
Scientific Inquiry and Review (SIR) 

Volume 7 Issue 1, 2023 

ISSN (P): 2521-2427, ISSN (E): 2521-2435    

Homepage: https://journals.umt.edu.pk/index.php/SIR  

 

 

Article QR    

 

 

 

 

 

 

 

 

 

 

 

 

A publication of 

The School of Science  

University of Management and Technology, Lahore, Pakistan  

Title: 
Monotone Data Modelling Using Rational Cubic Fractal Interpolation 

Function   

Author (s): Tayba Arooj1, Farheen Ibraheem2, Malik Zawwar Hussain3 

Affiliation (s): 
1Lahore College for Women University, Lahore, Pakistan. 
2Forman Christian College- A chartered University-FCCU, Lahore, Pakistan. 
3University of the Punjab, Lahore, Pakistan. 

DOI: https://doi.org/10.32350/sir.71.02       

History: 
Received: October 5, 2022, Revised: December 5, 2022, Accepted: December 5, 2022, 

Published: March 15, 2023    

Citation: 
Arooj T, Ibraheem F, Hussain MZ.  Monotone data modelling using rational cubic 

fractal interpolation function. Sci Inq Rev. 2023;7(1):17–32. 

https://doi.org/10.32350/sir.71.02     

Copyright: © The Authors 

Licensing:  This article is open access and is distributed under the terms of 

Creative Commons Attribution 4.0 International License       

Conflict of 

Interest: Author(s) declared no conflict of interest    

https://journals.umt.edu.pk/index.php/SIR
https://doi.org/10.32350/sir.71.02
https://doi.org/10.32350/sir.71.02
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


18 
Scientific Inquiry and Review 

Volume 7 Issue 1, 2023 

 

Monotone Data Modelling Using Rational Cubic Fractal Interpolation 

Function  

Tayba Arooj1, Farheen Ibraheem2*, and Malik Zawwar Hussain3 

1Department of Mathematics, Lahore College for Women University, Pakistan. 
2Deparment of Mathematics, Forman Christian College-A Chartered University-

FCCU, Lahore, Pakistan. 
3Deparment of Mathematics, University of the Punjab, Lahore, Pakistan. 

ABSTRACT 

Geometric modelling of several intricate and complex structures such as 

trees, mountains, clouds, ferns, geographic topography, and coastlines is 

challenging in computer graphics. Traditional splines such as trigonometric, 

polynomial, exponential, and rational fail to simulate this significant class 

of complex structures, which are highly irregular in nature. For this purpose, 

this research develops a novel cutting-edge method for synthesizing and 

modelling structures. The proposed technique; C1 fractal interpolation 

function (FIF) builds an iterated function system (IFS) by integrating fractal 

calculus and rational cubic polynomial functions. Appropriate conditions 

on scaling and shape parameters are derived to help maintain the inherited 

shape qualities of the data. Experiments in numerous scientific domains, 

such as the pharmaceutical and chemical industries have been presented as 

an example, to confirm the usefulness of the suggested model. Moreover, 

the graphic results demonstrated that the developed monotone hybrid model 

(MHM) offers a heterogeneous method for gathering data with a monotone 

structure.  

Keywords: fractal interpolation, hybrid model, monotone interpolation, 

spline functions  

1. INTRODUCTION 

Interpolation is an indispensable tool for estimating the unknown 

function for data modelling. There are numerous interpolation techniques, 

which use various function families, including polynomial, exponential, 

rational, trigonometric, and spline. However, these traditional non-recursive 

approaches resulted in interpolants, which were differentiable several times, 

with the possible exception of a limited number of points and restricted 

model smooth structures. Many signals in the real world and in 
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experimental data are complex and their composition frequently 

demonstrates irregularities and hardly ever appears to be smooth. Thereby, 

interpolants that could picture non-smooth signals, as well as smooth 

structures, were highly required. The prime purpose of this research is to 

provide an innovative framework for the approximate representation of 

non-smooth data from natural (feathers, trees, leaves, clouds, feathers, 

flowers, glaciers, landscapes, and galaxies), engineering or scientific 

phenomena together with the collection of smooth data. A novel form of 

fractal interpolation function is created utilizing the rational spline 

containing a cubic polynomial in the numerator as well as the denominator.  

