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ABSTRACT 
Keeping in view the scarcity of water resources, effective use of water is an 
essential element for humans. The contamination of water with toxic 
pollutants is the biggest challenge globally. Therefore, it is crucial to 
develop and implement water treatment approaches which limit water 
wastage. Water is contaminated with various toxic, inorganic (heavy 
metals) and organic (dyes) pollutants. Primarily, water pollution is created 
by man-made activities, including household chores, agricultural 
consumption, and industrial waste. On the contrary, nanotechnology 
promisingly ensures safe and healthy drinking water. The current review 
article provides a brief overview of recent developments in nanomaterials, 
biosorption capacities (presented in tabular form for comparison), and 
future perspectives of nano-based sorbents. Moreover, nanomaterials for 
adsorptive remediation of pollutants (heavy metals and dyes) are 
categorized as organic (carbon and graphene-based) and inorganic (metals 
and metals oxides-based). To increase their adsorption capacity, they can 
be modified with various functional groups. The adsorption capacity of 
nanomaterials to adsorb the pollutants depends on pH, adsorbent dosage, 
pollutants concentration, and contact time. These nanomaterials are a 
powerful alternative to conventional treatment approaches due to their 
improved adsorption capacity. However, nanotechnology requires to 
overcome the environmental concerns and cost-effectiveness of 
nanomaterials. The regeneration and reuse of nanomaterials can enable it. 
Keywords: adsorption, carbon nanotubes, graphene oxide, nanomaterials, 
treatment, wastewater  
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INTRODUCTION 
Due to industrialization, environmental contamination has become a serious 
problem affecting developing and established countries. Fundamentally, no 
specie can live on this earth without water because water, soil and air are 
essential human resources. Environmental remediation, water, soil and air 
pollution production are primary concerns worldwide, especially in 
developing regions. However, the environmental remediation is still a major 
challenge, particularly when four common points, cost, recycle-ability, eco-
friendliness, and efficiency are taken into consideration. The primary 
pollutants in water (like tape, surface, and groundwater) are mostly 
composed of inorganic contaminants for instance heavy metals, organic 
contaminants (like pesticides, pharmaceuticals, detergents, and 
biomaterials) and arsenic ions [1]. 

Since the urbanization and industrial revolution, a number of metal ions 
has been released into the water by different human activities, like chemical 
manufacturing, mining, electroplating, and applications of fertilizer and 
pesticides. Due to this technological advancement, heavy metal pollutants 
in water and soil become a big challenge globally, due to their toxic nature, 
persistent and non-biodegradable, like Cr(VI), Cu(II), Hg(II), Cd(II),  
Pb(II), the human health, and ecological environment  which seriously 
threatened the human existence, while affecting the various utilization 
materials of humankind. Besides, the heavy metals even at the low 
concentration present in water may cause health and environmental 
problems [2]. 

Organic pollutants in water may also cause serious health and 
environmental issues. Several harmful organic dyes are released into the 
water by various industries such as cotton, leather, paper, wool, and silk. 
These organic dyes are water soluble, and their continuous release in water 
even at low concentrations is very toxic and hazardous to humans. For 
example, methylene blue is a common water-soluble dye, the contamination 
of water with methylene blue can cause cyanosis, shock, heart attack, 
irritation to the skin, vomiting, quadriplegia, and jaundice in humans. On 
the other hand, malachite green (cationic dye) is also soluble in water, and 
it may cause mutagenesis, carcinogenesis, and teratogenicity [3]. According 
to one projection from the World Health Organization (WHO), more than 
half of the total population would live in water-stressed areas by 2025 [4].  
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Out of total earth, surface 70.8% is embodied by water. Just about 2.7% 
is clean water and out of 0.4% can be directly utilized. This tiny fraction of 
fresh water supports approximately 100,000 species out of nearly 1.8 
million, which is about 6% of all identified species. The consumption of 
water is essential from both, qualitative and quantitative point of view. 
Consequently, a very important world crisis is water pollution [5]. 

