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ABSTRACT

The aim of this paper is to prove some important fixed-point theorems in
the context of the neutrosophic metric space, which is a generalization of
the fuzzy Banach fixed-point theorem, by utilizing the control function. Also,
certain fixed-point theorems in the G-complete neutrosophic metric space
are proved and discussed by utilizing the alternating distance function
(ADF) and defined neutrosophic (@ ,% )-weak contraction. The current
study supports the results with some non-trivial examples. Furthermore, it
also supports the main result with an application of the Fredholm integral
equation.

Keywords: fixed-point, control function, neutrosophic metric space,
(@, ¥ )-weak contraction

INTRODUCTION

The idea of fuzzy sets (FSs) was first suggested by Zadeh [1] in 1965. Since
then, a number of researchers have thoroughly studied the theory of FSs
along with its applications in order to use this notion in topology and
analysis. In a similar effort, Atanassov [2] developed the notion of
intuitionistic fuzzy sets (IFSs) in 1986 as an extension of FSs. Alaca et al.
[3] established the notion of intuitionistic fuzzy metric space (IFMSs) based
on the concept of IFSs. As an extension of fuzzy metric space (FMS) in the
sense of Kramosil and Michalek [4], Park [5] extended the idea of IFMSs.
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In IFMSs, Turkoglu et al. [6] established the compatible maps of types (« )
and (B ) and established some relations between them.

Khan et al. [7] used the concept of modifying distance in metric fixed-
point findings in 1984. In order to cope with the relatively novel kinds of
fixed-point issues, both the altering and control functions are used to change
the metric distance between two points. When changing distance is
involved, the application of specific methods may be necessary since the
triangle of inequality is not always immediately relevant. A common fixed-
point theorem for weakly compatible maps in IFMSs was established by
Sanjay et al. [8]. Also, they discussed some results related to the variants of
R-weakly commuting mappings.

Saleem et al. [9] introduced two new classes of mappings known as A-
enriched, strictly pseudocontractive, mappings and ®T-enriched
Lipshitizian mappings in the setup of a real Banach space. Saleem et al. [10]
introduced the notion of intuitionistic extended fuzzy b-metric-like spaces
and established some fixed-point theorems in their setting. Ali et al. [11]
proved various unique fixed-point results for contractive and weakly
compatible mappings in the sense of neutrosophic metric spaces (NMSs).
Omeri et al. [12, 13] obtained common fixed-point theorems in the
neutrosophic cone metric space. Also, the notion of -weak contraction was
defined by them in the neutrosophic cone metric space by using the idea of
alternating distance function (ADF).

Hussain et al. [14] introduced the notions of pentagonal controlled
fuzzy metric space and fuzzy controlled hexagonal metric space as
generalizations of fuzzy triple controlled metric spaces and fuzzy extended
hexagonal b-metric spaces. They also used a control function in fuzzy
controlled hexagonal metric space and introduced five non-comparable
control functions in pentagonal controlled fuzzy metric spaces. Jhangeer et
al. [15] derived Atangana—Baleanu derivative in Riemann-Liouville sense
is practiced in the fractional modeling of the weakly non-linear shallow
water wave equation. Asjid et al. [16] obtained new traveling wave solutions
of the double dispersive equation with a more general mathematical
technique known as the direct algebraic extended method. Zhang et al. [17]
extended the direct algebraic technique to attain the new exact solitary wave
solutions of the nonlinear fractional couple Drinfeld—Sokolov-Wilson
system. Asjad et al. [18] investigated the Hirota equation which has a
significant role in applied sciences including maritime, coastal engineering,
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ocean sciences, and the main sources of environmental action due to energy
transportation on floating anatomical structures.

In 2014, Beg et al. [19] established the notion of (@, y )-weak
contraction in the context of IFMSs and derived several FP results by
utilizing the ADF. Kirisci and Simsek [20] introduced the neutrosophic
metric spaces (NMSs) technique, which addresses membership, non-
membership, and naturalness functions. Sowndrarajan et al. [21] presented
some FP results for NMSs. For more related results, see [22-24].

In this manuscript, the following contractive condition has been
generalized:
1 1
-1<Y (— — 1).
M (@), {(w),1) M(w, w,7)
Moreover, certain common fixed-point (CFP) theorems have been
established in the context of G-complete NMS using ADF. Additionally,

CFP results have been established in the context of NMS for functions that
meet a certain inequality involving three control functions (CFs).

Definition 1.1. [22] A binary operation = on [0, 1] is said to be continuous
t—norm (CTN) if the following circumstances are fulfilled:

(T1) = is continuous, commutative, and associative;
(T2)6+1 = ve €[0,1];
(T3)8*0 < c*d,whenever <c andd <d,ve 6,d,c,d € [0,1].

