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ABSTRACT 

DNA is a hereditary material of every cell which is the fundamental 
molecule in the transfer of encrypted information about cells from parent 
cells to daughter cells. The long-chain DNA molecule is tightly tangled to 
fit in the nucleus. The supercoiled DNA resembles a complicated knot in the 
structure. Every cellular process involving DNA like recombination, 
catenation, de-catenation, replication, and sequencing is initiated by the 
relaxation of the supercoiled DNA using enzyme action. The enzyme 
activity, which is used to untangle DNA is analogous to the process of 
unknotting a knot. The unknotting number refers to the least number of 
enzyme topoisomerase II actions. A new variant of the unknotting number 
namely fault-tolerant unknotting number ensures the un-entanglement of 
DNA knot in spite of the failure of enzyme activity at some point.  This 
article investigates, a special family of knots named two-bridge knots for 
the existence of fault-tolerant unknotting numbers. Furthermore, the 
current study explores the subfamilies of two-bridge knots for fault-tolerant 
unknotting numbers. Besides this, two special subfamilies, 
𝐶𝐶(𝑎𝑎, 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , ±2,−𝑎𝑎𝑘𝑘 ,−𝑎𝑎𝑘𝑘−1, … ,−𝑎𝑎2,−𝑎𝑎1) and 𝐶𝐶(2𝑛𝑛, 3) of two-
bridge knots with unknotting number 1 and 𝑛𝑛 respectively are explored for 
a variant of fault-tolerant unknotting number called restricted fault-tolerant 
unknotting number. Lastly, this paper concludes by explicating biological 
disposition of fault-tolerant unknotting numbers in terms of enzyme action 
on the DNA. 
Keywords: enzyme activity, fault-tolerant numbers, knot, two-bridge knot, 
unknotting numbers 

INTRODUCTION 

The theory of knots is a combination of geometry and topology whose 
fundamental object is a mathematical knot. Knots are notable mathematical 
objects, present far and wide around us, beneficial to anchor boats and to tie 
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our shoe laces.  The core of knot theory is to distinguish like and unlike 
knots. To serve this purpose,  a knot invariant is assigned to a knot that may 
be just a number like the crossing number, the unknotting number, the 
bridge number of a knot or a complicated polynomial like jones polynomial, 
Alexander polynomial, and m-polynomial  (see [1, 2] for further detail).  

The association of knot theory to molecular biology is initiated by the 
realization of a double helical structure of DNA.  The revelation of the 
model of DNA as a rational knot [3] straightened out the road to the 
mathematical study of DNA. The long-chain double helix of DNA is 
regulated naturally by limiting it to specific proteins named histones that 
assist in DNA supercoiling. The model of supercoiled DNA over histones 
is baptized as beads-on-a-string. The tightly knotted DNA is packed into 
chromosomes that reside in the nucleus of a cell. DNA carries all the 
instructions necessary for an organism to survive, reproduce, and maintain 
its uniqueness. The key functions of DNA in the cell include: 

• Replication: by which copies of DNA are generated in the process of 
cell division [4] 

• Transcription: in which coded information on DNA is decoded [4] 
• Recombination: in which DNA pieces are split and realigned to 

generate new combinations for  genetic diversity [5] 
• Sequencing:  refers to some laboratory techniques for pattern 

recognition of bases in DNA [6] 
The unwinding of tightly packed DNA is a prerequisite for above 

mentioned cellular functions of DNA. The enzyme topoisomerase type-I 
(type-II) serves the un-entanglement of DNA by cleaving one (two resp.) 
strands of double helix and permitting these strands to go through a cleavage 
point before rejoining [7]. This enzyme action that catalyzes every process 
involving DNA, can be referred to unknotting operation in the tangle model 
of DNA and the least number of such enzyme actions to unknot supercoiled 
DNA gives an unknotting number of DNA knots. During the phenomenon 
of DNA unwinding, there are chances of enzyme failure to perform an 
unknotting operation. The fault-tolerant unknotting number (see definition 
2. 4) is a minimum number of enzyme failures that the system can bear and 
still unknot DNA. The fault-tolerant unknotting set refers to the group of 
enzymes that are able to unknot DNA even if an enzyme fails to perform its 
action at some site in DNA. In 1954 and 1956, Schubert [8, 9] put forward 
the notion of knots by assigning a rational number to each member of the 
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family. By a continued fraction of that rational number, the canonical form 
or two-bridge form of the rational knot was procured. The connection 
between the tangle model of DNA as a rational knot and the two-bridge 
form of a rational knot attracted many researchers to explore this family of 
knots. Later in 1998, Torisu worked to probe those two-bridge knots whose 
Gordian distance is one [10]. Besides exploring the geometry of two-bridge 
knots, many authors like Hartley and Kanenobu worked on polynomial 
invariants of two-bridge knots [11, 12]. In 2004, Wit computed number of 
two-bridge knots up to 16 crossings [13] and an analogous result for two-
bridge links were proved by Demir [14].  

In this paper, the researcher tried to explore the family of two-bridge 
knots for a new invariant of knots, named fault-tolerant unknotting number, 
introduced in [15]. The authors pose the following conjectures in [15]. 
1. Every knot diagram has a fault-tolerant set (strong version). 
2. Every knot has a diagram with a fault-tolerant set (weak version). 