One of the pivotal characteristics of data generated from countless 

physical phenomena, scientific problems, and engineering applications is 

monotonicity where entities only have a meaning when their values are 

monotone. For instance, in the field of engineering, Tensile Strength, 

Ultimate Tensile Strength or Ultimate Strength is not an uncommon 

concept. It refers to the maximum level of stress that a structure or material 

can tolerate while being pulled or stretched before getting breaking. This 

phenomenon gave rise to monotone data. The applied forces, commonly 

called stress and the stretch, referred to as strain, are always in a monotonic 

relationship where one varies with the change in the value of the other [1]. 

Certain devices, such as; digital-to-analog (DAC used in audio video 

devices) and analog-to-digital (ADC used in music recording and digital 

signal processing), have monotonicity an essential characteristic used in 

feedback control loops [1]. In CAD and DAC, the digital output code 

always increases as the analog voltage input increase and vice versa. 

Monotonicity can be seen in Newton’s law of cooling in which the rate of 

heat loss is directly proportional to the differences in temperature between 

the bodies [2]. 

Monotonicity also appears in other phenomena, such as the content of 

atrazine and nitrate in shallow ground waters, the link between the partial 

pressure of oxygen, and the percentage dissociation of hemoglobin 

percentage dissociation and oxygen partial pressure, erythrocyte 

sedimentation rate in patients with cancer and concentration of uric acid 

level in a patient affected from gout [3]. It is a fundamental function behind 

the renowned ‘Probability theory’ that uses the monotonically increasing 

function of a random variable in its cumulative distribution.  
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Natural phenomena can produce monotonic positive data as well. The 

relationship between a child's height and their intake of food and energy can 

be considered as an example. For instance, height is a positive quantity and 

always goes up. There are several other examples in everyday experiences 

where objects only create meaning when their values are monotonous. 

Examples are surfaces and the dose-response curve in biochemistry and 

pharmacology; consumption function that describes the relationship 

between a household's consumption and its available income in economics, 

statistical approximations of copulas and quasi-copulas, [4] and empirical 

option pricing models in finance [4]. 

Based on different approaches (such as classical spline, spline with 

knots, and fractal spline) various monotonicity-preserving models for 

monotone data have been discussed in the previous literature [1-18]. Spline 

functions have also been used for the solution of partial differential 

equations [19, 20]. Previously, spline functions have become the main tools 

for solving monotonicity problems. For instance, Crisp and Hussain [5] 

solved the issue of monotonicity through Bernstein-Bezier rational cubic 

functions. Spline functions were also used to provide multiple kinds of 

monotonicity methods for bivariate functions on triangles [6]. 

Using different types of spline functions, some other useful techniques 

and algorithms were supplied to address the problem of monotonicity [1, 3, 

7]. Typically, data that comes from experiments (for instance, information 

drawn from signals in the actual world, including seismic information, 

financial series, and bioelectric recordings are complex and immensely 

irregular. As a result, interpolating these data using traditional interpolation 

techniques became an inappropriate challenge. Barnsley [8] made an 

attempt by introducing a new interpolation method called Fractal 

Interpolation using a special type of iterated function system. It provided a 

powerful framework to deal with highly irregular data. However, 

consistently, when it is a prerequisite that the interpolant should reflect the 

inherited shape features (convexity, positivity, monotonicity) of the 

irregular data set, fractal interpolation functions failed to secure the shape 

properties of data.  Later, Barnsley and Harrington [9] noticed that in case 

the problem is of shape preservation type, then the parameters of the IFS 

may be chosen suitably so that the corresponding FIF preserve the inherited 

properties of the data. This observation initiated a striking relationship 
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between the classical splines interpolation functions and the fractal 

interpolation functions.  

Recently, with the help of Barnsley and Harrington’s results, various 

spline functions have been generalized in the form of fractal spline functions 

for instance [4, 10]. Fractal spline [11] though interpolating both regular 

and irregular data does not guarantee that the model satisfies the monotone 

trend lies in their data. Non-monotone visual models of the aforementioned 

experiments misguide us about the actual scenario (which might help 

scientists to recognize and evaluate various patterns and artifacts in their 

data) in these experiments. Hence, the visual model must maintain the 

geometric property of the experimental data in order to achieve precise and 

proficient results.  