Definition 1.2. [24] A binary operation ¢ on [0, 1] is said to be continuous
t —conorm (CTCN) if (T1)-(T3) and the following condition is fulfilled:

(T4 6 00 = 6,v80 €[0,1].

Definition 1.3. [5] The 5-tuple (2 ,M , NV ,,0) is called an IFMSs if 02 is
any non-empty set, * is a CTN, ¢ is a CTCN, and M, V" are FSs on

N? x (0, +o0) fulfilling the following circumstances: for all @, w, A € 0,
ands,t >0

Q) M(w,w,1)+ N (w,w,7) < 1;

(i) M (w,w,T)) > 0;

@) M@@owr)=1 o = w;

(iv) M(w,w,17) = M (0,@,T1);

(V) M (w,w,7) * M(w,A,5) < M (w,A4,s+ 1);
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i) M (w,w,.):(0,+0) — [0,1] is continuous;
(vi) N (w,w,t)>0;

(vii) NM(o,w,7)=0= o = w;

(ix) N (w,w,1) =N(w, @,71);

(x) N(@,w1) 0 N(wAs) =N(w@,As+T1);
xi) WN(w,w,.):(0,+0) — (0,1] is continuous.

It shows that (M, V') isan IFM on 0.

Definition 1.4. [20] The 6-tuple (2, M ,V, 0 ,*,0) is called an NMS if 2
is any non-empty set, * isa CTN, ¢ is a CTCN, and M , V', O are
neutrosophic sets on 22 x (0, +o ) fulfilling the following axioms: for
alo,w,A € Nands, >0

() M(o,w,1)+ N (w,0,7) + 0 (@,w,7) < 3;
(ii) M (o, w,7)) >0;

(i) M(wwit)=1 @ = w;

ivy M(o,w1)=M (0,@,1);

) M (w,w,7)*M(w,A,5) < M (w,A,s+ 1);
(vij M (w,w,.):(0,+) — [0,1] is continuous;
(i) N (w,w,7)>0;

(viii) NMo,w,71))=0 @ =w;

(ix) N (@ w1)=N(w®,1);

x) N(@, 1) 0 N(w,As) =N(w,As +1);
xi) N(w, w,.):(0,+) = (0,1] is continuous.
i) O(w,w,7)>0;

xii)) O(w,w,7)=0 @ =w;

xiv) O, w,1)=0(w@1);

xv) O, wr1) 90w As) =0(@,As+71);

(xvi) O(w,w,.): (0,400) — (0,1] is continuous.

Then, (M, V', 0) is a neutrosophic metric on (2.

Definition 1.5. [21] A sequence {w,, } in an NMS that converges to w €
0 ifforeach t > 0,

lim M (o, @,7) =1,

n—-+oo

lim NM(w_n,@,1)=0,
n—-+oo

lim O(w,, @, 1) =0.
n—-+oo
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Then, {w,, } is said to be convergent.

Definition 1.6. [21] A sequence {@,, } inan NMS. It is called Cauchy if and
only if for each » € (0,1) and 7 > 0 there exists n, € N, such that

M (@, , @, ,T) > 1 — x,
N (o, , @y, T) < X,
O(w, , @, ,T7) < .
Then, for all n,m = n,.

Definition 1.7. [21] An NMS (Q, M IV, O,*,0 ) is complete if and only if
every Cauchy sequence in £2 is convergent.

Definition 1.8. [22] Let { and g be two self-mappings which are weakly
compatible if they commute at their coincidence points.

Definition 1.9. [7] A mapping i : [0,40c0) — [0,4+0) isan ADF or CF
fulfilling the following circumstances:

Q) 1 is monotonically increasing and continuous;
@@ Y@ =01t =0.

Furthermore, Khan et al. [7] utilized the concept of CF to demonstrate
the following conclusion.

Theorem 1.1. [5] Suppose ( 2, d) be a complete metric space, v :
[0,+c0) — [0,+) be an ADF, and suppose {: 2 — (2 be a self-
mapping which satisfies the following inequality:

¥ ([@d({@,{w)) < cy(d(@,w))

forall @, w € 2 and for some 0 < ¢ < 1. Then, ¢ has a unique FP.

Definition 1.10. [24] Let ( 2, M ,*) be an FMS. The mapping {: 2 —
N x £ issaid to be fuzzy contractive if there exists Y € (0,1), such that

1 1
—-1<Y (— — 1)
M (@),{(w),T) M (@, w,T)
foreachw,w € N,andt > 0.

Definition 1.11. A function @ : R — R™ verifies the condition = if the
following axioms hold:

Q) @ ()= Oifandonlyift = 0;

g

24 —
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(i) @ (7)isincreasingand @(1) » +0ast — +oo;
(i) @ is left continuous in (0, +0);
(iv) @ iscontinuous at 0.

2. MAIN THEOREMS

In this section, some important results are proved in the sense of NMS.
Also, some non-trivial examples are discussed.