In [15], the authors computed and compared the unknotting number and 
the fault-tolerant unknotting number for several knots and knot families and 
concluded that unknotting number is always less than the proposed fault-
tolerant unknotting number. In the same article the authors also proved that 
the fault-tolerant unknotting number is a knot invariant as it distinguishes 
between the like and unlike knots. For example, according to Table 1 in 
[15], the trefoil knot 31 and the knot 77 having the same unknotting number 
one, have fault-tolerant unknotting numbers 2 and 3, respectively. As a 
result, fault-tolerant unknotting number serves as a strong knot invariant 
than unknotting number as it distinguishes knots having the same 
unknotting number. Brainstorming to solve the above said conjectures lead 
to introducing and proving the existence of two new variants, named the 
weak fault-tolerant number 𝑤𝑤𝑤𝑤(𝐾𝐾) and the restricted fault-tolerant number 
𝑟𝑟𝑟𝑟(𝐾𝐾) in which the previous definition of the fault-tolerant unknotting 
number for a classical knot 𝐾𝐾 was altered [16].   

The remaining paper is organized as; section 2 comprises some 
introductory notions and the formation of rational knots from the tangle. In 
section 3, new results about fault-tolerance of some subfamilies of two-
bridge knots are stated and proved. Section 4 provides an interpretation of 
the fault-tolerant numbers from a biological perspective and section 5 
comprises of the conclusion. 
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2. ESSENTIAL CONCEPTS 
A review of some precursory conceptions of knot theory is stated in this 
section from [1]. Let 𝐾𝐾 represent a knot, 𝐷𝐷 be the representation of a 
diagram of a knot, and 𝐶𝐶(𝐷𝐷) be the set of all crossings of 𝐷𝐷.  

Definition 2.1. [1] An unknotting operation or crossing switch in D involves 
changing an over-crossing to an under-crossing or vice versa. For a knot 
diagram 𝐷𝐷, an unknotting set 𝑈𝑈 is a subset of 𝐶𝐶(𝐷𝐷) such that by switching 
the crossings in 𝑈𝑈,𝐷𝐷 transforms into the un-knot.  
Definition 2.2. [1] The cardinality of the smallest unknotting set is the 
unknotting number 𝑢𝑢(𝐷𝐷) of 𝐷𝐷. The unknoting number of a knot 𝐾𝐾 is defined 
as 𝑢𝑢(𝐾𝐾) = min{|𝑢𝑢(𝐷𝐷)|: [𝐷𝐷] = 𝐾𝐾} 

Where [D] denotes the class of all diagrams representing  𝐾𝐾. 
Definition 2.3. [17] A minimal knot diagram is one that cannot be drawn 
with fewer crossings.  

Definition 2.4. [15] A fault-tolerant unknotting set 𝑊𝑊 is an unknotting set 
for which the set 𝑊𝑊 ∖ {𝑤𝑤} is still an unknotting set for each w ∈ W. The 
fault-tolerant unknotting number t(D) of a knot diagram is the minimum 
cardinality of a fault-tolerant unknotting set. 

Definition 2.5. [16]  𝐴𝐴 set W ⊆ C(D) is called a weak fault tolerant set if 
for each w ∈ W, W ∖ {w} contains an unknotting set. 

Definition 2.6. [16] The weak fault-tolerant number wt (D) of a diagram  D 
and wt (K) for a knot K are defined in the following manner: 

 wt(D) = min{|W|: W ⊆ C(D), W is a weak fault -tolerant set }  
And  

𝑤𝑤𝑤𝑤(𝐾𝐾) = min {𝑤𝑤𝑤𝑤(𝐷𝐷): [𝐷𝐷] = 𝐾𝐾} 

Definition 2.7. [16]  A non-unknotting set R ⊆ C(D) is called restricted 
fault-tolerant set if for each r ∈ R, R ∖ {r} contains an unknotting set. 

Definition 2.8. [16] The restricted fault-tolerant number rt(D) for a diagram 
D and rt(K) for a knot K is defined as follows:  

𝑟𝑟𝑟𝑟(𝐷𝐷) = min{|𝑅𝑅|:𝑅𝑅 ⊆ 𝐶𝐶(𝐷𝐷),𝑅𝑅 is a restricted fault-tolerant set}. 
and 



Hussain et al. 

113 School of Science 
Volume 6 Issue 4, December 2022 

𝑟𝑟𝑟𝑟(𝐾𝐾) = min{𝑟𝑟𝑟𝑟(𝐷𝐷): [𝐷𝐷] = 𝐾𝐾} 

Theorem 2.1: [16] If 𝑢𝑢(𝐾𝐾) = 1 for a knot 𝐾𝐾 such that 𝐷𝐷 is a diagram of 𝐾𝐾 
with at least two unknotting sets of cardinality 1, then wt(K) = 2. 
Otherwise, wt(K) = 3 

From now onward, both the weak fault-tolerant number and the 
restricted fault-tolerant number would be collectively termed as fault-
tolerant number.  
Remark: It is worth mentioning here that every fault-tolerant unknotting 
set is an unknotting set but the converse is not necessarily true. Unlike a 
fault-tolerant unknotting set, the fault-tolerant sets (both weak and 
restricted) are not necessarily unknotting. A weak fault-tolerant set may be 
unknotting, therefore, each fault-tolerant unknotting set is also a weak fault-
tolerant set but a restricted fault-tolerant set must be strictly non-unknotting. 
Furthermore, it was observed that each restricted fault-tolerant set is also a 
weak fault-tolerant set [16]. 

