
Analytical solutions of fractional partial differential equations 
for the second grade fluid flow

Abstract

This research work is related to unsteady movement of second-grade fluid over an infinite plate.
The governing equations for flow are developed through constitutive relations. Then classical model
extended to fractional order model with power law fractional differential operator. The Laplace
transform (LT) technique is applied to find the analytical results and stated as series satisfy the
boundary conditions. To see physical significance of flow parameters some graphs are displayed.
Recent results from the existing literature are recovered to validate.
Key words: CPC fractional derivative; Fractional model; Analytical solutions; Laplace transform
method.

1 Introduction

Unlike Newtonian fluids, non-Newtonian fluids cannot be reported as simply. Because of the intri-
cacy and complexity in the nature of non-Newtonian fluids, many models and constitutive equations
have been suggested. [1]. Honey, ketchup, blood, shampoo, greases and certain oils falls under the
category of non-Newtonian fluids [3]. These fluids are not just bound to physics and engineering but
the non-linear comportment of these fluids manifest them in many other fields like bio-engineering,
electrochemistry, biophysics, rheology, viscoelasticity and drilling operations etc. [4] The second-
grade liquids, which structure a subclass of the differential liquids have been concentrated effectively
in different types of flows [2].

There are very few cases in which Navier Stoke’s equations can be analyzed. The beginning
purpose of the fractional model of a viscoelastic fluid is generally an old-style differential condition
which is changed by supplanting the time subordinate of a whole number request by the purported
Riemann-Liouville fractional calculus operator [11]. Because of expanded enthusiasm for modeling
with the assistance of the fractional approach, a few fluid models are summed up and fractional
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models have been created [6].
Since last few decades, this field has been catching attentions of many researchers. Nadeem et

al. presented Caputo-Fabrizio (CF) fractional operator to MHD stream of a second-grade liquid
combined with radioactive heat transmission [5]. Nehad and Ilyas presented an approach of (CF)
fractional operator to the thermal investigation of a second-grade liquid where it is applied on an in-
filled flat plate this is vertical [6]. Tan et al. presented the introduction of fractional calculus into the
rheological constitutive representation of a generalized second-grade liquid [7]. Fan et al. explored
the Rayleigh Stoke’s problem for second-grade liquid subject. Fractional calculus approach was cho-
sen for describing the constitutive relationship of the model. They used Fourier sine transform and
the fractional (LT) to obtain the analytical results of the velocity and temperature [9]. Meherdad
evaluated the unsteady pulsatile blood movement in an artery which also included the impacts of
body acceleration. Fahraeus Lindqvist effect was applied on the model and equations were solved
numerically, making it dimensionless first [10]. Khan et al. considered and investigated the effects of
a porous medium and on a number of second grade unidirectional flows. Their research also claims
that the MHD movements were made by using the concepts of periodic pressure gradient and by
the impulsive motion of one and more than one boundaries or by an oscillating plate [12]. Waqas
et al. envisioned the progression of second-grade nano-fluid with heat, motile micro-organisms, and
mass exchange rates overextending surface. The adjusted second-grade fluids used to break down the
rheological conduct [13]. Ghadikolaei et al. investigated the stream and warmth move of an incom-
pressible homogeneous second-grade liquid over an extending sheet channel. Hemotopy Perturbation
strategy is utilized to fathom nonlinear differential conditions in the paper [14]. Massoudi and Phuoc
proposed a changed constitutive condition for a second grade liquid with the goal that the model
would be appropriate for considers where shear-thickening may happen [15]. Qi and Xu examined a
temperamental channel stream of a viscoelastic fluid with the fractional Maxwell model [16]. Ibrahim
presented the consolidated impacts of the induced magnetic field and convective warmth move in
Maxwell nanofluid in the area of stagnation point [17]. Ikram et al. [18] discussed MHD movement
of a Newtonian liquid in symmetric channel with ABC fractional model having hybrid nanoparticles.

Recently, Baleanu et al. [19] introduced constant proportional Caputo (CPC) fractional operator
by combining Riemann Liouville integral and Caputo fractional operator. Imran et al. [20] studied
fluid flow for viscous fluid for such geometry via (CPC) fractional operator. Further Imran et al. [21]
discussed MHD effects and find analytical solutions with (LT) method. The heat transfer of viscous
nanofluid with (ABC) and (CPC) fractional operators has been analyzed by [22, 23]. Ikram et al.
[24] evaluated the Brinkman type fluid (BTF) non-integral model containing hybrid nanoparticles
through (CPC) fractional derivative. Chu et al. [25] presented an analysis of non-integral model
of viscous nanofluid carrying hybrid nanoparticles, copper (Cu) and aluminium oxide (Al2O3) with
base fluid water (H2O) under the MHD effect in a microchannel via (CPC) fractional derivative.
Therefore, our prime interest to extend this problem to non-Newtonian fluid called second grade
fluid with recently introduced fractional operator (CPC). The main benefit of this operator is that
it is suitable to exhibit the strong memory effect of the studied problem.
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2 Preliminaries

Constant Proportional-Caputo Fractional Operator:
CPC fractional operator of order γ ∈ [0, 1) is described as [19]

CPCDγ
t g(t) =

1

Γ(1− γ)

∫ t

0

(L1(γ)g(x) + L0(γ)g
′(x)) (t− x)−γdx.

where g is differentiable and both g and g’ are locally L1 functions on the positive reals and L0(γ),
L1(γ) lie between [0, 1].