Definition 2.1. A sequence {@,} inan NMS (2, M N, 0,*,0) is called
G-Cauchy, if

lim M (@, @,4m, T) = 1,
n—-+oo

lim NV (@, @pym 7) = 0,
n—-+oo

lim O(@,, @y 4m,T) =0,
n—-+oo

and

vm eN, 7> 0.

Definition 2.2. An NMS (2, M IV, 0,*,9) is called G-Complete if every
G-Cauchy sequence in 2 is convergent.

Definition 2.3. A pair of self-mappings (¢, g) of an NMS (2, M, V', O,*
,0) is called compatible if

Nim M (Cgmy, g{wy,T) = 1,
lim N ({gmy, g{wy, ) =0,
lim 0({gey, g{@n, T) = 0.
For every T > 0, whenever {w@, } is a sequence in 2 such that

lim (@, = lim g, = Aforsome 1€ (.

n—-+oo n—+oo

Definition 2.4. Let (2, M, N, O ,*,0) be an NMS. The mapping {: 2 —
N x 0 is called neutrosophic contractive if 3 Y € (0,1), such that

1 1
M (@), (w),7) l=¥ (M(w, w1 1)'
N({((®@),{(w), 1) < YN(®,w,1),
0({(@),{(w),7) <Y0(w,w,1),

School of Science :&.‘
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foreachw,w 2 €N,andt > 0.

Definition 2.5. Suppose (2, M NV,0,+0) be an NMS. The mappings
(,&:0 - 0 are called neutrosophic (@, )-weak contractions with
respect to ¢ if 3:[0,+00) - [0, +), with (@) > 0 for @ > 0, and
1 (0) = 0 and the ADF @, such that

1 1 1
¢ (M(Ew, ¢w, 1) h 1) =@ (J\/[((w, {w, T) h 1) —v (M(Zw, {w, T) h 1)'
o(NV(w,éw,1) < (VN ({(®,{w1)) - Pp(N (@, {w1)),
?(0(¢w,éw,7)) < 2(0({w,{w,1) - P(0(®w,{w,T)).

It holds for every w,w € £, and eacht > 0. Suppose { is identity
mapping, then the mapping ¢ is called neutrosophic (@, )-weak
contraction.

Theorem 2.1. Suppose (2, M IV, O,*,¢ ) be a G-complete NMS and the
mappings are ¢, &: 2 — 2, such that

) the range of &2 is contained in the range of {02;
i) fort > 0,0 < ¢ < 1, the contraction

1
(M(Ew. £, d(cT)) 1)

1 1
= G(M(Zw,(w,tb(r))_l)_w (W—l>, (2.1)
(W (€@, éw, @ (cT))
<o (W({w,{w, (@) - 9 (¥ ({@,{w, (1)), (2.2)

(0¢w,éw,@(c1)) < o (0((w, {w, CD(T))) —y (O({w, o, qb(r))), (2.3)

It holds for all w,we€ 2, where M({w,{w, (7)) > 0and
N ({{w,{w,®(t)) > 0 ¢ and @ fulfill the Definition 1.11. Moreover, for
the ADF ¢ and @, 7 — o(7) + Y(7) > 0 and (c — )" (6,) = 0, 6, = 0
asn — +oo; if {0 is G-complete subspace of 2, then there exists a
coincidence point of ¢ and ¢.

Proof: Take an arbitrary element @, € 2 and utilizing the condition (i),
let {w, } be a sequence, such that w,, = ¢@,, = (@, 41, assuming that {w,}
is Cauchy. Further, if w,_; = w,, then there is a coincidence point of &
and . Suppose w,_; # w, forall >, which implies that

N
»
g
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Volume 6 Issue 3, September 2022



Ali et al.

JV[( Wn—-1, a)n,r) * 1,
N( Wn—1, wn,r) * 0,

0( Wn-1, wn,r) * 0.

That is,

M(¢w,_y, 1) #1Vn=1,VT >0, (2.4)
N(éw,_y, @, 1) #0Vn=1,VT>0, (2.5)
0wy, €@, 1) #0V =1,V 1> 0. (2.6)

assuming that if possible for some n,

g )= (e )
M(fwn—l' Sy, (p(CT)) M(fwn: $Wni1, (p(CT))
N(fwn—ll STy, ¢)(CT)) = N(fwnl $Wnt1, (D(CT)),
O(Sgwn—l' Sy, (p(CT)) < 0(51371' $Wnaq, d)(CT))-

By substituting @ = @, , w = @, in inequalities (2.1), (2.2), and
(2.3), we get

1
-1
<M(Szwn: $Wni1 d)(CT)) >

1 1
= <M((an, (Wni1, d)(CT)) - 1) v (M((wnv (W1, d)(CT)) - 1>'