2.1 Rational Knot and Conway Form of a Knot 
The Conway notation for a knot is defined by J. H. Conway [18]. This 
notation for a knot K is (c1, c2, c3, … , cn), composed of n components ci, for 
all i, where ci is a portion of knot termed as tangle. A tangle is a specific 
fragment of a knot that, when encircled in the projection plane, intersects 
the circle at four points necessarily. For visual representation of a tangle, 
assume two strings attached to the inside of a sphere that can slide around 
the boundary of the sphere. When strings are in horizontal position and do 
not cross each other, they are forming the zero tangle and strings in vertical 
position without crossing form the ∞-tangle. These strings can be twisted 
horizontally as well as vertically and a combination of alternating sequence 
of horizontal and vertical twists starting with horizontal twists, would tangle 
up to give a rational tangle that corresponds to a rational number. The 
rational number associated with a rational tangle comes from a continued 
fraction. The rule of writing a continued fraction is as follows:  

• If the last twist is vertical then the continued fraction is: 
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0 +  
1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1

𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ⋯+ 1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

• When the last twist is horizontal then the continued fraction is: 

 
1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1

𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ⋯+ 1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

For example, the tangle with two horizontal and three vertical twists is 
represented by (2, 3) and the resulting fraction is: 

0 +  
1

3 + 1
2

=
2
7

 

But if we have two horizontal, three vertical and four horizontal twists, 
the tangle is (2, 3, 4) and the resulting fraction is:  

4 +  
1

3 + 1
2

=
30
7

 

The numerator closure of a rational tangle (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑛𝑛) ultimately 
yields a knot diagram in Conway notation as shown in Figure 1 where 
𝐶𝐶(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑛𝑛) is a rational knot obtained by numerator closure of a 
tangle composed of 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑛𝑛 twists. The Conway notation (or 
Conway diagram) of a knot has a minimal number of crossings, and it is 
unique among all diagrams of a knot (see [1] for further detail).  Rational 
knots and rational links were first considered in [19, 20] and are a way of 
classifying knots and links by a rational number according to following 
theorem. 
Theorem 2.2. [3] Two rational tangles are isotopic if they have the same 
fraction. 

2.2 Two-Bridge Knot 
In this section, two-bridge knots using Conway notation are defined as 
rational knots depicted in the Figure 1 and Figure 2. In this form, any two-



Hussain et al. 

115 School of Science 
Volume 6 Issue 4, December 2022 

bridge knot or link is represented as 𝐶𝐶(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑛𝑛), where 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, 
… ,𝑎𝑎𝑛𝑛 are non-zero integers representing tangles whose numerator closure 
is the resulting two-bridge knot. In Conway form 𝐶𝐶(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , 𝑎𝑎𝑛𝑛), the 
continued fraction made up of 𝑎𝑎1, 𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑛𝑛 results a rational number 𝛼𝛼

𝛽𝛽
 

which is the slope of presentation 𝐶𝐶(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , 𝑎𝑎𝑛𝑛). 

 
Figure 1.  When n is odd 

 
Figure 2. When n is even 
The slope of a two-bridge knot is: 

𝑎𝑎1 +
1

𝑎𝑎2 + 1
𝑎𝑎3 + 1

𝑎𝑎4 + 1
𝑎𝑎5  + ⋯+ 1

𝑎𝑎𝑛𝑛

=
𝛼𝛼
𝛽𝛽

 

When 𝛼𝛼 is even, 𝐶𝐶(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑛𝑛) is a two-bridge link and for odd 𝛼𝛼, 
𝐶𝐶(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑛𝑛) is a two-bridge knot.  The instigation conducted to 
explore the family of two-bridge knots lead to the existence of fault-tolerant 
unknotting set for some subfamilies. Furthermore, the existence of 
restricted fault-tolerant unknotting number is asserted for two special 
subfamilies of two-bridge knots: the family 𝐶𝐶(𝑎𝑎,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑘𝑘, ±2, - 
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𝑎𝑎𝑘𝑘−1, … ,−𝑎𝑎2,−𝑎𝑎1) with unknotting number 1 and the family 𝐶𝐶(2𝑛𝑛, 3) 
whose unknotting number is 𝑛𝑛 [21]. 

3. NEW RESULTS 
The family of two-bridge knots in Conway notation for fault-tolerant 
unknotting sets is explored in this section. Depending on values of 𝑛𝑛 
and 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , 𝑎𝑎𝑛𝑛, the researcher explored the following subfamilies of 
two-bridge knots. 

3.1 The Family 

𝐶𝐶(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑛𝑛) with 𝑎𝑎1 odd and 𝑎𝑎𝑖𝑖′𝑠𝑠 even for all 𝑖𝑖 ≥ 2 here, we take 
two-bridge knots of the form 𝐶𝐶 (2𝑚𝑚1 + 1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛), for some 
integers  𝑚𝑚1,𝑚𝑚2,𝑚𝑚3, … ,𝑚𝑚𝑛𝑛. For  𝑛𝑛, we have the following cases: 

Case 1: When n is odd  
For odd n, we have a two-bridge knot of the form shown in Figure 1.  

Theorem 3.1. The set 𝑉𝑉 consisting of alternating crossings (see Figure 3) 
in 𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛 ) such that: 

|𝑉𝑉| =
(2𝑚𝑚1 + 1) + 1

2
+

2𝑚𝑚2

2
+

2𝑚𝑚3

2
+ ⋯+

2𝑚𝑚𝑛𝑛

2
 

Is a fault-tolerant unknotting set of (2𝑚𝑚1 + 1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛 ). 
Proof: Firstly, it is essential to prove that every subset of the set V with 
cardinality |V|-1 is an unknotting set. For this there are following 
possibilities: 

• For some  𝑐𝑐 in the tangle 2𝑚𝑚1 + 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we 
get Figure 5(a) which is unknot. 