Water treatment typically consists of several treatment barriers  that 
vary in terms of supply requirements and water security in general [6]. 
Different methods for wastewater treatment havebeen established in recent 
decades. These include micro and ultrafiltration, solvent extraction, gravity 
separation and sedimentation, coagulation, precipitation, flotation, 
oxidation, distillation, evaporation, adsorption, reverse osmosis, 
electrolysis, and ion exchange. Adsorption is one of the primary wastewater 
treatment techniques mentioned above, owing to its low cost, easy to 
operate, and provision of a large scale of adsorbents [7]. So many treatment 
processes have been set up to extract contaminants from wastewater. Still, 
it is not possible to expect a 100% reduction of incoming waste load [8]. 

Nanotechnology-enabled, highly reliable, flexible, and multifunctional 
processes, which are intended to supply high-performance, wastewater 
treatment solutions and safe water that not only solve major issues facing 
current water treatment systems but also provide new treatment 
technologies, which allow additional water supplies to be used effectively 
to expand existing water treatment technologies. Recent developments in 
nanoscale science and engineering have brought tremendous improvement 
in wastewater treatment systems. Nanomaterials have a particle size less 
than bulk-sized materials. Most of these nanomaterials were investigated 
and identified as products for water and water treatment applications in the 
fields of adsorption, microbial control monitoring and detection, photo-
catalysis and membrane filtration, and disinfection [9]. 

The use of nanoparticles as adsorbents to treat water has been important 
in the recent years. As the safest approach for chronic and emerging 
contaminants, nanotechnology has demonstrated considerable potential 
[10]. Due to their higher appearance and reactivity, nanomaterial-based 
adsorbents provide attractive alternatives for conventional adsorbents, 
resulting in higher adsorption capacity [11]. Furthermore, the small size of 
the particles also allows the construction of modular treatment systems. 
Recent research has also shown that nanoparticles can be engineered to 
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attack several pollutants, simultaneously [12]. One main concern of the 
current research is to summarize the useful results which can be used to 
remove aquatic contaminants of various forms of nanomaterials in 
wastewater treatment, such as adsorbents. 

 

Figure 1. The adsorption mechanism of nanomaterials to adsorb the water 
pollutants 

2. ADSORPTIVE APPLICATIONS OF NANOMATERIALS 
In recent times, nanomaterials have procured   great attention in removing 
pollutants from wastewater. The nanoscale characteristics like adsorption, 
reactivity, high surface area and catalysis make the nanomaterials more 
effective for wastewater treatment. Different types of nanomaterials are 
used to remove  pollutants from wastewater [13] which include carbon-
based, zero-valent, and nanocomposites. There are various methods to 
synthesize the nanomaterial like sol–gel, co-precipitation, chemical vapour 
deposition, sputtering spinning and pyrolysis. Removal mechanisms 
include adsorption, chemical precipitation, coagulation ion exchange,  and 
membrane filtration [14]. 

2.1.Carbon Based Nanoadsorbents 
2.1.1. Carbon Nanotubes (CNTs) 
CNTs are the allotropic form of carbon.  CNTs have 1nm diameter with a 
few centimeters in length [15]. Usually, CNTs have a cylindrical structure 
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wrapped up in a tube-like frame. There are two types of CNTs, single-
walled carbon nanotubes and multi-walled carbon nanotubes. SWCNTs are 
generated by the roll-up of the signal graphene sheet, and the roll-up of 
several graphene sheets forms the MWCNTs. Fig.2 reveals the structure of 
SWCNTs and MWCNTs. CNTs have good sorption capacity and high 
performance relative to traditional powder and  granular activated carbon 
[7]. 

Experimental results have shown that both nature of sorbate and the 
substrate functional groups are dependent on the adsorption potential of 
CNT [16].The functionalization surface of  CNTs can be modified with N, 
O, and P containing group, which ensures the efficiency  in the precise 
surface area [17]. For the surface grafting of CNTs with a strong adsorption 
of heavy metals from liquids, numerous organic polymers have been 
introduced [18]. 

Figure 2. Structure of SWCNTs and MWCTNs 

2.1.1.1.Removal of organic pollutants 
In the adsorption of several organic chemicals, CNTs have demonstrated 
higher efficiency than activated charcoal [19]. The broad surface area and 
the multiple interactions between pollutants and CNT are mostly due to the 
high adsorption capacity. The field on which individual CNTs can be 
adsorbed is centered on the external surfaces [20]. CNT aggregates contain 
pore space and loops that are strong adsorption active sites for organic 
compounds [21].  