The LT of CPC fractional operator is

L
[
CPCDγ

t g(t)
]
=

[
L1(γ)

s
+ L0(γ)

]
sγ ḡ(s)− L0(γ)s

γ−1g(0)

3 Constitutive Equations

The constitutive equations of second grade can be written as [8]

T = µC1 + α1C2 + α2C
2
1 − pI (1)

where T denotes Cauchy stress tensor, µ is co-efficient of viscosity, pI is intermediate spherical stress.
Similarly, α1 and α2 represents normal stress moduli. Likewise, C1 and C2 represents kinematic
tensors which can be defined as

C1 = [▽V] + [▽V]T (2)

C2 = C1[▽V] + [▽V]TC1 +
dC1

dt
(3)

In Eq. (2) and Eq. (3), V represents the velocity, ▽ represents the gradient and d
dt

shows material
time derivative.
As we know that the liquid is incompressible so it will experience isochoric motion only. This can be
written as

▽.V = 0 (4)

Equation of motion becomes

ρ
dV

dt
= ρF+▽T (5)

where F is the body force and ρ is the density of the fluid. In this research, we will be considering the
model represented in Eq. (1). This model must fulfil the some conditions in order to be well-suited
or compatible with the laws of thermodynamics. These conditions are:[8]

α1 + α2 = 0, µ ≥ 0, α1 ≥ 0
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4 Mathematical modeling

Suppose the unsteady movement of an incompressible second-grade liquid on a flat (solid) plate
with the following assumptions.
(i) The plate fill up the half space y > 0 taking xz-plane.
(ii) At start, velocities of both liquid and plate are supposed to zero.
(iii) Later, plate moves with velocity U (constant).
(iv) The movement happens on x-axis.
(v) Pressure gradient and body force are absent in the movement.
(vi) The incompressibility constraints fulfil for the velocity field of the form V = (u, 0, 0).
By the law of conservation of momentum, governing equation for velocity is as

Figure 1: Physical model

ρut(y, t) = (µ+ α1
∂

∂t
)uyy(y, t), (6)

subject to the following constraints:

u(y, 0) = 0 ∀ y, u(0, t) = UH(t), for t > 0,

u(y, t) → 0, as y → ∞. (7)

Initiating the dimensionless variables,

Ψ =
u

U
, ξ =

y

L
, τ =

U

L
t,

in Eqs. (6) and (7), we have,

ReΨτ (ξ, τ) = (1 + α2
∂

∂τ
)Ψξξ(ξ, τ), (8)
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with constraints
Ψ(ξ, 0) = 0, Ψ(0, τ) = 1, for τ > 0,

Ψ(ξ, τ) → 0, as ξ → ∞. (9)

where Re = ρUL
µ

is Reynolds number (dimensionless) and α2 =
α1U
µL

second grade parameter.

5 Constant proportional fractional initial boundary value

problem

CPC fractional model of Eq. (8) is as

ReΨτ (ξ, τ) =
(
1 + α2

CPCDα
τ

)
Ψξξ(ξ, τ), (10)

initial and boundary constraints are:

Ψ(ξ, 0) = 0, Ψ(0, τ) = 1, ψ(ξ, τ) → 0 as ξ → ∞. (11)

Using LT on Eqs. (10) and (11), we obtain

ReqΨ̄(ξ, q) =

[
1 + α2

(
L1(α)

q
+ L0(α)

)
qα
]
Ψ̄ξξ(ξ, q), (12)

Ψ̄(0, q) =
1

q
, Ψ̄(ξ, q) → 0, as ξ → ∞. (13)

where q is LT parameter.
The solution of Eq. (12) subject to Eq. (13) is given by

Ψ̄(ξ, q) =
1

q
+

∞∑
η1=1

∞∑
η2=0

∞∑
η3=0

(
−ξ

√
Re

)η1
(−α2)

η2 [L1(α)]
η3 Γ(η1

2
+ η2)Γ(η2 + 1)

η1!η2!η3! [L0(α)]
η3−η2 q1−

η1
2
−αη2+η3Γ(η1

2
)Γ(η2 − η3 + 1)

. (14)

Using inverse LT to Eq. (14), we get

Ψ(ξ, τ) = 1 +
∞∑

η1=1

∞∑
η2=0

∞∑
η3=0

(
−ξ

√
Re

)η1
(−α2)

η2 [L1(α)]
η3 τ−

η1
2
−αη2+η3Γ(η1

2
+ η2)Γ(η2 + 1)