The goal of the underlying research is to build a fractal geometry-based 

function to simulate hidden patterns and future behaviour in many 

disciplines. A monotone hybrid model (MHM) which is a combination of 

fractal interpolation function (FIF) and spline interpolation model (SIM) 

was presented for this purpose. The shape-preserving model is then created 

with the help of the proposed function to handle the non-linearity problem 

that the traditional interpolation model was unable to solve. Additionally, 

the proposed class surpasses its conventional non-recursive counterpart in 

approximating monotone functions with varied irregularities/fractality in 

their first derivatives (smooth to nowhere differentiable). 

The proposed hybrid model offered a variety of shape control 

parameters that can be sufficient and highly useful to achieve desired 

results. To meet the objective, a general piecewise rational cubic fractal 

interpolation function (GPRC FIF) [11] is used in the construction of MHM.  

The proposed model has the following useful features in comparison 

with the existing models: 

• The proposed scheme converts the hybrid model [11] to a monotone 

hybrid model. 

• The proposed hybrid model MHM is the generalization of the model 

presented in [7]. 

• Unlike [12], no derivative constraints are imposed in proposed model 

as MHM works for both data and data with derivatives proficiently. 
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• Once, the shape parameters are selected, the curve representation 

becomes unique in its description. 

• Existing methods have no degree of freedom [1, 3, 12, 13], whereas 

the proposed model gives two degrees of freedom. 

• The proposed model works for larger as well as smaller data, whereas 

in [14], constraints are developed on the subinterval lengths for data 

modelling. 

Four shape parameters are used in the proposed model, whereas in [3, 

15] one and two shape parameters are used respectively. The remaining 

sections are structured as follows. Section 2 focuses on a brief introduction 

to the basic methodology of the hybrid model developed in [11]. In 

Section 3, a new scheme is developed, which converts the hybrid model to 

a monotone hybrid model, for solving the problem of monotonicity. 

Whereas the proposed model is tested on different real data sets to verify 

their usefulness in Section 4. Comparative analysis has been presented in 

Section 5 and finally, Section 6 concludes with the significance of the 

proposed study. 

2. METHODOLOGY 

In this section, the hybrid model (GPRC FIF) [11] based on the fractal 

framework and spline function was briefly reviewed. The fractal framework 

was built on an iterative function system (IFS), which is defined below 

comprehensively.   

2.1. IFS Theory  

Let the real interval 𝐼[𝑟1, 𝑟𝑛] be partitioned such that  𝑟1 < 𝑟2 < ⋯ < 𝑟𝑛. 

Suppose the data set is given {(𝑟𝑖, �̂�𝑖) ∈ 𝐼 × 𝐸: 𝑖 = 1,2, … , 𝑛}, where 𝐸 is 

denoted as a suitable compact set containing all  �̂�𝑖′𝑠. Take 𝐼𝑖 = [𝑟𝑖, 𝑟𝑖+1], 
then the two mappings given below would be contraction homeomorphic so 

that 𝜀𝑖: 𝐼 → 𝐼𝑖,  

with    

𝜀𝑖(𝑟1) = 𝑟𝑖,  𝜀𝑖(𝑟𝑛) = 𝑟𝑖+1,   𝑖 = 1,2, … , 𝑛 − 1.                                     (2.1) 

|𝜀𝑖(𝑒1) − 𝜀𝑖(𝑒2)| ≤ 𝑙𝑖|𝑒1 − 𝑒2|,   ∀ 𝑒1, 𝑒2  ∈ 𝐼, for some     0 < 𝑙𝑖 < 1. 