The main downside of activated carbon is its poor adsorption ability for 
polar organic compounds that have lower-molecular weight, due to various 
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interactions between pollutants and CNT. It strongly adsorb all of these 
polar organic materials. The carbon nanotubes (CNTs) surface rich in 𝜋𝜋 
electrons makes (𝜋𝜋 − 𝜋𝜋)-interactions with organic molecules [22, 23]. The 
graphite CNT surface forms hydrogen bonds with organic compounds that 
have functional groups of -OH, -NH2, and -COOH, which donate electrons 
[24]. Electrostatic attraction promotes the absorption at an acceptable pH of 
positively charged chemical compounds like  some antibiotics [25] 

The overall, mechanism involved in adsorption of organic pollutants 
onto the CNTs, include (𝜋𝜋 − 𝜋𝜋)-interactions, Lewis’s acid–base 
interactions, hydrogen bonding, hydrophobic interactions, and electrostatic 
interactions. However, there have been no specific procedures for 
addressing the specific contribution of such mechanisms for a specific 
adsorption, which suggest that this  field requires more investigation [26]. 
Table 1: The Adsorption of Organic Pollutants onto Different Types of 
Carbon Nanotubes CNTs 

Sr. 
No
. 

Carbon nanotubes 
CNTs types 

Organic 
pollutants 

Adsorption 
capacity 
(mg/g) 

References 

1 Oxidized SWCNTs Basic red 46 (BR 
46) 49.45 [27] 

2 Untreated MWCNTs Tetracycline (TC) 269.54 [28] 

3 SWCNTs 4-Chloro-2-
nitrophenol 1.44 [29] 

4 Untreated SWCNTs Dissolved organic 
matter (DOM) 26.1–20.8 [30] 

5 Alkali-activated 
MWCNTs Methylene blue 399 [31] 

6 Untreated SWCNTs Reactive red 120 
(RR -120) 426.49 [32] 

7 Untreated MWCNTs Methylene blue 59.7 [33] 
8 Carboxylated MWCNTs Norfloxacin 90.3 [34] 

9 KOH activated 
MWCNTs 

Toluene, 
ethylbenzene, m-

xylene 

87.12, 322.05, 
247.83 [35] 

10 Pristine and 
hydroxylated MWCNTs Sulfamethazine 24.78, 13.31 [36] 

11 MWCNTs Methyl orange 52.86 [37] 
12 MWCNTs/CoFe2O4 Sulfamethoxazole 6.98 [38] 
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2.1.1.2. Removal of heavy metals 
Oxidized carbon nanotubes (CNTs) have strong adsorption potential for 
metals with fast kinetics. The functionalization can modify the carbon 
nanotubes’ surface with hydroxyl, phenol, and carboxyl-containing group 
primarily, through chemical bonding and electrostatic attraction [43]. 
Consequently, the adsorption potential of CNTs can be greatly increased by 
surface oxidation. Various experiments showed that carbon nanotubes 
CNTs are adsorbents for metal ions and then activated carbon(for instance, 
Zn2+, Cu2+, Cd2+,and Pb2+) [44, 45].  

Carbon nanotubes (CNTs) based nanomaterials can be used to track and 
remove metal ions electro-chemically  46. For example, the order of affinity 
of the metal ions towards carbon nanotubes at pH = 9 is Cu2+> Pb2+> Co2+> 
Zn2+> Mn2+ [47]. 

Multiwall carbon nanotubes (MWCNTs) can be utilized to remove rare 
earth metals like strontium Sr (II) and Europium Eu (III) from an aqueous 
medium [48, 49]. Multiwall CNTs, coupled with chitosan, effectively 
adsorb heavy metals like Cu2+, Zn2+, Ni2+, and Cd2+  [50]. Multiwall carbon 
nanotubes (MWCNTs) can be modified using ethylene diamine to remove 
Cd+ ions from an aqueous medium [51]. The polydopamine-functionalized 
carbon nanotubes CNTs were prepared by different methods and introduced 
to extract Cu2+ ions. [52]. The nanocomposites of graphene oxide and 
biochar-based CNTs displayed enhanced specific surface area and 

Sr. 
No
. 

