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Abstract 
Naji et al. introduced the leap Zagreb indices of a graph in 2017 which 
are new distance-degree-based topological indices conceived depending 
on the second degree of vertices. In this paper, we have defined the first 
and second leap reduced reciprocal Randic index and leap reduced 
second Zagreb index for selected wheel related graphs.  
Keywords: leap indices, reduced reciprocal Randic index, reduced 
second Zagreb index, flower graph, gear graph, helm graph, sunflower 
graph, wheel graph 

1. Introduction
In the current chemical and mathematical literature, a large number of 
vertex degree based graph invariants have been studied. Among them, 
the first and second Zagreb indices are, by far, the most extensively 
investigated. They were introduced more than forty years ago [1].  

The properties of the two Zagreb indices can be seen in [2, 3, 4, 5, 
6]. Many novel variants of the Zagreb indices have been studied in 
recent years. Some of these are multiplicative Zagreb indices [7, 8, 6]. 
Zagreb coincides [9, 10], multiplicative Zagreb coincides [11] and the 
sum Zagreb index [12, 6]. Recently, leap Zagreb indices of a graph 
have been introduced by Naji et al. [13], which are new distance-
degree-based topological indices conceived depending on the second 
degree of vertices (number of their second neighbors). Some basic 
properties of these new indices have been established as well. A. M. 
Naji and N. D. Soner [14] presented the exact expressions for the first 
Zagreb index of selected graph operations containing the corona 
product, cartesian product, composition, dis junction and symmetric 
difference between graphs. Shiladhar P. et al. [15] computed leap 
Zagreb indices of selected wheel related graphs. Fazal Dayan et al. 
[16] defined leap Gourava indices and computed the exact values of
leap Gourava indices for some wheel related graphs. In recent years,
many researchers have worked on computing topological indices [17,
18, 19].
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2. Definitions and Preliminaries
Definition. The reduced reciprocal Randic index is defined as follows:- 

RRR(G) = � �(d (u)‐1)(d (u)‐1)
uv∈G

 

Definition. The reduced second Zagreb index is defined as follows:- 

RM2(G) = � (d (u)‐1)(d (u)‐1)
uv∈G

 

Definition. The leap reduced reciprocal Randic and leap reduced second 
Zagreb indices are defined as follows:- 

LRRR(G) = ∑ ��d 2(u)‐1��d 2(u)‐1�uv∈G        (1) 

and 

LRM2(G) = ∑ �d2  (u)‐1��d 2(u)‐1�uv∈G             (2) 

Figure 1. Wheel graph Wn 

Figure 2. Gear graph Gn 
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Figure 3. Helm graph Hn 

Figure 4. Flower graph Fln 

Figure 5. Sunflower graph Sfn  
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Figures 1-5 show the wheel graph, gear graph, helm graph, flower 
graph and sunflower graph, respectively. 

3. Main Results 
Theorem 

Let Wn be a wheel graph with n + 1 vertices, its leap reduced reciprocal 
Randic and leap reduced second Zagreb indices are given below:- 

LRRR(G) = n�√4‐n + n(n‐4)� 

LRM2(G) = n(n‐4)(n‐5) 
Proof: We compute the required result by using definitions 1 and 2 given 
in the previous section as follows:- 

LRRR(G) = � ��d 2(u)‐1��d 2(u)‐1�
 

uv∈G

 

= n�[(0‐1)(n‐3‐1)] + n�[(n‐3‐1)(n‐3‐1)] 
= n�[(‐1)(n‐4)] + n�[(n‐4)]2 

= n√4‐n + n(n‐4) 
= n�√4‐n + n(n‐4)� 

and 

LRM2(G) = ��d2  (u)‐1��d 2(u)‐1�
 

uv∈G

 

LRM2(G) = n[(0‐1)(n‐3‐1)] + n[(n‐3‐1)(n‐3‐1)] 

= n(4‐n) + n(4‐n)2 

= n(4‐n + n2‐8n + 16) 

= n(n2‐9n + 20) 

= n(n‐4)(n‐5) 
Theorem 

Let Gn be a gear graph with 2n + 1 vertices, its leap reduced reciprocal 
Randic and leap reduced second Zagreb indices are given below:-  

LRRR(G) = n(n‐2)�√n‐1 + 2√2� 
LRM2(G) = n(n‐2)(5n‐1) 

Proof: We compute the required result by using definitions 1 and 2 given 
in the previous section as follows:- 
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LRRR(G) = � ��d 2(u)‐1��d 2(u)‐1�
uv∈G

 

= n�[(n‐1)(n‐1‐1)] + 2n�[(n‐1‐1)(3‐1)] 
= n�[(n‐1)(n‐2)] + 2n�2(n‐2) 

= n(n‐2)�√n‐1 + 2√2� 

and 

LRM2(G) = ��d2  (u)‐1��d 2(u)‐1�
uv∈G

 

= n[(n‐1)(n‐1‐1)] + 2n[(n‐1‐1)(3‐1)] 
= n[(n‐1)(n‐2)] + 2n[2(n‐2)] 