Suppose, 𝐴 = 𝐼 × 𝐸 and there is a mapping   𝜎𝑖: 𝐴 → 𝐸, which is 

continuous if 
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𝜎𝑖(𝑟1, �̂�1) = �̂�𝑖,  𝜎𝑖(𝑟𝑛, �̂�𝑛) = �̂�𝑖+1, 𝑖 = 1,2, … , 𝑛 − 1.                           (2.2) 

|𝜎𝑖(𝑟, 𝑥) − 𝜎𝑖(𝑟, 𝑦)| ≤ 𝜅𝑖|𝑥 − 𝑦| , 𝑟 ∈ 𝐼, ∀ 𝑥, 𝑦 ∈ 𝐸,  for some −1 < 𝜅𝑖 <
1. 

Take   𝜏𝑖: 𝐴 → 𝐴, which is defined as: 

𝜏𝑖(𝑟, �̂�) = (𝜀𝑖(𝑟), 𝜎𝑖(𝑟, �̂�)), ∀ (𝑟, �̂�) ∈ 𝐴.                                               (2.3) 

Where                                             

𝜀𝑖(𝑟) = 𝑎𝑖𝑟 + 𝑏𝑖, 𝜎𝑖(𝑟, �̂�) = 𝜅𝑖�̂� + 𝑔𝑖(𝑟),          

with 𝑎𝑖 =
𝑟𝑖+1−𝑟𝑖

𝑟𝑛−𝑟1
,  𝑏𝑖 =

𝑟𝑛𝑟𝑖−𝑟1𝑟𝑖+1

𝑟𝑛−𝑟1
. 

Here,  𝑔𝑖(𝑟) is any suitable continuous function. The set  {𝐴; 𝜏𝑖: 𝑖 ∈
(1,2,3, ⋯ , 𝑛 − 1)} is termed as an iterative function system. 

2.2.Hybrid Model 

The hybrid model [11] 𝜑 is termed as GPRC FIF corresponding to the 

iterative function system as: 

φ(𝜀𝑖(𝑟)) = 𝜅𝑖φ(r) + 𝑔𝑖(𝑟),                                                                           (2.4) 

with  𝑔𝑖(𝑟) =
𝑃𝑖(𝑟 )

𝑄𝑖(𝑟 )
=

𝑃𝑖(�̂�  )

𝑄𝑖(�̂�  )
, 

where 

𝑃𝑖(�̂� ) = 𝜂𝑖(𝑧𝑖 − 𝜅𝑖�̂�1)(1 − �̂� )3 + (𝜂𝑖ℎ𝑖𝑑𝑖 − (𝑟𝑛 − 𝑟1)𝜂𝑖𝜅𝑖𝑑1 + 𝛿𝑖(�̂�𝑖 −
𝜅𝑖�̂�1))�̂� (1 − �̂� )2 + (−𝜔𝑖ℎ𝑖𝑑𝑖+1 + (𝑟𝑛 − 𝑟1)𝜔𝑖𝜅𝑖𝑑𝑛 + 𝜌𝑖(�̂�𝑖+1 −
𝜅𝑖�̂�𝑛))�̂� 2(1 − �̂� ) + 𝜔𝑖(�̂�𝑖+1 − 𝜅𝑖�̂�𝑛)�̂� 3, 

𝑄𝑖(𝜇 ) = 𝜂𝑖(1 − �̂� )3 + 𝛿𝑖�̂� (1 − �̂� )2 + 𝜌𝑖�̂� 2(1 − �̂� ) + 𝜔𝑖�̂� 3,   �̂�  =
𝑟−𝑟1

𝑟𝑛−𝑟1
,   �̂� ∈ [𝑟1, 𝑟𝑛]. 

Here, 𝜅𝑖 < 1 are the scaling factors, 𝑑𝑖  is the derivative value at the knot 

points and  𝜂𝑖, 𝛿𝑖, 𝜌𝑖 , 𝜔𝑖  are the non-negative shape parameters.  

3. A MONOTONE HYBRID MODEL 

This section sets up a monotone hybrid model (MHM) to solve the 

monotonicity problem present in the hybrid model as defined in [11]. In 

setting up the MHM, certain conditions were imposed to shape the 

parameters and scaling factors, to acquire the desired model. 
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Let, the monotone data set  {(𝑟𝑖, �̂�𝑖) ∈ 𝐼 × 𝐸: 𝑖 = 1,2, … , 𝑛} be distributed 

such that  𝑟1 ≤ 𝑟2 ≤ ⋯ ≤ 𝑟𝑛 with   �̂�𝑖+1 ≥ �̂�𝑖,  𝑖 = 1,2, … , 𝑛 − 1. 