Carbon nanotubes 
CNTs types 

Organic 
pollutants 

Adsorption 
capacity 
(mg/g) 

References 

13 Chitosan/Fe2O3/MWC
NTs Methyl orange 66.90 [39] 

14 
Single, double and 
multi-walledd carbon 
nanotubes 

Ciprofloxacin 933.8, 901.2, 
651.4 [40] 

15 Calcium 
alginate/MWCNTs Methyl orange 12.5 [39] 

16 Single, double and 
multi-walledd CNTs Oxytetracycline 554, 507, 391 [40] 

17 MWCNTs Tetracycline 192.7 [41] 

18 CNTs-c@Fe-chitosan composite 
Tetracycline 104 [42] 

19 multiwalled carbon 
nano-tubes (MWCNTs) 

4-Chloro-2-
nitrophenol 4.42 [29] 
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expanded sorption potential for ions Cd2+ and Pb2+ ions [53]. Carbon 
nanotubes CNTs have strong absorption capacity when functionalized with 
polyethyleneimine and utilized to extract Cu2+ metal ions [54].  

Modified MWCNTs have two main kinds of mechanisms between 
adsorbate and adsorbent: physical and chemical adsorption. The possible 
mechanism of metals ions on modified MWCNTs are demonstrated, such 
as complex formation, chemical interaction, electrostatic attraction and 
physical adsorption between surface functional group of modified 
MWCNTs, and metals ions. The formation of complexes and electrostatic 
attraction between the surface functional groups and metals ions of 
modified MWCNTs is the most important adsorption mechanism [55]. 
Table 2: The Adsorption of Different Heavy Metal ions onto Various 
Types of Carbon Nanotubes CNTs 

Sr. 
No. Adsorbents Metal 

ions 
Adsorption capacity 

mg/g References 

1 CNT 
dendrimer Pb (II) 4870 [56] 

2 CNTs 
(HNO3) Pb (II) 49.95 at pH=7.0 [17] 

3 MWCNTs Ni (II) 7.53 at pH=7.0 [57] 
4 CNTs Pb (II) 17.44 at pH=7.0 [58] 
5 SWCNTs Ni (II) 9.22 at pH=7.0 [57] 

6 MWCNTs 
(HNO3) Pb (II) 97.08 at pH=5.0 [44] 

   Adsorption capacity 
mmol/g  

7 CNTs Hg (II) 1.068 

[59] 

8 CNT-COO- Hg (II) 3.300 
9 CNT-OH Hg (II) 1.284 
10 CNT-CONH2 Hg (II) 1.658 
11 CNTs Cd (II) 1.291 
12 CNT-COO- Cd (II) 3.325 
13 CNT-OH Cd (II) 1.513 
14 CNT-CONH2 Cd (II) 1.563 
15 CNTs Cu (II) 1.219 
16 CNT-COO- Cu (II) 3.565 
17 CNT-OH Cu (II) 1.342 
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Sr. 
No. Adsorbents Metal 

ions 
Adsorption capacity 

mmol/g References 

18 CNT-CONH2 Cu (II) 1.755 

 
19 CNTs Pb (II) 1.406 
20 CNT-COO- Pb (II) 4.672 
21 CNT-OH Pb (II) 2.07 
22 CNT-CONH2 Pb (II) 1.907 

2.1.2. Graphene-Based Nanomaterials 
Graphene triggered dramatic advancements in the built environment due to 
its unique form and outstanding physicochemical properties [60]. The 
graphene-based materials have drawn enormous global attention [61]. GO 
is a modified graphene with several oxygen groups like carbonyl, epoxy, 
hydroxyl, and carboxyl groups [62].  

 

 
 
 
 
 
 
 
 
 
 

 
Figure 3. Structure of (a) graphene, (b) graphene oxide (GO) and (c) 
reduce graphene oxide (rGO) 

a 

c 

b 
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2.1.2.1. Removal of dyes 
Dyes are abundant water contaminants, which are released from many 
factories, such as textiles, printing, dyeing, tannery and painting, paper, and 
pulp. Some dyes are more durable and harder to biodegrade because they 
have a complex molecular structure. The existence of dyes in water creates 
problems for aquatic organisms and certain dyes are harmful  for human 
health [63]. Recent research primarily, concentrates on the chemical 
improvements in graphene and its ability to adsorb dyes [64]. 