= n(n‐2)[n‐1 + 4n] 
= n(n‐2)(5n‐1) 

Theorem 

Let Hn be a helm graph with 2n + 1 vertices, its leap reduced reciprocal 
Randic and leap reduced second Zagreb indices are below:- 

LRRR(G) = n(n‐2) �√n‐1 + �(n‐2) + √2� 
LRM2(G) = n(n‐2)(2n‐1) 

Proof: We compute the required result by using definitions 1 and 2 given 
in the previous section as follows:- 

LRRR(G) = � ��d 2(u)‐1��d 2(u)‐1�
uv∈G

 

= n�[(n‐1)(n‐1‐1)] + n�[(n‐1‐1)(n‐1‐1)] + n�[(n‐1‐1)(3‐1)] 
= n�[(n‐1)(n‐2)] + n�(n‐2)2 + n�2(n‐2) 

= n(n‐2) �√n‐1 + �(n‐2) + √2� 

and 

LRM2(G) = ��d2  (u)‐1��d 2(u)‐1�
uv∈G

 

= n[(n‐1)(n‐1‐1)] + n[(n‐1‐1)(n‐1‐1)] + n[(n‐1‐1)(3‐1)] 

= n[(n‐1)(n‐2)] + n[(n‐2)(n‐2)] + 2n[(n‐2)] 

= n(n‐2)(n‐1 + n‐2 + 2) 

= n(n‐2)(2n‐1) 
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Theorem 

Let Fn be a flower graph with 2n + 1 vertices, its leap reduced 
reciprocal Randic and leap reduced second Zagreb indices are given 
below:- 

LRRR(G) = n ��[(2n‐3)(2n‐5)] + √3‐2n + √5‐2n + (2n‐5)� 
LRM2(G) = 8n(n2‐5n + 6) 

Proof: We compute the required result by using definitions 1 and 2 given 
in the previous section as follows:- 

LRRR(G) = � ��d 2(u)‐1��d 2(u)‐1�
 

uv∈G

 

= n�[(2n‐2‐1)(2n‐4‐1)] + n�[(2n‐2‐1)(0‐1)]

+ n�[(2n‐4‐1)(0‐1)] + n�[(2n‐4‐1)(2n‐4‐1)] 

= n�(2n‐3)(2n‐5) + n√3‐2n + n√5‐2n + n(2n‐5) + n(2n‐5) 
= n ��[(2n‐3)(2n‐5)] + √3‐2n + √5‐2n + (2n‐5)� 

and  

LRM2(G) = ��d2  (u)‐1��d 2(u)‐1�
 

uv∈G

 

= n[(2n‐2‐1)(2n‐4‐1)] + n[(2n‐2‐1)(0‐1)] + n[(2n‐4‐1)(0‐1)]
+ n[(2n‐4‐1)(2n‐4‐1)] 

= n[(2n‐3)(2n‐5)] + n[(2n‐3)(‐1)] + n[(2n‐5)(‐1)] + n(2n‐5)2 
= n(8n2‐40n + 48) 

= 8n(n2‐5n + 6) 
Theorem 

Let Sfn be a sunflower graph with 3n + 1 vertices, its leap reduced 
reciprocal Randic and leap reduced second Zagreb indices are given 
below:- 

LRRR(G) = n �√2‐3n + √3‐3n + √5‐3n + �[(3n‐3)(3n‐5)]

+ (3n‐5)� 
LRM2(G) = n(18n2‐63n + 50) 

Proof: We compute the required result by using definitions 1 and 2 given 
in the previous section as follows:- 
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LRRR(G) = � ��d 2(u)‐1��d 2(u)‐1�
uv∈G

 

= n�[(3n‐1‐1)(0‐1)] + n�[(3n‐2‐1)(0‐1)] + n�[(3n‐4‐1)(0‐1)]
+ n�[(3n‐2‐1)(3n‐4‐1)] + n�[(3n‐4‐1)(3n‐4‐1)]

= n√2‐3n + n√3‐3n + n√5‐3n + n�[(3n‐3)(3n‐5)] + n(3n‐5) 
= n �√2‐3n + √3‐3n + √5‐3n + �[(3n‐3)(3n‐5)] + (3n‐5)� 

LRM2(G) = ��d2  (u)‐1��d 2(u)‐1�
uv∈G

 

= n[(3n‐1‐1)(0‐1)] + n[(3n‐2‐1)(0‐1)] + n[(3n‐4‐1)(0‐1)]
+ n[(3n‐2‐1)(3n‐4‐1)] + n[(3n‐4‐1)(3n‐4‐1)]

= n(2‐3n) + n(3‐3n) + n(5‐3n) + n[(3n‐3)(3n‐5)] + n(3n‐5)2 
= n(18n2‐63n + 50) 

4. Conclusion
In this paper, we have extended the work initiated by Naji et al. In this 
regard, we have defined the leap reduced reciprocal Randic and leap 
reduced second Zagreb indices and we have computed the exact values 
of these newly defined indices for selected  graphs including wheel 
graph, gear graph, helm graph, flower graph and sunflower graph.  
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