Or alternatively, 

𝜉𝑖 =
�̂�𝑖+1−�̂�𝑖

ℎ𝑖
≥ 0, 𝑖 = 1,2, … , 𝑛 − 1.                                                           (3.1) 

For the function that increases monotonically, the necessary constraints 

were applied on derivative as: 

𝜕𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛.                                                                                 (3.2) 

For the data set increasing monotonically, there are two possibilities. 

Case 1: If   𝜉𝑖 = 0 and 𝜅𝑖 = 0 particularly for some monotone and collinear 

data set, the function defined in Eq. (2.4) is constant in each subinterval. 

Therefore,  

𝜕𝑖 = 𝜕𝑖+1 = 0, 𝑖 = 1,2, … , 𝑛. 

So that   

φ(𝑟) = �̂�𝑖 ,     ∀ 𝑟 ∈ [𝑟1, 𝑟𝑛], 𝑖 = 1,2, … , 𝑛 − 1. 

This demonstrates the process by which a hybrid model automatically 

transforms into a monotonous hybrid model. 

Case 2: If   𝜉𝑖 > 0 and  𝜉𝑖 − 𝜅𝑖𝜉𝑛 > 0 ⟺ 𝜅𝑖 <
�̂�𝑖+1−�̂�𝑖

�̂�𝑛−�̂�1
  , where  𝜉𝑛 =

�̂�𝑛−�̂�1

ℎ𝑖
, for this case, we have the following theorem. 

Theorem 3.1: Suppose {(𝑟𝑖, �̂�𝑖) ∶ 𝑖 = 1,2, ⋯ , 𝑛} be a monotone data set 

such that �̂�𝑖 > 0. Assuming 𝜂𝑖 > 0, 𝜔𝑖 > 0 and  𝜕𝑖 constitute the derivative 

at the knot points �̂�𝑖. Then the corresponding hybrid function GPRC FIF 

converts to monotone hybrid model (preserve monotonicity) in each 

interval if the scaling factors and shape parameters satisfy the following 

condition: 

(i) The scaling factors 𝜅𝑖, 𝑖 = 1,2, … , 𝑛, are picked as: 

0 ≤ 𝜅𝑖 < 𝑚𝑖𝑛{𝑎𝑖, 𝜅1𝑖
∗ , 𝜅2𝑖

∗ , 𝜅3𝑖
∗ } 

(ii) The shape parameters 𝛿𝑖, 𝜌𝑖 , 𝑖 = 1,2, … , 𝑛,  are chosen as: 
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𝛿𝑖 >
𝜂𝑖(𝜕𝑖−

𝜅𝑖
𝑎𝑖

𝜕1)

(𝜉𝑖−𝜅𝑖𝜉𝑛)
,  𝜌𝑖 > 𝑚𝑎𝑥 {

𝜔𝑖(𝜕𝑖+1−
𝜅𝑖
𝑎𝑖

𝜕𝑛)

(𝜉𝑖−𝜅𝑖𝜉𝑛)
 , (

3𝜂𝑖𝜔𝑖−𝛿𝑖𝜔𝑖(𝜕𝑖+1− 
𝜅𝑖
𝑎𝑖

𝜕𝑛)

𝛿𝑖(𝜉𝑖−𝜅𝑖𝜉𝑛)+𝜂𝑖(𝜕𝑖− 
𝜅𝑖
𝑎𝑖

𝜕1)
)}. 

where  

𝜅1𝑖
∗ =

𝑎𝑖 𝜕𝑖+1

𝜕𝑛
,     𝜅2𝑖

∗ =
𝑎𝑖𝜕𝑖

𝜕1
, 𝜅3𝑖

∗ =
�̂�𝑖+1−�̂�𝑖

�̂�𝑛−�̂�1
 

Proof: Take the monotone data set into consideration without losing 

generality and 

φ(𝜀𝑖(𝑟)) = 𝜅𝑖φ(r) + 𝑔𝑖(𝑟) 

It is clear from single variable calculus that the function, φ(𝜀𝑖(𝑟)) is 

monotone increasing (decreasing) if and only if  φ(1) ≥ 0 (φ(1) ≤ 0 ).  