Graphene Oxide (GO) can absorb the methylene blue (MB) dye to a 
large degree with very high absorption potential (714 mg/g) [65].The 
nanocomposite of the tannic acid-graphene adsorbent can utilized to extract 
blue rhodamine [66]. 

Adsorption capacity of acid orange on GO has been studied by [67]. GO 
has a high adsorption potential (2158 mg/g), it sufficient for treatment 
process. The adsorption potential reduced to 976 mg g-1 when the  GO 
concentration was doubled, but the removal efficacy increased to 95%. [68]. 
Graphene-SO3H/Fe3O4 was observed which removed almost 93% of 
cationic dye in 10 minutes. 

The nanocomposite of magnetite reduced graphene oxide, which can be 
utilized for the adsorption of dyes. The material revealed considerable 
malachite dye removal (94%) in two hours at optimal condition [69]. Acid 
Blue 92 can be removed by surface-modified graphene oxide nanosheet 
[70].  

Graphene based nanomaterials have several mechanisms involved in 
adsorption of different types of dyes at molecular level, based on adsorbate-
adsorbent, adsorbate solvent which mainly depend on physical and 
chemical interaction. The primary mechanism of interaction can also be 
induced by the π-π interactions since all carbon atom of GO has an π-
electron which is perpendicular to the surface of GO [71]. 
Table 3: The Adsorption of Dyes onto Different Types of Graphene 

Sr. 
No Adsorbents Dye Adsorption capacity 

mg/g References 

1 rGO/ 
hydrogel MB 7.85 [72] 

2 GO/Fe3O4 MB 167.2 [73] 
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Sr. 
No Adsorbents Dye Adsorption capacity 

mg/g References 

3 PES/GO MB 62.50 [74] 
4 Fe3O4-GO MB 167.2 [73] 
5 TiO2-GNs MB 83.3 [75] 
6 GO AO 1428 [76] 
7 GNs Sodium AO 3333 [76] 
8 Fe3O4-GO NR 171.3 [73] 
9 Fe3O4-GNs CR 33.7 [77] 
10 CoFe2O4-GNs MO 71.5 [78] 

2.1.2.2. Removal of heavy metals 
GO is a functionalized graphene with oxygen that contains groups that can 
adsorb the heavy metal complexes through both coordinate and electrostatic 
approaches. [79] prepared graphene oxide nanosheets are checked for the 
extraction of metal ions like Cd2+, Co2+, Pb2+  [80], and U(VI) [81] aqueous 
media. [82] synthesized a functionalized graphene oxide (GO) with thiol 
groups(R-S-H). The adsorption capacity increased by this surface-modified 
graphene oxide (GO-SH). 

A flower-like composite of GO-TiO2 was synthesized, which is used to 
separate the metal ions from water such as Cd2+, Pb2+, and Zn2+. The 
composite of graphene oxide with titanium oxide (GO-TiO2) has high 
adsorption capacity like 65.6,72.8  and 88.9 mg/g  for Pb2+, Cd2+and Zn2+  

respectively, at pH of 5.6 [83]. [84] synthesized a magnetite (Fe3O4/GO) 
composite to separate Co2+ ions from solution and studied adsorption 
kinetics, thermodynamics, and equilibrium. 

The adsorption mechanism depends on the surface and electrostatic 
interaction between surface functional groups and metals ions. The 
adsorption mechanism of graphene-based nanomaterials  also depends on 
the additional properties and characteristics of functionalization [85]. 
Table 4: The Adsorption Capacity of Graphene Base Nanomaterials to 
remove Different Heavy Metals 

Sr. 
No Adsorbents Heavy 

metals 
Adsorption 

capacity mg/g References 

1 GO Cd (II) 14.9 [83] 
2 TiO2/GO Cd (II) 72.8 [83] 
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Sr. 
No Adsorbents Heavy 

metals 
Adsorption 

capacity mg/g References 

3 
GO/ 
Fe3O4/sulfanilic 
acid 

Cd (II) 55.4 [86] 

4 GO Cu (II) 46.6 [87] 
5 GO/ Fe3O4 Cu (II) 18.3 [88] 

6 GO-
gelatin/Chitosan Cu (II) 120 [89] 

7 GO Pb (II) 35.6 [83] 
8 GNs Pb (II) 22.4 [90] 
9 GO-EDTA Pb (II) 479 [91] 
10 GO Hg (II) 35 [82] 
11 GO-SH Hg (II) 190 [82] 
12 GNs-polypyrrole Hg (II) 980 [92] 