1 1
= (M(fwn_l,fwn,qxcr)) - 1) v (M(fwn_l,fwn,qxcr)) - 1)’ @7
N (@, @1, D(c1)) < o(N({@y, (@1, (7)) = YN({p, {41, P(cT))
= o(N (§@, §@n 41, P(0)) = Y(N(§wy_y, §p, (1)), (2.8)
O G@y, §@n11, (7)) < 0(O({@y, (@41, P (1)) = Y(O({@y, (@10, P(cT))
= 0(0(§@y, §@n 41, D(1)) = YO (§my_y, w0, (7)) (2.9)

However, T — a(t) + (1) > 0 together with Eq. (2.7), (2.8), and
(2.9) lead us to a contradiction. Thus, for all n
1 1
-1< -1,
M (o, w1, P(CT)) M (E@py, E@p, @(cT))

(2.10)

School of Science :&.‘
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N(&Hn' @41, (D(CT))

< N(fwn—lrfwn'(p(r))’

(2.11)
O(gwn' $Wni1) (D(CT)) < O(Ewn—lﬁ $@y, d)(T))-

(2.12)
With the circumstances of @, one may have t > 0, then

M((WL (wZI ¢(T)) > O:
N ({w,{w, (1)) > 0,
0({w,{w, (1)) > 0.

Therefore, using inequalities (2.1), (2.2), and (2.3), we get

1 1
M (wﬂ'wll(p(cr)) —= (M (§w0,5w1,¢>(cr)) - 1)
1

1
= (M (G {o, 9(c0) 1) v (M (G im0, 0(c0) 1)’
N( Wy, W1, CD(CT)) = N( ¢wy, Ewy, CD(CT))
< a(WV (@, (@, @(1)) — (N (v, (@, D(1)),
0( Wo, w1,<D(CT)) = 0( ¢wy, Ewy, <;D(C‘r))
< a(0(§wy, §wy, @(0)) — Y(O({wy, Sz, D(2)).

In view of inequalities (2.10), (2.11), and (2.12) the above expression
become

! -1
M ( fwl' sz' ¢(CT))

< a( ! - 1)
M((‘(D'l, (‘(UZ'(I)(T))

1
v (M (Cay, (ay, 0(D) 1) (2.13)
N (&wmy, Eay, @(cD)) < a(V ({@y, (m, (1)) = YNV ({ay, {mz, D (D)), (2.14)
O( &y, Ew,, @(c1)) < a(0( {wy, (@, D(2)) — Y(O( {wy, (v, D(2)). (2.15)

Again

M ({@y, (@, (7)) > 0,
which implies

N
00)
g
(=5
e
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M((wl, (w,, @ (%)) >0

N( {Gfl, {WZJ Q(T)) > 0;

which implies

N < (wy, (W, P (%)) >0,

0( {wll ZZD-ZI d)(T)) > 0;
which implies

) ( (wy, (Wy, P (%)) > 0.

Therefore, by the application of inequality (2.1), we obtain

1 1
M ((1.)0, w1,<1>(‘r)) B 1 N (M ( fwﬂ' §w1,<1>(cr)) - 1)

1 1
< —1 |- _1
¢ <M ( (@, (@y, @ (%)) > <M ( {wy, (@, @ (%)) )
N( Wo, w1'(p(T)) = N( fwo'fwl'(p(f))
<a(V < (@, (w,, @ (£)> - PV ( {w,, (wy, P (g)),

0( wo, w3, #(1)) = O( §mo, w1, @ (1))
T T
< a(0 ( Sw1, @ (;)) — (0 ( Swy, Gy, @ (;)>.

Again, using inequalities (2.10), (2.11), and (2.12) the above equations

turn out to be
1

M (Soy fay, @)
<a ! -1
2 (Gwn, gm0 (7))
1
Ly 1 2.16)
(M (¢m¢m o (5)) )

School of Science :&.‘
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N ( oy, §0, @(D) < a (W ( (@, (@ (;)) —pv ( (@, {wy, @ (§)>, (217)

0( €@y, §a,, D (0)) < (0 ( (@1, (@, ® (E)) — (0 ( (@1, (@, ® (§)>. (2.18)

By continuing in this manner, one obtains n times

1 1
M (@n-1, 0y, @(2)) <M ((wl, {w,, & (Cin)) >
N ( Wy _1, Wy, (I)(T)) < (G - 1/J)n (N ( (wl’ (‘(D’z, @ (Cin)>>’ (220)
O( @ner 0, @(D) < (0 = )" (0 ( (@1, @ (Cin)))- (221)

Then, using the assumption (ii) which implies that
M ({@,, (@3, ®(cT)) > 0,
N ({@,, (@3, ®(cT)) > 0,
0( {w,, (w3, ®(cT)) > 0.