• For some 𝑐𝑐 in the tangle 2𝑚𝑚𝑖𝑖 , 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} 
crossings, we get Figure 5 (b) which is unknot. 

• For some  𝑐𝑐 in the tangle 2𝑚𝑚𝑛𝑛, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get 
Figure 5 (c) which is unknot. 

Therefore, it was concluded that every subset of the set 𝑉𝑉 with 
cardinality | 𝑉𝑉 |-1 is an unknotting set. Moreover, no set with the cardinality 
less than | 𝑉𝑉 |-1 is an unknotting set for the knot 𝐶𝐶(2𝑚𝑚1 +
1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛) because this knot is an alternating knot consisting of 
an odd tangle and n-1 even tangles and by switching one crossing, two 
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adjacent crossings in a tangle vanish. As a result, it is necessary to switch at 
least | 𝑉𝑉 |-1 crossings to get  unknot. The set 𝑉𝑉 is a fault-tolerant unknotting 
set for  𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛) because: 

• 𝑉𝑉 is an unknotting set as by switching all crossings in  𝑉𝑉, we get unknot 
(see Figure 4) 

• 𝑉𝑉 is a fault-tolerant unknotting set because 𝑉𝑉 ∖ {𝑐𝑐} is an unknotting set 
for every 𝑐𝑐 ∈ 𝑉𝑉. 

Consequently, 𝑉𝑉 is fault-tolerant unknotting set for 𝐶𝐶(2𝑚𝑚1 +
1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛). 

 
Figure 3. Choosing alternating crossings to be switched 

 
Figure 4. Switching circled crossings yields unknot 

Case 2: When 𝑛𝑛 is even 
For even n, we have two-bridge knot of the form shown in Figure 2.  

Theorem 3.2. The set 𝑉𝑉 consisting of alternating crossings (see Figure 3) 
in  𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛 ) such that: 

|𝑉𝑉| =
(2𝑚𝑚1 + 1) + 1

2
+

2𝑚𝑚2

2
+

2𝑚𝑚3

2
+ ⋯+

2𝑚𝑚𝑛𝑛

2
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is a fault-tolerant unknotting set of  𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛 ). 
Proof:  Firstly, we need to prove that every subset of the set V with 
cardinality |V|-1 is an unknotting set. There are following possibilities: 

• For  some  𝑐𝑐 in the tangle 2𝑚𝑚1 + 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings,   it 
was obtained from Figure 5 (e) which is unknot. 

• For  some  𝑐𝑐 in the tangle 2𝑚𝑚𝑖𝑖 , 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} 
crossings, it was obtained from Figure 5 (f) which is unknot. 

• For some  𝑐𝑐 in the tangle 2𝑚𝑚𝑛𝑛, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, it was 
obtained from Figure 5 (d) which is unknot. 

 Hence, it was concluded that every subset of the set 𝑉𝑉 with cardinality 
| 𝑉𝑉 |-1 is an unknotting set. Moreover, no set with the cardinality less than 
| 𝑉𝑉 |-1 is an unknotting set for the knot 𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛) 
because this knot is an alternating knot consisting of an odd tangle and n-1 
even tangles and by switching one crossing, two adjacent crossings in a 
tangle vanish. As a result, it is necessary to switch at least | 𝑉𝑉 |-1 crossings 
to get  unknot. The set 𝑉𝑉 is a fault-tolerant unknotting set for  𝐶𝐶(2𝑚𝑚1 +
1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛) because: 

• 𝑉𝑉 is an unknotting set as by switching all crossings in  𝑉𝑉, we get unknot 
(see Figure 5(d)) 

• 𝑉𝑉 is a fault-tolerant unknotting set because 𝑉𝑉 ∖ {𝑐𝑐} is an unknotting set 
for every 𝑐𝑐 ∈ 𝑉𝑉 

Consequently, 𝑉𝑉 is fault-tolerant unknotting set for 𝐶𝐶(2𝑚𝑚1 +
1,2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛). 

  
Figure 5.  Unknots  
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3.2 The Family 𝑪𝑪(𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐,𝒂𝒂𝟑𝟑, … ,𝒂𝒂𝒏𝒏) with 𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐 Even, 𝒂𝒂𝟑𝟑 Odd and 𝒂𝒂𝒊𝒊′𝒔𝒔 
Even for All 𝟑𝟑 < 𝒊𝒊 ≤ 𝒏𝒏 

Here, two-bridge knots of the form 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 1,2𝑚𝑚4, … ,2𝑚𝑚𝑛𝑛) 
for some integers  𝑚𝑚1,𝑚𝑚2,𝑚𝑚3, … ,𝑚𝑚𝑛𝑛.For  𝑛𝑛, we have following cases: 

Case 1: When 𝑛𝑛 is odd 
For odd n, we have two-bridge knot of the form shown in Figure 1.  

Theorem 3.3. The set 𝑉𝑉 consisting of alternating crossings (see Figure 3) 
in 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) such that: 

|𝑉𝑉| =
2𝑚𝑚1

2
+

2𝑚𝑚2

2
+

(2𝑚𝑚3 + 1) + 1
2

+ ⋯+
2𝑚𝑚𝑛𝑛

2
 

Is a fault-tolerant unknotting set of  𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛). 
Proof: Firstly, we need to prove that every subset of the set V with 
cardinality |V|-1 is an unknotting set. For this we have following 
possibilities: 

• For some  𝑐𝑐 in the tangle 2𝑚𝑚1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get 
Figure 6 (b) which is unknot. 