2.1.2.3. Removal of pharmaceutical waste 
Pharmaceutical traces have been identified as an emerging contaminant 
owing to their presence in the water body. Pharmaceutical waste is produced 
during agricultural processes, antibiotics that have been only partially used 
have expired, and a significant amount of bacterially resistant antibiotic 
waste has been released into the environment. In addition, the sewage 
system could excrete drugs not fully metabolized inside the body. 
Adsorption is an effective approach to remove micro pollutants due to its 
low-cost, simple design, and high efficiency [93].  

Dorzolamide (Dorzo), a pharmaceutical component common in 
biomedical effluents, is removed using the composite graphite oxide 
(acrylic acid) grafted chitosan (GO/CSA). The GO/CSA composite has a 
very high adsorption capacity (334 mg/g) at room temperature [94]. 
Graphene nanoplatelets have great adsorption potential, and it is utilized to 
remove aspirin, caffeine, and acetaminophen [95]. The synthesis of reduced 
graphene oxide/magnetite (RGO–M) is used in norfloxacin (NOR) and 
ciprofloxacin adsorption (CIP) [96]. [97] performed a laboratory adsorption 
analysis using GO as an adsorbent to extract sulfamethoxazole and 
diclofenac solution. 

[98] synthesized   reduced porous graphene oxide nano sheets loaded on 
ribbon-shaped boron nitride (BN) foam were used to remove the  
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gemfibrozil (GEM). Its distinctively fast adsorption kinetics towards GEM, 
with 90% removal potential in less than 5 min in terms of reliability  
Table 5: The Adsorption of Pharmaceutical Waste onto Different types of 
Graphene  

Sr. 
No Adsorbents Pharmaceutical 

waste 

Adsorption 
capacity 

mg/g 
References 

1 GO Tetracycline 313 [97] 

2 Graphene 
nanoplatelets Aspirin, 13.02 [95] 

3 GO Tetracycline 323 [99] 

2.2. Metal Oxide-based Nanomaterials 
Metal oxides are inorganic nanomaterials, commonly utilized to remove 
organic pollutants and heavy metal ions from the aquatic environment. 
Metal oxide nanomaterials, such as Fe3O4, ZnO, TiO2, MgO, MnO2, and 
CdO, offer specific affinity and high specific surface area.  

2.2.1. Iron Oxides (Fe3O4) Nanomaterials  
2.2.1.1. Removal of heavy metals 
Iron oxide nanomaterials have attained substantial attention owing to their 
simplicity and availability. Various types of iron oxide nanomaterials are 
utilized as nano adsorbents to adsorb the heavy metals ions from wastewater 
[100, 101].  

The surface modification of iron oxide nanomaterials can increase the 
adsorption capacity [102]. The surface-modified Fe3O4 nanoparticles have 
a high potential for rapid adsorption of heavy metals like  As3+, Cr3+, Ni2+, 
Co2+, Cd2+, Cu2+,  and Pb2+ from wastewater [103]. [104] used carbon-
encapsulated magnetic nanoparticles for adsorption of Cd2+ and Cu2+ ions. 
They found that the ion adsorption attain 95% of copper and cadmium. 

The adsorption mechanism of metal ions from wastewater by 
functionalized iron oxide nanomaterials include magnetic selective 
adsorption, surface site binding, modified ligands combination, and 
electrostatic interaction [105]. 
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2.2.1.2. Removal of organic pollutants 
Fe NPs are widely being investigated for the adsorption of organic dyes, 
especially for the successful treatment of large quantities of water and rapid 
extraction by utilizing a powerful external magnetic field [106]. 

Organic contaminants are usually adsorbed via surface-exchange 
reactions till all the active sites on the surface are occupied [107]. Based on 
this process,  nanomaterials development for the extraction of dye pollutants 
needs the addition of surface functionalization [108].  

2.2.2. Zinc Oxides (ZnO) Nanoparticles   
Zinc oxide (ZnO) nanoparticles are found as effective candidate for the 
treatment of wastewater due to their specific characteristics. Kataria et al. 
experimented with removing the Victoria Blue (VB) B dye using zinc oxide 
(ZnO) nanoparticles [109]. The maximum adsorption of dye was attained at 
pH 6. VB B dye’s highest adsorption capacity on nano adsorbate was 163.93 
mg/g, which was measured using the Langmuir model. 

