝑗), 𝑐𝑗−1 =

1

𝑘2𝑆𝑖𝑛𝜃
(𝐿𝑗−1𝑐𝑜𝑠𝜃 −

𝐿𝑗),    𝑑𝑗−1 = −
𝐿𝑗−1

𝑘2
.                                                           (27) 

We replaced the values of unknown coefficients from equation (27) and 

values of 𝑏𝑗 and 𝑐𝑗 from equation (20) and (21) in equation (26), 

1

ℎ2
(𝑀𝑗−1 − 2𝑀𝑗 +𝑀𝑗+1) = 𝛼𝐿𝑗−1 + 2𝛽𝐿𝑗 + 𝛼𝐿𝑗+1                                    (28) 

Where, 

𝛼 = (
1

𝜃𝑆𝑖𝑛𝜃
−

1

𝜃2
), and 𝛽 = (

1

𝜃𝑆𝑖𝑛𝜃
−

1

𝜃2
).        
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Hence, in equation (28), 𝛼.=
1

12
 and 𝛽.=

5

12
 satisfying the 

condition 1. −2𝛼.−2𝛽 = 0, implies that the developed scheme is fourth-

order convergent. 

2.2. Application of NPCS Technique for 4th Order Parabolic PDEs 

We took 𝑢𝑥𝑥 = 𝑢
′′ = 𝐿𝑗  and used the central finite difference 

approximations of 𝑂(ℎ2) for the first order time derivatives 𝑢𝑡 and 𝑤𝑡, we 

had 

𝑢𝑡 = 𝑢𝑗
′ ≅

𝑢𝑗−𝑢𝑗−1

𝑘
and 𝑤𝑡 = 𝑤𝑗

′ ≅
𝑤𝑗−𝑤𝑗−1

𝑘
.                            (30)             

We substituted the values of 𝑢𝑡 and 𝑣𝑡 from equation (30) in equation 

(4) and (5) to obtain 

𝑢𝑗−𝑢𝑗−1

𝑘
= 𝑣𝑗                                                      (31) 

𝐿𝑗 =
𝑤𝑗−𝑤𝑗−1

−𝑘
+ ℎ(𝑥, 𝑡)                                               (32) 

Equations (31) and (32) could be written as 

  𝑢𝑗 − 𝑘𝑤𝑗 = 0                                                                 (33) 

𝐿𝑗 = −
1

𝑘
(𝑤𝑗 − 𝑤𝑗−1) + ℎ(𝑥, 𝑡)                                           (34) 

Approximating 𝑢𝑗−1 = 𝑓𝑗 and 𝑣𝑗−1 = 𝑔𝑗, then equations (33) and (34) 

were as under 

𝑢𝑗 − 𝑘𝑤𝑗 = 0                                                                        (35) 

𝐿𝑗 = −
1

𝑘
(𝑤𝑗 − 𝑔𝑗) + ℎ(𝑥, 𝑡)                                               (36) 

From equation (36) we obtained 

𝐿𝑗+1 = −
1

𝑘
(𝑤𝑗+1 − 𝑔𝑗+1) + ℎ(𝑥, 𝑡)                                   (37) 

𝐿𝑗−1 = −
1

𝑘
(𝑤𝑗−1 − 𝑔𝑗−1) + ℎ(𝑥, 𝑡)                                   (38) 

Using equations (36-38) in equation (29), we obtained 
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1

ℎ2
(𝑀𝑗−1 − 2𝑀𝑗 +𝑀𝑗+1) = 𝛼(

1

𝑘
(𝑤𝑗−1 − 𝑔𝑗−1) + ℎ(𝑥, 𝑡)) + 2𝛽(

1

𝑘
(𝑤𝑗 −

𝑔𝑗) + ℎ(𝑥, 𝑡)) + 𝛼(
1

𝑘
(𝑤𝑗+1 − 𝑔𝑗+1) + ℎ(𝑥, 𝑡))                               (39) 

⟹𝑀𝑗+1 (𝛼 −
1

ℎ2
) + 2𝑀𝑗 (𝛽 +

1

ℎ2
) + 𝑀𝑗−1 (𝛼 −

1

ℎ2
) + 𝛼 (

𝑤𝑗−1−𝑔𝑗−1

𝑘
) +

2𝛽 (
𝑤𝑗−𝑔𝑗

𝑘
) + 𝛼 (

𝑣𝑗+1−𝑔𝑗+1

𝑘
) − 2(𝛼 + 𝛽)ℎ(𝑥, 𝑡) = 0                    (40)      

The equations (35) and (40) form a comprehensive system of algebraic 

equations. These are associated with the BCs given in equations (3) and (6). 