Similarly, one might get

1 1
—-1<(c—yY)" -1, (2.22)
o) )
N (@n-1, 0 (D) < (0= Y)" N ( {@y, (3, & (Z—E)), (223)
0( Wp—1, Wp, <;D(C‘r)) <(c—-yY)"o ( {@,, (w3, P (2—2)) (2.24)
Furthermore, for n > », we have
! 1
M (wn_l,wn,db(c”r)) B
< (06— P)nr+1 ! -1, (2.25)

c't
M <§wu+1, (@ys2, @ (m))

w
o
g
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N( Wp—1, Wn, (D(CHT)) < (G - w)n—k+1 N ( (wn+1' (wu+2' ? (%))! (226)
0( Wp—1, Wn, (D(CHT)) < (G - w)n—k+1 0 ( (wn+1' (wu+2' @ (%)) (227)

Assuming w,, = {w,,, and using the inequalities (2.25), (2.26), and
(2.27), we get

1 1

—1< (o—y)ntt —-1,
M ( wy—q, Wy, P(c*T) c*T
(on-s,n ) M (wwwn+1'(p(W)>

(0 — )"+ (6,), where 6, = | ! _1, (2.28)

\M ( Wy, (‘)J{+1' @ (Cncj{%)) /

c*t
N( Wp_1, Wy, d)(cu’[)) < (0 - lp)n_x+1N ( W) Wyey1) o (m))’

crt
= (0— — w)n—x+1 (an), where an =N < Wy, Wiy 1, [6)] (m)), (229)
x n—x+1 CMT
0( Wp_1, W, P(C T)) <(c—1vy) O Wy Wypr, @ 1) |

= (o= $)"**1 (3,), where 8, = 0 < W W1, ® (Cnc_%)) (2.30)

Considering the assumption, (¢ — )™ (6,,) — 0, therefore, (6,,) — 0
asn - 4+oo. Vx > 0

M (wp_y, wp, @(c*1)) > 1 asn > +oo, (2.31)

Likewise, (6 — )™ (9,,) — 0, whenever (d,,) —» 0 asn —
4oV >0

N(wp_1, wp, @(c*1)) > 0 asn —> +oo, (2.32)
Also, (6 — y¥)™(d,) — 0, whenever (d,,)) - 0 asn — +oo.
Furthermore, Vi > 0

School of Science :&.‘
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O(wn_l, wn,cb(c”r)) -0 asn = +oo. (2.33)

For 7 > 0, one may discover » > 0, such that ®(c*7) < &. From
(2.31), we obtain that M ( w,_;, w,, &) > 1asn - +oo or

M (wp, Wpsq,€) > 1 asn - +oo (2.34)

and V' (wp_1, 0y, &) > 1 asn - +oo or

N (W, wWpi1,8) > 1 asn - 4o (2.35)
Similarly, as O( wy,_1, Wy, €) > 1 asn — +oo or

O(wy, Wpy1,€) > 1 asn - +oo (2.36)
Using the triangular inequality, we have

& &
M ( Wn, Wntg) g) =M ( Wn, wn+1'E) * M ( Wnt1) wn+2:E) * o

&
* M ( (Un+(;t wn+(;+1'E>'

£ € €
N( Wp, Wnte) E) <N ( Wy, wn+1,z) ON ( Wnat, wn+2,E) 0..0N ( Wnter wn+g+1,z),

& & &
0( Wp, Wntg) s) <0 ( Wy, wn+1,E) 00 ( Wit wn+2,z) 0..00 ( Wntg wn+c+1'z)
As limit n - +4oo in the above inequalities and also using (2.34),
(2.35), and (2.36), we get
M (wn, Wpie,€) = 1,
N (@, wnye &) = 0,
O( Wn,y Wnyer 5) - 0.

Its implies that {w, } is a G-Cauchy sequence. Since (2, M, N, 0 ,*,0)
is G-complete, then {w,} is convergent, and hence 3 1 € (2, such that
w, 2Z0sn - +oo,

Wy = Ew, = (Wpyq — A

Suppose that v € £, such that (v = 1. Here, we find that v is the
coincidence point of ¢ and ¢. However, its sufficient that v = A. Then,
&

M (v,2,8) 2 M (§v,00,5) * M (wn,,l,;). (2.37)
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Using the Definition 1.11, we can find at, > 0, such that ¢(7,) < § .

Since w, =z as n — +oo, then there exists € > 0 for all n > m, such
that M ((wy, 4, @(7,)) > 0. Therefore, by contraction (2) we have n > m

1 1
—1= -1
M (ETJ, wn,%) M (EV, fwn' (p(TZ))

1
<a -1

- M ({v, {wnﬂ,(l)(%z))

1
M (¢v. ¢ @ (2))
On using inequality (2.10), we obtain

1
-1
M (&v,E@pe1, @(13))

-9

1
<a -1

A\ (gm0 (2))

1
"o (tvcomno(2))

As limit n - 400,@(0) = 0 use the continuity of ¢ and «, one has

€
M (fv, W, E) - lasn — +oo, (2.38)

Takingn — +oo inequality (2.37) and using (2.38) with the continuity
of functions 1 , a, and the fact that w, -z as n — 4oo, we
get M'( &v, wy, €) = 1. Inasimilar way, we can find V' ( év, w,, €) = 0 and
0(¢év,w,, ) =0 foreverye > 0. It follows that

fv=A (2.39)
Thus,
v==¢&v=A
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Theorem 2.2. Let the assumptions used in the Theorem 2.1, then the
coincidence point A becomes the CFP of & and ¢ which is unique if the
pair (¢, &) is weakly compatible.