η1!η2!η3! [L0(α)]
η3−η2 Γ(1− η1

2
− αη2 + η3)Γ(

η1
2
)Γ(η2 − η3 + 1)

. (15)

6 Solution of second grade fluid with Caputo

The result of problem stated in Eqs. (8) and (9) with Caputo fractional derivative with the application
of LT is as

Ψ(ξ, τ) = 1 +
∞∑

j1=1

∞∑
j2=0

(
−ξ

√
Re

)j1
(−α2)

j2 τ−
j1
2
−αj2Γ(

j1
2
+j2)

j1!j2!Γ(1− j1
2
− αj2)Γ(

j1
2
)

. (16)
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7 Solution of second grade fluid with Caputo-Fabrizio

The result of problem specified in Eqs. (8) and (9) with Caputo-Fabrizio fractional derivative with
the application of LT is as

Ψ(ξ, τ) = 1 +
∞∑

ϖ1=1

∞∑
ϖ2=0

∞∑
ϖ3=0

(
−ξ

√
Re

)ϖ1

(−α2)
ϖ2 (χ)

ϖ1
2

+ϖ2 (αχ)ϖ3 τϖ3Γ(ϖ1

2
+ϖ2)Γ(

ϖ1

2
+ϖ2 + 1)

ϖ1!ϖ2!ϖ3!Γ(1 +ϖ3)Γ(
ϖ1

2
)Γ(ϖ1

2
+ϖ2 −ϖ3 + 1)

(17)

where χ = 1
1−α

.

8 Numerical results and discussion

The effect of Re on velocity field can be seen in fig. 2 and noticed that velocity is reduced by Re. It
is because of that Re is ratio of inertial forces to viscous forces, flow of fluid reduced. Fig. 3 indicates
the impact of α2 on velocity distribution and shows that by increasing value of α2 velocity decreases.
Figures 4-5 are designed to see the influence of α on velocity for little and big values of time. For
small time, it is noted from Fig. 4 velocity is decreasing function close to the plate for large values
of α. This quick decay in velocity is because of rise in temperature and velocity boundary layer for
rising α, while Fig. 5 depicts for big time the α shows the opposite behavior than for small time t.
In such a way, α appears double action for this flow problem with little and big time.

The comparison of velocity field with C, CF and CPC fractional derivatives by fixing other
parameters with changing α are seen in Fig. 6-9. By these figures,we concluded that velocity profile
with CPC fractional operator displays more decline than other all fractional approaches. Since CPC
operator based on Riemann Liuovile and Caputo fractional operators. So, it is resulted that CPC
operator that is applied in this effort is better to show the decline of velocity rather than others.
And also noted that, by rising values of α, thermal conductivity decreases.

Fig. 10 is designed for comparison of velocities with viscous fluid and second-grade liquid and
concluded that second-grade liquid flow is slow than viscous fluid flow. If α2 = 0, then second-grade
liquid and viscous fluid flow shows same behavior as shown in fig. 11. Table 1 shows the effect of α
on second-grade liquid flow and viscous fluid flow and concluded that second grade fluid flow is slow
than viscous fluid flow.
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Figure 2: The effect of Re on velocity field against y

Figure 3: The impact of α2 on velocity field against y
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Figure 4: The effect of α on velocity field against y for small time

Figure 5: The effect of α on velocity field against y for large time
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Figure 6: Differentiation between the velocities with CPC, C, CF

Figure 7: Differentiation between the velocities with CPC, C, CF
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Figure 8: Differentiation between the velocities with CPC, C, CF

Figure 9: Differentiation between the velocities with CPC, C, CF
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Figure 10: Differentiation between the velocities with Viscous fluid [18,19] and second grade fluid

Figure 11: Differentiation between the velocities with Viscous fluid [18,19] and second grade fluid
when α2 = 0
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Table 1: The effect of fractional parameter α
α Viscous Fluid Second grade Fluid

[18,19] Present
0 0.581 0.531
0.1 0.587 0.538
0.2 0.594 0.546
0.3 0.601 0.554
0.4 0.609 0.562
0.5 0.617 0.571
0.6 0.626 0.580
0.7 0.635 0.589
0.8 0.645 0.599
0.9 0.656 0.610
1.0 0.667 0.621
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9 Conclusions

This research work is related to unsteady flow of second-grade fluid over an infinite plate. The
governing equations for flow are developed through constitutive relations. Then classical model
extended to fractional order model with power law fractional differential operator. The Laplace
transform (LT) technique is applied to find the analytical results and stated as series satisfy the
boundary conditions. To see physical significance of flow parameters some graphs are displayed.
Recent results from the existing literature are recovered to validate.
The key points of the present work are:
• By rising the value of time, the density of velocity boundary layer increases with all the non-integer
models but for rising α → 1 it reduced.
• In a contrast between CPC and other fractional operators, we agreed that CPC fractional shows
better decline of the velocity than them.
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