Zinc oxide (ZnO) nanomaterials can remove toxic heavy metals Pb (II) 
from wastewater. Pb (II) ’s highest adsorption capacity on nano adsorbates 
was observed to be 19.65 mg/g in an aqueous solution at70 oC temperature  
under pH 5 [110].  

Zinc oxide (ZnO) nanomaterials were synthesized and utilized to 
remove alizarin red S colour. The maximum adsorption efficiency was 
attained  when pH was 4,  for 35 min, adsorbent dose was 0.4 g/L, and dye 
concentration was10 mg/L [111]. 

[112] synthesized the zinc oxide (ZnO) nanomaterials through 
biological process was  investigated through its adsorption potential to 
remove the Ismate violet 2R. The 99% removal efficiency was attained 
when pH was 6,  for 120 min, adsorbent dose was 0.08 g/L, and temperature 
was at 55 °C. 

2.2.3. Titanium Dioxide (TiO2) Nanoparticles  
In the past few years, titanium dioxide (TiO2) nanoparticles can also be 
utilized as sorbents for removing and separating metal ions, like Cu 2+, Pb2+, 
Hg2+, and Ag+. TiO2 nanoparticles displayed strong adsorption efficiency.  

Titanium dioxide (TiO2) nanoparticles entrapped poly 
(vinylidenefluoride) (PVDF) hybrid membranes are utilized to remove 
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heavy metal like Cu. The adsorption rate of poly (vinylidenefluoride) 
PVDF(CTAB)/TiO2 at pH of 7 was 68.80% [113]. 

Titanium dioxide (TiO2) nanoparticles containing polyacrylamide-
grafted gum ghatti (PAAm-g-Gg) of hydrogel nanocomposite (HNC) was 
applied for the removal of toxic cationic dyes like MB from water. The 
adsorption potential of the hydrogel nanocomposite was relatively higher 
than that of the neat gum ghatti Gg or Gg-cl-PA Am hydrogel. The hydrogel 
nanocomposite removed 98% of the MB dye from the aqueous media [114]. 

2.3. Metal-based Nanomaterials 
2.3.1. Silver (Ag) Nanoparticles 
Ag NPs are widely utilized as adsorbents owing to their non-toxicity, large 
surface-to-volume ratio, and cost-effectiveness. Ag NPs are applied to 
organic pollutants like methylene blue. The highest adsorption capacity of 
MB dye at pH 7 is 147 mg/g [115]. 

Ag NPs combine with yttrium oxide (Ag-Y2O3)  form a nanocomposite, 
which has a larger surface area (18.05 m2g-1) and adsorption potential for 
metals such as Cr (VI) and Cu (II) [116]. 

2.3.2. Iron (Fe) Nanoparticles 
Zerovalent iron nanoparticles are a suitable adsorbent to absorb heavy 
metals like arsenic (As). Zerovalent iron nanoparticles showed high 
efficiency at pH >5 for the removal of arsenite than arsenate. The adsorption 
potential of arsenate and arsenite is 12.0 mg/g and 18.2 mg/g, respectively, 
at pH 6.5, which  was much better than other commonly usable adsorbents 
of arsenic. In the presence of silicate or phosphatic, arsenic’s adsorption 
efficiency decreased, significantly [117]. 

2.3.3. Iron/Zinc (Fe/Zn) Bimetallic Nanoparticle  
A novel (Fe/Zn) bimetallic nanoparticle was used as an adsorbent to remove 
the organic pollutants like CR and MG from water. The adsorption capacity 
of CR and MG dyes was impaired by pH, contact duration, and adsorbent 
dose at the start. It was the maximum for MG and CR at pH 9 and 4, 
respectively [118]. 

In the field of adsorptive remediation of wastewater by metal-based 
nanomaterials, it is extremely important to understand the adsorption 
mechanism. Majority of studies have clarified the process based on 
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adsorption patterns, which was observed at different pH ranges.  A few 
researches, have focused on the characterization of metal-loaded adsorbents 
and attempted to provide a support for the possible mechanistic route [119]. 