• For some  𝑐𝑐 in the tangle 𝑎𝑎𝑖𝑖 , 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} 
crossings, we get Figure 6 (c) which is unknot. 

• For some  𝑐𝑐 in the tangle 2𝑚𝑚𝑛𝑛, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get 
Figure 6 (b) which is unknot. 

By above arguments, it is concluded that every subset of the set 𝑉𝑉 with 
cardinality | 𝑉𝑉 |-1 is an unknotting set. Moreover, no set with the cardinality 
less than | 𝑉𝑉 |-1 is an unknotting set for the knot 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 
1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) because this knot is an alternating knot consisting of an odd 
tangle and n-1 even tangles and by switching one crossing, two adjacent 
crossings in a tangle vanish. As a result it is necessary to switch at least | 𝑉𝑉 
|-1 crossings to get  unknot. The set 𝑉𝑉 is a fault-tolerant unknotting set 
for  𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) because: 

• 𝑉𝑉 is an unknotting set as by switching all crossings in 𝑉𝑉, we get unknot 
(see Figure 6 (a)) 

• 𝑉𝑉 is fault-tolerant unknotting set as 𝑉𝑉 ∖ {𝑐𝑐} is an unknotting for 
every 𝑐𝑐 ∈ 𝑉𝑉 



On the Existence of Fault-Tolerant... 

120 
Scientific Inquiry and Review 

Volume 6 Issue 4, December 2022 
 

• Thus, 𝑉𝑉 is fault-tolerant unknotting set for 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 
1,2𝑚𝑚1 … ,2𝑚𝑚𝑛𝑛). 

Case 2: When n is even 

For even  n, we have a two-bridge knot of the form shown in Figure 2.  

Theorem 3.4.  The set 𝑉𝑉 consisting of alternating crossings (see Figure 3) 
in 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 1, 2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛 ) such that: 

|𝑉𝑉| =
2𝑚𝑚1

2
+

2𝑚𝑚2

2
+

(2𝑚𝑚3 + 1) + 1
2

+ ⋯+
2𝑚𝑚𝑛𝑛

2
 

is a fault-tolerant unknotting set for 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 1, 2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛 ).  

 
Figure 6. Unknots 

Table 1:  Number of 𝑎𝑎𝑖𝑖′𝑠𝑠 after 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 for even and odd values of n  

N ɑ1 ɑ2 ɑ3 ɑ4 ɑ5 ɑ6 ɑ7 ɑ8 

4 E O O E … … … … 

5 E O O E E … … … 

6 E O O E E E … … 

7 E O O E E E E … 
8 E O O E E E E E 
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Proof:  Firstly, it is required to prove that every subset of the set V with 
cardinality |V|-1 is an unknotting set. For this we have following 
possibilities: 

• For some  𝑐𝑐 in tangle 2𝑚𝑚1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get 
Figure 6 (e) which is unknot. 

• For some  𝑐𝑐 in tangle 𝑎𝑎𝑖𝑖 , 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} 
crossings, we get Figure 6 (d) which is unknot. 

• For some  𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2𝑚𝑚𝑛𝑛, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get 
Figure 6 (f) which is unknot. 

By above arguments, it was concluded that every subset of the set 𝑉𝑉 
with cardinality | 𝑉𝑉 |-1 is an unknotting set. Moreover, no set with the 
cardinality less than | 𝑉𝑉 |-1 is an unknotting set for the knot 
𝐶𝐶 (2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) because this knot is an alternating 
knot consisting of an odd tangle and n-1 even tangles and by switching one 
crossing, two adjacent crossings in a tangle vanish. As a result, it was 
necessary to switch at least | 𝑉𝑉 |-1 crossings to get unknot. The set 𝑉𝑉 is a 
fault-tolerant unknotting set for  𝐶𝐶 (2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 +
1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) because: 

• 𝑉𝑉 is an unknotting set as by switching all crossings in 𝑉𝑉, we get unknot 
(see Figure 6 (a)). 

• 𝑉𝑉 is fault-tolerant unknotting set as 𝑉𝑉 ∖ {𝑐𝑐} is an unknotting for 
every 𝑐𝑐 ∈ 𝑉𝑉. 

Thus, 𝑉𝑉 is fault-tolerant unknotting set for 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 + 
1,2𝑚𝑚1 … ,2𝑚𝑚𝑛𝑛). 

3.3 The Family 𝑪𝑪(𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐,𝒂𝒂𝟑𝟑, … ,𝒂𝒂𝒏𝒏) with 𝒂𝒂𝟏𝟏 Even, 𝒂𝒂𝟐𝟐,𝒂𝒂𝟑𝟑 Odd and 𝒂𝒂𝒊𝒊′𝒔𝒔 
Even for All 𝟒𝟒 ≤ 𝒊𝒊 ≤ 𝒏𝒏 

Here, we take two-bridge knots of the form 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2 + 1,2𝑚𝑚3 +
1,2𝑚𝑚4, … ,2𝑚𝑚𝑛𝑛) for some integer𝑠𝑠 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3, … ,𝑚𝑚𝑛𝑛. For 𝑛𝑛, we have 
following cases: 

Case 1: When 𝒏𝒏 is odd 

For odd  n, we have two-bridge knot of the form shown in Figure 1. For 
odd  𝑛𝑛, number of 𝑎𝑎𝑖𝑖′𝑠𝑠 after 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 must be even. This can be seen in 
Table 1 for odd values of 𝑛𝑛. In Table 1, E stands for even and O stands for 
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odd. We choose set 𝑉𝑉 consisting of crossings chosen in the following 
manner: 

In 𝑎𝑎1, choose first two consecutive crossings and then alternating 
crossings as shown in Figure 7 (a). 