Proof: Using Eq. (40), we have the coincidence pointv and (v = év =
A. So, the pair ({,¢) is weakly compatible, thus

(A= ¢v =&y = ¢
It is to be demonstrated this A is a CFP of ¢ and {. Again,

& &
M(ELAe) =M (5/1, w,, 5) « M (a)n, A E)' (2.40)
N (E,24,6) < N (£, wp, %) 0N (w2, %) (2.41)
& &
0(§2,4,8) < 0 (4 wp, 5) 00 (wn 2 E)' (2.42)

From the property of @ -function, one may find at; > 0, such
as (13) <§and w, >z asn - +oo hencedm ENVn >m,

M (wp, A, (13)) > 0,
]\f(a)n,/L (13)) >0,
O(wn, A, (13)) > 0.

Then, forn > m,
! —-1= ! -1
M (El,wn,%) M(f/l,fwn,cp(r3))

S “(w (0 @) )
“”(w (ot (@) )

This is obvious from inequality (2.1). Applying inequalities (2.10),
(2.11), and (2.12), we get
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1
-1
M (2, @, 0(73))

1

- (M (himnne(Z)) 1)
1

Y (M (chimnno(Z) 1>'

and

J\f( ¢, &y, (p(‘r3)) < alN ( A, (@, @ (%)) — YN ( N, (w ey, ® (%3))’

0( &7, &my, @(13)) <@ 0 ( N {@ypq, @ (%)) — 90 ( A (@yy, ® (%))

Using the limitn — +oco with the help of Definition 1.11, we have

€
M ( &A, w"’i) - lasn - +oo, (2.43)
€
N ( ¢A, wy, E) - lasn - +oo, (2.44)
and
€
o ( EA, wy, E) - lasn - +oo. (2.45)

Similarly, taking n — +o0 in inequalities (2.40), (2.41), and (2.42),
using (2.43), (2.44), and (2.45) with the continuity of « and the fact that
w, 2 Z asn — +oo, itis clear that

M(ELALE) =1,V € >0,
N(ELAE) =0,V € >0,
O0(&ALLe)=0,V ¢ >0.

Thus, é1 = A. We prove that {4 = {1 = A. Then, Ais a CFP of ¢ and
¢ . Finally, the uniqueness of the CPF is shown. Suppose A’ is any other
FP. Then, it needs to be shown that A = A’

M(LA,®(s)) >0,

School of Science :&.‘
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N(AA,e(s)) >0,
0(A,4,(s)) > 0.

Using the inequality (2.1),
4= ! 1
MLX,0(cs)) M (EALEX, ®(cs))

1 1
= (M (Sh,¢x,0() 1) v (M (Sh,cx, () 1)' (240)
N(AX,®(cs)) = N( €1, EX, P(cs))
<a(M({a N, 0())) - ¥ (V({21, 0 (5))),

A

<a(n(2Aqx, <p(s))) —p(M(qrx, <p(s))), (2.47)
O(AX,®(cs)) = 0(ELEX, d(cs)) < a (0( A, a',cb(s))) —y (0( , a',qb(s))),
<a(0(qacr,@())) -y (0(¢1.n, (), (2.48)

Also, M (A, {1, d(s)) > 0 implies that M ((,1, @ (f)) >0,
N (g, ®(s)) > 0 implies that ( AN, @ (g)) > 0, and

0( g1, {X, d(s)) > 0 implies that O ( AN, @ (g)) > 0. Here,

replacing s by % in the above inequalities (2.46), (2.47), and (2.48), we
get

1 1 1
MAL,oE) a(]v[ ((A,{/l’,(b(%)) ) 1) _¢<M ((A,{/l’,qb(%)) ) 1>'
N(ALX, () <a <N ( LN, @ (;))) — <N ( LN, @ (Z)))

and

O(AX, () < a (0 ( AN, b (;))) —y (0 ( AN, D (;)))
Repeating the above n-times, we get
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1
1<(c—yY)" -1,

ML, D(s)) M ( {AQX, @ (%))

= (0 =9)"(6y)
N(AZ,8()) < (06— P)" (N ( RN @))
= (0 =9)"(9)

S
O(A2,8(s)) < (6 — P)" <0 ( SN, @ (E)>)

= (o —y)"(9,)
Asn -+ (o —yY)"(6,) —» 0and (o —y)"(d,) — 0, we have
MLV, () =1,Vs>0,N(ALA,&(s))=0,Vs
>0,0(4A,®(s)) =0,Vs>0.
Again, from inequalities (2.46), (2.47), and (2.48), it follows that

M(ALA, @(cs)) >0, N(A,A,D(cs)) >0, and O( A, A, ®(cs)) > 0.
When the arguments are similar then s is changed by cs, we get

ML, ®(cs)) = 1L,N(A A, P(cs)) =0,0(4 1, D(cs)) = 0.