2.3.4. Nickel/Zinc (Ni/Zn) Nanocomposite  
Punia et al (2022) [120] synthesized the Ca doped Ni/Zn nano-ferrites for 
the removal of metal ions (Cd and Cr).  Various batch experiment and 
adsorption results revealed that maximum uptake by chromium and 
cadmium was 51.00% and 98.25%, respectively.  

The Ni/Zn based nanohybrid was used to remove the organic dye 
(Azorubine dye). The maximum adsorption efficiency was attained  when 
pH was 5, time was 60 min, adsorbent dose was 0.68 g/L and dye 
concentration was 10 mg/L [121].  
Table 6: Adsorption Capacity of Metal and Metal Oxides Nanomaterials 
to remove Heavy Metals and Organic dyes 

Sr. 
No Adsorbents Pollutants 

Adsorption 
capacity 

mg/g 
References 

1 Goethite (α-
FeOOH) Cu (II) 149.25 [122] 

2 𝛾𝛾-Fe2O3 Cu (II) 26.8 [123] 

3 Amino-modified 
Fe3O4 Cu (II) 12.43 [124] 

4 Fe3O4 magnetic 
nanoparticles Cu (II) 61.07 [125] 

5 δ-MnO2 Ni (II) 30.63 [126] 

6 Modifying Fe3O4 
microspheres Hg (II) 37.4 [127] 

7 TiO2 Pb (II) 401.14 [128] 

8 δ-FeOOH-coated γ-
Fe2O3 MNPs Cr (VI) 25.8 [129] 

9 Modified Al2O3 Pb (II) 100 [130] 
10 TiO2 Cd (II) 16.69 [131] 

11 Flower-shaped ZnO Victoria 
Blue B 163.93  

12 ZnO acid fuchsin 
AF 3307 [132] 
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Sr. 
No Adsorbents Pollutants 

Adsorption 
capacity 

mg/g 
References 

13 Co3O4/SiO2 
nanocomposite MB 53.87 [133] 

14 ZnO CR 1554 [132] 
15 TiO2 MO 85.39 [131] 

16 Zn-Fe2O4 hollow 
fibers 

Acid 
fuchsin AF 150.37 [134] 

17 ZnO Malachite 
green MG 2963 [132] 

3. CONCLUSION 
Water is one of the most abundant natural resources on earth. However, only 
1% of that natural resource is available in pure form for human 
consumption. A sustainable approach to affordable and clean water is 
perceived as one of the biggest global challenges.  Nanotechnology has the 
potential to overcome this challenge efficiently and inexpensively as it is an 
advance wastewater treatment approach. A wide variety of nanomaterials 
has been reported to remove inorganic (heavy metals) and organic (dyes) 
contaminants. Nanomaterials for remediation of contaminants (heavy 
metals, dyes) are categorized as organic (carbon-based and graphene-based) 
and inorganic (metals and metals oxides-based) nanomaterials. These 
nanomaterials have specific physiochemical properties. For instance, 
carbon and graphene-based nanomaterials have a high surface area and can 
be modified with different functional groups to increase their adsorption 
efficiency. The metal oxides-based nanomaterials have a minimum 
environmental impact and low solubility with numerous active seats and a 
specific affinity. The nanomaterials provide a powerful alternative to 
conventional treatment approaches due to improved adsorption capacity. 
However, due to environmental concerns, technical difficulties, and cost-
effectiveness, most implementations are not still ready for the market and 
thus, only a few nano-sized products are commercially available. 

3.1. Recommendations 
The following aspects should be taken into consideration for prospective 
work to enhance the adsorption applications of nanomaterials: 
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•  Efficiency of nanotechnologies experiments should be performed to 
introduce more practical conditions for the optimization of process 
parameters. Synthesized materials could be more effective in pollution 
sensing technologies. 

• Long-term performance –future experimentation should concentrate on 
the recycling ability of sorbents. The more they would be recyclable, the 
more they would be cost friendly. 

• Environmentally friendly–for the nanomaterials to be efficiently 
applied, the overall process should be secure and environmentally 
friendly.  

• Waste management – more studies are required to resolve the 
management of recovered contaminants and depleted nanoparticles. 
Recently, potential disposal strategies for the contaminant of saturated 
nanoparticles involved stabilization and solidification of waste in the 
form of bricks and cement. 
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