In 𝑎𝑎𝑖𝑖 , 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, choose alternating crossings in sequence with 𝑎𝑎1 
as shown in Figure 7(b). In  𝑎𝑎𝑛𝑛, choose second and third crossing and then 
alternating crossings as shown in Figure 7 (c). 

Theorem 3.5.  𝑉𝑉 choosen in the way described above is a fault-tolerant 
unknotting set for 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2 + 1,2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) 

Proof:  𝑉𝑉 is an unknotting set as by switching all crossings in 𝑉𝑉, we get 
unknot (see Figure 8 (a)). 

For 𝑉𝑉 to be fault-tolerant unknotting set, 𝑉𝑉 ∖ {𝑐𝑐} must be unknotting for 
every 𝑐𝑐 ∈ 𝑉𝑉 and we have following possibilities: 

• For  𝑐𝑐 ∈ 2𝑚𝑚1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get Figure 8 (b) 
which is unknot. 

• For  𝑐𝑐 ∈ 𝑎𝑎𝑖𝑖 , 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get 
Figure 8 (c) which is unknot. 

• For  𝑐𝑐 ∈ 2𝑚𝑚𝑛𝑛, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get Figure 8 (d) 
which is unknot. 

 
Figure 7. (a) In  𝑎𝑎1, circled crossings switched (b) In 𝑎𝑎2 to 𝑎𝑎𝑛𝑛−1, circled 
crossings switched (c) In 𝑎𝑎𝑛𝑛, circled crossings switched 
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In all possibilities, 𝑉𝑉 ∖ {𝑐𝑐} is an unknotting set. By above arguments, we 
concluded that every subset of the set 𝑉𝑉 with cardinality | 𝑉𝑉 |-1 is an 
unknotting set. Moreover, no set with the cardinality less than | 𝑉𝑉 |-1 is an 
unknotting set for the knot 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2 + 1,2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) 
because this knot is an alternating knot consisting of an odd tangle and n-1 
even tangles and by switching one crossing, two adjacent crossings in a 
tangle vanish. As a result it is necessary to switch at least | 𝑉𝑉 |-1 crossings 
to get an unknot. Consequently, 𝑉𝑉 is a fault-tolerant unknotting set 
for 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2 + 1,2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛). 
Case 2: When n is even 

 
Figure 8. Unknots 

For even n, we have two-bridge knot of the form shown in Figure 2. 
For even 𝑛𝑛, number of 𝑎𝑎𝑖𝑖′𝑠𝑠 after 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 must be odd, this can be seen in 
the Table 1 for even values of 𝑛𝑛. We choose a set 𝑉𝑉 consisting of crossings 
choosen in the following manner: 

In  𝑎𝑎1, choose first two alternating crossings as shown in Figure 9 (a). 
In 𝑎𝑎2 and 𝑎𝑎3, choose first two consecutive crossings and then alternating 
crossings as shown in Figure 9 (b). In 𝑎𝑎𝑖𝑖 , 4 ≤ 𝑖𝑖 ≤ 𝑛𝑛, choose alternating 
crossings in sequence starting from 𝑎𝑎4. 

Theorem 3.6. 𝑉𝑉 choosen in the way described above is fault-tolerant 
unknotting set for 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2 + 1,2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) 

Proof: 𝑉𝑉 is an unknotting set as by switching all crossings in 𝑉𝑉 (Figure 10 
(a)), we get an unknot. For 𝑉𝑉 to be fault-tolerant unknotting set, 𝑉𝑉 ∖ {𝑐𝑐} 
must be unknotting for every 𝑐𝑐 ∈ 𝑉𝑉 and we have following possibilities. 

• For 𝑐𝑐 ∈ 2𝑚𝑚1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get Figure 10 (b) 
which is unknot. 
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• For 𝑐𝑐 ∈ 𝑎𝑎2 and 𝑎𝑎3, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get Figure 
10 (a) which is unknot. 

 
Figure 9. (a) In  𝑎𝑎1, circled crossings switched (b) In 𝑎𝑎2 and 𝑎𝑎3, circled 
crossings switched 
• For 𝑐𝑐 ∈ 𝑎𝑎𝑖𝑖 , 4 ≤ 𝑖𝑖 ≤ 𝑛𝑛, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get Figure 10 

(c) which is unknot. 

In all possibilities, 𝑉𝑉 ∖ {𝑐𝑐} is an unknotting set. Consequently, 𝑉𝑉 is fault-
tolerant unknotting set for 𝐶𝐶 (2𝑚𝑚1, 2𝑚𝑚2 + 1,2𝑚𝑚3 + 1,2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛). 

 
Figure 10. Unknots 

3.4 The Family 𝑪𝑪(𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐,𝒂𝒂𝟑𝟑, … ,𝒂𝒂𝒏𝒏) When All 𝒂𝒂𝒊𝒊′𝒔𝒔 are Even 

Here, we take two-bridge knots of the form 
𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3, 2𝑚𝑚4, … ,2𝑚𝑚𝑛𝑛) for some integer𝑚𝑚1,𝑚𝑚2,𝑚𝑚3, … ,𝑚𝑚𝑛𝑛. 
For 𝑛𝑛, we have following cases: 

Case 1: When 𝑛𝑛 is even 

For even n, we have two-bridge knot of the form shown in Figure 2.  
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Theorem 3.7. A set 𝑉𝑉 consisting of alternating crossings (see Figure 3) in 
𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛) such that: 

|𝑉𝑉| =
2𝑚𝑚1

2
+

2𝑚𝑚2

2
+

2𝑚𝑚3

2
+ ⋯+

2𝑚𝑚𝑛𝑛

2
 

Is a fault-tolerant tolerant unknotting set for  𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛). 
Proof: Firstly, we need to prove that every subset of the set V with 
cardinality |V|-1 is an unknotting set. For this we have following 
possibilities: 

• For some  𝑐𝑐 in the tangle 2𝑚𝑚1, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get  
unknot. 