Simple technique equations could be used to solve it.  

3. Results and Discussion 

3.1. Test problem 1 

We consider 

𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 = 0 

having initial conditions as  

𝑢(𝑥, 0) = 𝑐𝑜𝑠𝑥 and 𝑢𝑡(𝑥, 0) = 0 

and exact solution as  

𝑢(𝑥, 𝑡) = 𝑐𝑜𝑠𝑥. 𝑐𝑜𝑠𝑡 

Table 1. Comparison of the exact solution with numerically obtained results 

by polynomial and non-polynomial cubic spline method at h=1/5 and k=0.1 

 

x Exact PCSM Absolute  

error for 

PCSM 

NPCSM 

 

Absolute 

error for 

NPCSM 

0.2 0.809017 0.595175043 0.213841957 0.809016 1E-06 

0.4 0.309017 0.198773877 0.110243123 0.309017 0 

0.6 -0.309017 -0.198823552 0.110193448 -0.309017 0 

0.8 -0.809017 -0.595224671 0.213792329 -0.809016 1E-06 
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Table 2. Comparison of exact solution with numerically obtained results by 

polynomial and non-polynomial cubic spline method at h=1/5 and k=0.01 

x Exact PCSM Absolute 

error for 

PCSM 

NPCSM 

 

Absolute 

error for 

NPCSM 

0.2 0.804975 0.595175043 2.09800E-01 0.801032 3.94300E-03 

0.4 0.307473 0.198773877 1.08699E-01 0.30572 1.75300E-03 

0.6 -0.307473 -0.198823552 1.08649E-01 -0.305426 2.04700E-03 

0.8 -0.804975 -0.595224671 2.09750E-01 -0.80177 3.20500E-03 

 

Table 3. Comparison of exact solution with numerically obtained results by 

polynomial and non-polynomial cubic spline method at h=1/5 and k=0.001 

x Exact PCSM Absolute 

error for 

PCSM 

NPCSM 

 

Absolute 

error for 

NPCSM 

0.2 0.808977 0.595175043 0.213801957 0.808927 5E-05 

0.4 0.309002 0.198773877 0.110228123 0.308987 1.5E-05 

0.6 -0.309002 -0.198823552 0.110178448 -0.308987 1.5E-05 

0.8 -0.808977 -0.595224671 0.213752329 -0.808927 5E-05 

 

 
Figure 1. Comparison of exact solution with numerically obtained results 

by polynomial and non-polynomial cubic spline method at h=1/5 and k=0. 1 
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Figure 3. Comparison of exact solution with numerically obtained results by 
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having initial conditions as 

𝑢(𝑥, 0) = 2 and 𝑢𝑡(𝑥, 0) = 𝑠𝑖𝑛𝑥 
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Table 4. Comparison of exact solution with numerically obtained results by 

polynomial and non-polynomial cubic spline method at h=1/5 and k=0.1 

x  Exact PCSM Absolut 

error for 

PCSM 

NPCSM 

 

Absolute 

error for 

NPCSM 

0.2 2.5868061 2.532491594 5.43145E-02 2.058197319 4.83291E-04 

0.4 2.949472214 2.861589498 8.78827E-02 2.09416524 7.81981E-04 

0.6 2.949472214 2.861589498 8.78827E-02 2.09416524 7.81981E-04 

0.8 2.05868061 2.053249159 5.43145E-03 2.058197319 4.83291E-04 

Table 5. Comparison of exact solution with numerically obtained results by 

polynomial and non-polynomial cubic spline method at h=1/5 and k=0.01 

x Exact PCSM Absolut 

error for 

PCSM 

NPCSM 

 

Absolute 

error for 

NPCSM 

0.2 2.05868061 2.053249159 5.43145E-03 2.005877266 4.88988E-07 

0.4 2.094947221 2.08615895 8.78827E-03 2.009509615 7.91199E-07 

0.6 2.094947221 2.08615895 0.008788272 2.009509615 7.91199E-07 

0.8 2.05868061 2.053249159 5.43145E-03 2.005877266 4.88988E-07 

Table 6. Comparison of exact solution with numerically obtained results by 

polynomial and non-polynomial cubic spline method at h=1/5 and k=0.001 

x Exact PCSM Absolut 

error for 

PCSM 

NPCSM 

 