Generally, M( 4,4, ®@(c"s)) = L, N( A, ®(c"s)) =
0and O( A, A, @(c™s)) =0V n € IV U {0}. Clearly, for any given
& > 0 there exists » € U N {0}, such that @(c*s) < £ . From the
foregoing analysis, we get M'(4,4',€) =1, (A4, 1", ¢) =0, and
O(AA,e) =0.Forall e > 0, which implies that

A=1,
Hence, it completes the proof.

Corollary 2.1. Suppose (2, M N, 0,*,0 ) be a G-complete NMS and the
mapping ,: 2 = 0, suchthatfort > 0,0 < ¢ < 1, the contraction

M@, {w, (1)) < M(w,w, 1),
N({(w,{w, &(1)) < N(w,w,T1),
0({{w,{w,®(1)) < 0(w,w, 1),

School of Science
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holds for all wwe N , where M{w, {w d(1)) >
0,NV({{w,{w, ®(t)) > 0and O((w,{w,®(7)) >0, and & fulfill the
Definition 2.6. If {2 is G -complete subspace of 12, then there exists a
coincidence point of ¢.

Example 2.1. Let (2, M IV, 0, ,0 ) be a complete NMS, where 2 =
{1, ©,, w3}

000 = max{f,0}, 6 *d = min{f,0d },and M (w, w, T) be defined
as

0, iftT=0
M (@5, @3,7) = M (@3, @2,7) =10.8, ifo<t<3
1, ift>3
1, ift=0
1
N(w21w3lT)=N(w3lw21r)={§, 1f0<‘[<3
ko, ift>3
(1, iftT=0
1
O(@z, @3, 7) = 0(@3, @3, T) = iz, if0<t<3
0, ift >3
M (w,, @3,7) = M (w3, @1,T) = M (0, @,,T) = M(w,, @, T)
_ {0, ift=0
1, ift>0
]V”(wl,w3,r) = N(ZD'3,1D'1,T) = N(ZD'l,lD'Z,T) = N(ZD-Z'WLT)
(1, iftT=0
o, ift>0
0(@1,233,’1') = 0(53'51"{) = O(ZD-lsz-Z;T) = O(WZJZD-LT)
(1, ift=0
o, ift > 0.

The mappings &,{: 2 — 2 are defined as é(w,) = @y; é(w,) =
w3; ¢ (w3) = @y; (@) = @y; (@) = @3; {(@3) = @y; and if
ot)=1, P@) = % anda(r) = tand c = % Clearly, the
circumstances of Theorem 2.1 are fulfilled and (¢, &) are also weakly
compatible. Hence, @, is the unique CFP of { and €.
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Example 2.2. Suppose 2 = [0,+o)and 8 *d = min{6f,0}, 690
0 = max{6,0}, and

T
M(w,w,T) = ——,
( ) T+ |lo— w|
W —w
N(w,w,r)=¥,
T+ |w — w|
w— W
0(w,w,r)=| . l.

For all @, w €N and T > 0. Then, (2, M IV,0,*,0) is a complete
NMS. Let &,{: 2 = 0 Dbe given respectively by the formulas {w = %and

(w =w forall @ € 0. Let Y, a: [0, +o0) — [0, +0) be given respectively
by the following formulas:

ifo(t)= 1, Y(1) =£ and a(t) = TandCZ%.

Then, clearly, £ < (0. For all @, w € [0, +0), and T > 0, inequality
(2.1) reduces to

(@) @l _ (IZ(W) - z(w>|> Y (IZ(W) - z<w>|> 0.49)
2
£(@) - £ (@) - () K@) — ()]
T 6@ — @) “(r 1) = c<w>|) —v ( @) = z(w)|> (2:50)
HEOIP (IZ(W) - z(w>|> Y (IZ(W) - z<w>|> 51

2

since, {(@) —¢(w) = (@ — w) and {(@) —{(w) = (@ — ), 0
by substituting the values in inequalities (2.49), (2.50), and (2.51)

2@ -l s (t1@ - )l) - (1@ - ),

; 6T

5
—l@-w)l < l@- ol

| — w| | — w| o — w
2 T T4 o - w] T + .
— — a W —w
37+ [(o — w)| 3 | |
School of Science .:@-3 UMT 39
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and
lo —w| |o-—w| | — w]
< —_
2 - T r
3T 6
3T low—w| 6
— o —w| < ——|w — w|
2 T T

Hence, all circumstances of Theorem 2.1 are fulfilled and 0 is a
coincident point. Moreover, (&, {) is a weakly compatible pair of
mappings, thus the coincidence point is also the CFP of & and ¢.