• For some  𝑐𝑐 in the tangle 𝑎𝑎𝑖𝑖 , 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, by switching 𝑉𝑉 ∖ {𝑐𝑐} 
crossings, we get  unknot. 

• For some  𝑐𝑐 in the tangle 2𝑚𝑚𝑛𝑛, by switching 𝑉𝑉 ∖ {𝑐𝑐} crossings, we get  
unknot. 

With the above arguments, we concluded that every subset of the set 𝑉𝑉 
with cardinality | 𝑉𝑉 |-1 is an unknotting set. Moreover, no set with the 
cardinality less than | 𝑉𝑉 |-1 is an unknotting set for the knot 
𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 , 2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) because this knot is an alternating knot 
consisting of an odd tangle and n-1 even tangles and by switching one 
crossing, two adjacent crossings in a tangle vanish. As a result, it is 
necessary to switch at least | 𝑉𝑉 |-1 crossings to get  unknot. The set 𝑉𝑉 is a 
fault-tolerant unknotting set for  𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3, 2𝑚𝑚4 … ,2𝑚𝑚𝑛𝑛) because: 

• 𝑉𝑉 is an unknotting set as by switching all crossings in 𝑉𝑉, we get unknot. 
• 𝑉𝑉 is fault-tolerant unknotting set as 𝑉𝑉 ∖ {𝑐𝑐} is an unknotting for 

every 𝑐𝑐 ∈ 𝑉𝑉. 

Thus, 𝑉𝑉 is fault-tolerant unknotting set for 𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3 
, 2𝑚𝑚1 … ,2𝑚𝑚𝑛𝑛). 

Case 2: When 𝑛𝑛 is odd 

For odd n, we have two-bridge links of the form 
𝐶𝐶(2𝑚𝑚1, 2𝑚𝑚2, 2𝑚𝑚3, … ,2𝑚𝑚𝑛𝑛) whose fault-tolerance would be interesting to 
be discussed in future.  The prime focus in this article is on the existence of 
fault-tolerant unknotting set of two-bridge knots. 
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3.5 The Family 𝑪𝑪(𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐,𝒂𝒂𝟑𝟑, … ,𝒂𝒂𝒏𝒏) When All 𝒂𝒂𝒊𝒊′𝒔𝒔 are Odd 

Here, we take two-bridge knots of the form 𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2 + 1,2𝑚𝑚3 +
1,2𝑚𝑚4 + 1, … ,2𝑚𝑚𝑛𝑛 + 1) for some integers 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3, … ,𝑚𝑚𝑛𝑛. For 𝑛𝑛, we 
have following cases: 

Case 1: When 𝑛𝑛 = 2,5,8,11,14,17, … 

For these values of  𝑛𝑛, we get a two-bridge link of the form 
𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2 + 1,2𝑚𝑚3 + 1,2𝑚𝑚4 + 1, … ,2𝑚𝑚𝑛𝑛 + 1 ). 

Case 2: When  𝑛𝑛 = 1  

We have family 𝐶𝐶(2𝑚𝑚1 + 1) for which set of alternating crossings is a 
fault-tolerant unknotting set. 

Case 3: When  𝑛𝑛 = 3  

We have family 𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2 + 1,2𝑚𝑚3 + 1) for which set of alternating 
crossings is a fault-tolerant unknotting set. 

Case 4: When  𝑛𝑛 = 4 

We have family 𝐶𝐶(2𝑚𝑚1 + 1,2𝑚𝑚2 + 1,2𝑚𝑚3 + 1,2𝑚𝑚4 + 1) for which we 
have a fault-tolerant unknotting set consisting of crossings choosen in the 
following manner. In  𝑎𝑎1, first two consecutive crossings then alternating 
crossings �𝑎𝑎1

2
+ 1 crossings). In 𝑎𝑎2,𝑎𝑎3, starting from second crossing and 

then choosing alternating crossings �𝑎𝑎2−1
2

+ 𝑎𝑎3−1
2

 crossings)  
In 𝑎𝑎4, first two consecutive crossings then alternating crossings ( 𝑎𝑎1

2
+ 1 

crossings). Similarly, for other values of 𝑛𝑛, this subfamily be explored for 
fault-tolerance. 