Absolute 

error for 

 NPCSM 

0.2 2.005868061 2.005324916 0.000543145 2.000587727 4.88988E-08 

0.4 2.009494722 2.008615895 0.000878827 2.000950962 7.91199E-08 

0.6 2.009494722 2.008615895 0.000878827 2.000950962 7.91199E-08 

0.8 2.005868061 2.005324916 0.000543145 2.000587727 4.88988E-08 
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Test Problem 3: 

We consider 

𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 = 0 

having initial conditions as 

𝑢(𝑥, 0) = 𝑐𝑜𝑠𝑥 and 𝑢𝑡(𝑥, 𝑜) =  −𝑠𝑖𝑛𝑥 

, boundary conditions as 

 𝑢(𝑥, 0) = 𝑐𝑜𝑠𝑥, 𝑎𝑛𝑑 𝑢(𝜋, 𝑡) = −𝑐𝑜𝑠𝑡 
and exact solution as 

𝑢(𝑥, 𝑡) = cos (𝑥 + 𝑡) 

Table 7. Comparison Of Error 

 Time 

step 

X=0.2 X=0.4 X=0.6 X=0.8 

Purposed 

method 

0.1 2.74329E-03 2.74329E-03 2.74329E-03 2.74329E-03 

 0.01 3.94624E-05 3.94624E-05 3.94624E-05 3.94624E-05 

 0.001 4.0032E-07 4.0032E-07 4.0032E-07 4.0032E-07 

Comparison 

[6] 

0.1 2.82948E-03 9.5745E-03 1.2616E-02 1.09113E-02 

 0.01 2.1013E-05 8.40208E-05 1.14291E-04 1.01192E-04 

 0.001 2.101E-07 8.40038E-07 1.14291E-06 1.01912E-06 

 
Figure 7. Comparison of exact solution with numerically obtained results 

by polynomial and non-polynomial cubic spline method at h=1/5 and k=0.1 
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This study confirmed the validity of the polynomial and non-polynomial 

cubic spline methods through its application to a variety of test problems. 

The results were compared with the results of already published research in 

related literature. 

The results of test problem 1 are shown in Table and Figure 1-3. As 

depicted in Table 3, the minimum absolute error obtained by the non-

polynomial cubic spline method (NPCSM) decreased to 10−8  at h=
1

5
, and 

k=0.001. Conversely, the absolute error presented by the polynomial cubic 

spline method (PCSM) goes to a limit of  10−3  at h= 
1

5
, and k=0.01. A 

smaller kind of capacity can be observed in the experimentation of test 

problem 2. The numerical results by PCSM and NPCSM as well as their 

absolute error with the exact solution are shown in the Table and Figure (4-

6) at h=
1

5
, k=0.1, 0.01, and 0.001. It was also observed that NPCSM 

performed better than PCSM as shown in Table 4-6. Additionally, a 

minimum absolute error of 10−5 by the NPCSM and 10−2 by PCSM was 

also identified as can be seen in Table 3 and 6, respectively. 

Overall, NPCSM was found to be better than PCSM and other already 

existing methods. NPCSM provided better results for the smaller time steps. 

A slight improvement was observed in the aforementioned results with the 

decrease in spatial step size h. 

4. Conclusion 

This study aimed to develop an interpolation technique for the solution of 

the fourth order homogeneous parabolic partial differential equations 

(PDEs). There are several techniques that can be used to solve ordinary 

differential equations (ODEs) and partial differential equations (PDEs). In 

this study, the purposed method is the non-polynomial cubic spline method 

(NPCSM), it was used to solve the fourth order homogeneous parabolic 

partial differential equations (PDEs). The numerically obtained results were 

compared with results obtained from the polynomial cubic spline method 

(PCSM) and other already existing methods [12, 7]. Subsequently, the 

numerical results were verified at different time steps and spatial intervals 

by comparing them with the exact solution. The validity of the method was 

checked through test problems. The superiority of the constructed technique 
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can be seen in test problems (1-2), in which the numerical results obtained 

by NPCSM are compared with the numerical results obtained using PCSM. 

This method primarily depends upon the defined NPCSM. If any other 

NPCSM is utilized, the results can be improved further. 
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