Example 2.3. Suppose 2 = [0,10]and 8 *0 = min{#,d}, 600 =
max{ 6,0 } and

T
M@, w,7) = )
(@, @,7) T + max{w, w}
max{w, w

N(@,w,1) = @ 0} ,
T + max{w, w}

max{w, w}

0(w,w,1) = —

For all @, w €N and T > 0. Then, (2, M IV,0,*,0) is a complete
NMS. Let &,{: 2 = 0 Dbe given respectively by the formulas {w = %and
(w =w forall @ € 0. Let Y, a: [0, +o0) — [0, +0) be given respectively
by the formulas. If () = 7 , Y(1) =£ anda(t)= tandc = % then

&N < ¢n. All circumstances of Theorem 2.2 are fulfilled and 0 is a
coincident point. Moreover, (¢, ) is a weakly compatible pair of mappings,
thus the coincidence point is also the CFP of ¢ and (.

3. APPLICATION TO FREDHOLM INTEGRAL EQUATION

Let 2 = C([e, g], R) be the set of all the continuous functions with the
domain of real values and defined onle, g].

Now, we let the integral equation
o) = f()+6 [ F(L.Hw@(Daj for I, € [e, g], (3.1)

where § > 0, f(j) is a function of j: j € [e, g] and F € 0. Define
M, N, and O by
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M (@), w(l), ) = sup forall w,w € 2 and 7 > 0,

-
T+Hw()-w D]

le[e,g]
T
N@),wl),r)=1- l:ﬁg]mfor allom,w € Nandt >0,

and

O(@(D),w(l),7) = sup LaiORCIOIF T w,w € Nand T >0,
le[e,g] t

with CTN and CTCN defined by 7 * u = mpand ¢ p = max{m, u}.
Then, (2, M, NV, 0,*,0) be a complete NMS. Assuming that

IFA Do) = FUHoD] < o) —w()]

form,w €N, ® € (0,1)and ¥ L,j € [e, g]. Also consider (& feg 0j) <
@ < 1. Then, the integral equation in equation (3.1) has a unique solution.

Proof: Define {: 2 — Q2 by
(@) = f() + 68 [ Fje(Dajforall L,j € [e, g].

The existence of a FP of the operator ¢ is equal to the existence of the
solution of an integral equation.

Now, for all @, w € 2, we obtain
MG D), {wo(D), () = 2

(o) ol 2M) = S & D+ Tw ) — (D]

@ (1)
sup ] g ] ] ] g . .
teleg) @(0) + |f() + 68 f; FULDeDaj — £() = 6 [ F(L Ne(D)aj]
®(1)
sup ] ] ] g . .
tele.g1 @(7) + |6 [ F(L e(Daj — 6 [ F(I, je(Daj|
P (1)
sup : : T
tele.g) @(7) + [F(L Do (D) — F(L )HoDI(6 [, aj)
T

= T e — e
> M (@), w(l),1),
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(1)
N D), D,ot)=1-
(o) b @n) =1 S S o) — (D]
= - Sup (D(T)
teleg) (1) + [f() + 8 [L F(Ljeaj — f() — & [ F(L De(D)aj]
o (1)
=1- su
teleq) () + |8 [° FU Ne(Daj — 6 J° F(L, De(Daj|
o (1)
=1l— sup ; ; g .
ele.g) D(7) + [F(L Do) — F(L)HwDI(6 [, aj)

T
=1- l:ﬁg]r + () — w(@]
<N(@),w),1),

and

|{w (D) = {wD)]

OW@w(),lw(), 1) = lsup

ele,g] @ (7)
lF () +8 [P FUNeaj — FG) =8 [2 F(L pDeaj|
= sup
le[e,g] d)(T)
U [JFLeaj =6 [ F(LDeaj]
B ze[eg] @ (1)
IF(L)Nw@) — FWL N6 [ o))
= sup
lele,g] Q(T)
lw(l) — w@)|
< sup ———
le[e,g] T

< 0@, w(@),1).
Therefore, all circumstances of Corollary 2.1 are fulfilled. Hence,
operator ¢ has a single FP. This implies that integral Eq. (3.1) has a unique

solution.
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4. CONCLUSION

In this research paper, some common fixed-point (CFP) theorems were
discussed and proved in the context of G-complete neutrosophic metric
space using the alternating distance function (ADF) and defined
neutrosophic (@, )-weak contraction. This work can be extended further
in the context of neutrosophic b-metric spaces and neutrosophic b-metric
like spaces.
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