3.6 The Family 𝑪𝑪(𝒂𝒂,𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐,𝒂𝒂𝟑𝟑, … ,𝒂𝒂𝒌𝒌, ±𝟐𝟐,−𝒂𝒂𝒌𝒌, … ,−𝒂𝒂𝟐𝟐,−𝒂𝒂𝟏𝟏) 
In 1972, Good Rick proved that every two-bridge knot is alternating [22]. 
In 1986, Kanenobu and Murakami explored a subfamily of two-bridge 
knots shown in Figure 11 and Figure 12 whose unknotting number is one 
[23] and proved that this family has Conway notation 
𝐶𝐶(𝑎𝑎, 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , ak ± 2,−𝑎𝑎𝑘𝑘 ,−𝑎𝑎𝑘𝑘−1, … ,−𝑎𝑎2,−𝑎𝑎1) [1, 18]. An 
analogous result for two-bridge links of unlinking number one was 
demonstrated by Peter Kohn [24] in 1991. Apparently, the 
family 𝐶𝐶(𝑎𝑎,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , ak, ±2,−𝑎𝑎𝑘𝑘 ,−𝑎𝑎𝑘𝑘−1, … ,−𝑎𝑎2,−𝑎𝑎1 ) of two-bridge 
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knots is non-alternating. So, this was paradox to the result of Good Rick 
[22]. This apparent paradox was resolved by Nakanishi in [25] when he 
rearranged non-alternating diagram of this subfamily to alternating diagram 
by Reidemeister moves only [1]. 
Theorem 3.8. The weak and restricted fault-tolerant number for the family 
𝐶𝐶(𝑎𝑎, 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , ak, ±2,−𝛼𝛼𝑘𝑘,−𝛼𝛼𝑘𝑘−1, … ,−𝑎𝑎2,−𝑎𝑎1) is 2. 

Proof:  When each crossing in the section ±2 of 
𝐶𝐶(𝑎𝑎, 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … , ak, ±2,−𝛼𝛼𝑘𝑘,−𝛼𝛼𝑘𝑘−1, … ,−𝑎𝑎2,−𝑎𝑎1) is switched (not 
both), this two-bridge knot is untangled to unknot. So, it has two unknotting 
sets of cardinality 1. By theorem 1, weak fault-tolerant number of this 
family is 2. Furthermore, when both crossings in the section ±2 are 
switched together, this knot diagram is not untangled. So, we get a restricted 
fault-tolerant set of cardinality 2 for this family of two-bridge knots. 

 
Figure 11. When k is odd  

 
Figure 12. When k is even 
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3.7 The Family 𝑪𝑪(𝟐𝟐𝒏𝒏,𝟑𝟑) 

Theorem 3.9. The family 𝐶𝐶(2𝑛𝑛, 3)  of two-bridge knots has restricted fault-
tolerant unknotting number 𝑛𝑛 + 1. 

Proof: 𝐶𝐶(2𝑛𝑛, 3) shown in Figure 13 is a family of two-bridge knots. The 
unknotting number of  𝐶𝐶(2𝑛𝑛, 3) is 𝑛𝑛 because by switching one crossing in 
the tangle 2𝑛𝑛 of 𝐶𝐶(2𝑛𝑛, 3), two adjacent crossings are destroyed. This 
implies that at least 𝑛𝑛 crossings must be switched to destroy 2𝑛𝑛 crossings 
and consequently, the unknotting number is 𝑛𝑛. Moreover, in tangle 2𝑛𝑛, 
every set of cardinality 𝑛𝑛 is an unknotting set and every set of cardinality 
𝑛𝑛 + 1 in 2𝑛𝑛 is a non-unknotting set. This implies that this family has 
restricted fault-tolerant set of cardinality 𝑛𝑛 + 1. 

 
Figure 13. C (2n, 3) 

4. BIOLOGICAL EXPOSITION OF FAULT-TOLERANCE IN 
KNOTS 

The contribution of DNA topoisomerases in numerous cellular activities 
made their working pattern fascinating and stimulates one to explore their 
catalytic exertion for instance, as a successful therapeutic source in 
anticancer drugs [26]. Every topological readjustment of DNA for instance, 
unraveling of supercoiled DNA, transcription, recombination, and 
catenation-decatenation, initiated by un-entanglement of its complicated 
structure. DNA topoisomerases type-I (type-II) accomplished this task by 
cleaving one (two resp.) strands and permitting strands to go through 
cleavage before rejoining [27]. Adenosine triphosphate (ATP), 
manufactured in mitochondria of every cell is an energy-bank of living 
cells. For all key biological functions, including nerve impulse 
transmission, muscle contraction and protein synthesis, ATP fuels every 
process in cells [28]. The enzymatic activity in DNA is also ATP-based.  
Every time enzymes topoisomerase II act to unknot DNA, it consumes 
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energy from ATP. The more number of enzyme actions means more energy 
consumption from ATP. The unknotting number refers to the least number 
of topoisomerase II actions to unknot DNA and least energy is consumed 
during enzyme action. The fault-tolerant numbers (both weak and restricted 
[16] may assist biologists in estimating the minimal energy transfer by ATP 
as well as persuade the extrication of DNA in spite of the enzyme failure at 
some replication fork.  So, the suggested fault-tolerant numbers ensured 
untangling of knotted DNA at minimum energy cost bearing a miscleavage 
at some specific site in the DNA. 

5. CONCLUSION 
The fault-tolerant unknotting number takes into account the likelihood of 
failure of an enzyme action at some point. Explicitly, the weak fault-
tolerance assured the unraveling of supercoils by subgroups of a group of 
enzyme actions (the group itself may or may not accomplish untangling). 
The restricted fault-tolerant number strictly referred to the group of enzyme 
actions (the group itself fails to untangle the DNA) whose subgroups are 
successfully untangling DNA. This unconventional interpretation of fault-
tolerant numbers is speculative and referred biologists to meditate on 
possibilities of unknotting DNA with miscleavage by enzymes in different 
situations (unknotting or non-unknotting set of enzyme actions for weak 
fault-tolerance or necessarily non-unknotting for restricted fault-tolerance, 
respectively). The researchers tend to extend these computations to two-
bridge links and a special subfamily of two-bridge links with unlinking 
number one.  Moreover, some families of two-bridge knots with some 
special Conway notations can also be explored. Also, the complete Rolfsen 
Table of knots and virtual knots can be examined for fault-tolerance for the 
future. 
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