Here, φ is FIF, so derivative φ(1) is also FIF and satisfies functional 

equation. After careful calculation, we arrived at the following equation by 

differentiating the above equation with respect to r.                                

φ(𝜀𝑖(𝑟))
(1)

=
𝜅𝑖 𝜑(𝑟)(1)

𝑎𝑖
+ 𝑔𝑖

(1) (𝑟)                                                                (3.3) 

The hybrid function defined in (4) becomes monotone hybrid model if 

φ(1) ≥ 0 and only if  𝑔𝑖
(1) ≥ 0 for all 𝑟 𝜖 [𝑟𝑖, 𝑟𝑖+1] . 

Taking that 𝜅𝑖 ≥ 0 ∀ 𝑖 ∈ {1,2,3, ⋯ , 𝑛}, it is evident that φ(1) ≥ 0 ,∀ 𝑟 ∈
 [𝑟1, 𝑟𝑛] if 

 𝑔𝑖
(1) (𝑟) = ∑ �̂�𝑗𝑖

6
𝑗=1  

�̂�  6−𝑗(1−�̂�  )𝑗−1

[𝑞𝑖(�̂�  )]2 ≥ 0 , ∀ 𝜇 ∈ [0,1].                              (3.4) 

where 

�̂�1𝑖 = 𝜔𝑖
2(𝜕𝑖+1 −

𝜅𝑖

𝑎𝑖
𝜕𝑛), 

�̂�2𝑖 = �̂�1𝑖 + 2𝜔𝑖(𝛿𝑖(𝜉𝑖 − 𝜅𝑖𝜉𝑛) − 𝜂𝑖(𝑑𝑖 −
𝜅𝑖

𝑎𝑖
𝜕1)), 

�̂�3𝑖 = (�̂�2𝑖 − �̂�1𝑖) − (3𝜂𝑖𝜔𝑖 − 𝛿𝑖𝜌𝑖(𝜉𝑖 − 𝜅𝑖𝜉𝑛)) + (𝛿𝑖𝜔𝑖(𝜕𝑖+1 −
𝜅𝑖

𝑎𝑖
𝜕𝑛) +

𝜂𝑖𝜌𝑖(𝜕𝑖 −
𝜅𝑖

𝑎𝑖
𝜕1)), 

�̂�4𝑖 = (�̂�5𝑖 − �̂�6𝑖) − (3𝜂𝑖𝜔𝑖 − 𝛿𝑖𝜌𝑖(𝜉𝑖 − 𝜅𝑖𝜉𝑛)) + (𝛿𝑖𝜔𝑖(𝜕𝑖+1 −
𝜅𝑖

𝑎𝑖
𝜕𝑛) +

𝜂𝑖𝜌𝑖(𝜕𝑖 −
𝜅𝑖

𝑎𝑖
𝜕1)), 
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�̂�5𝑖 = �̂�6𝑖 + 2𝜆𝑖(𝜌𝑖(𝜉𝑖 − 𝜅𝑖𝜉𝑛) − 𝜔𝑖(𝜕𝑖+1 −
𝜅𝑖

𝑎𝑖
𝜕𝑛)), 

�̂�6𝑖 = 𝜂𝑖
2(𝜕𝑖 −

𝜅𝑖

𝑎𝑖
𝜕1). 

The denominator in Eq. 3.4 being a squared quantity is always positive. 

Furthermore, if 𝜂𝑖 ≥ 0 and 𝜔𝑖 ≥ 0, the sufficient conditions for 

monotonicity in each subinterval [𝑟𝑖, 𝑟𝑖+1] are: 

�̂�𝑗𝑖  ≥ 0 ,    𝑗 = 1, 2, ⋯ ,6.   �̂�1𝑖 ≥ 0 ⟺ 𝜅𝑖 ≤
𝑎𝑖𝜕𝑖+1

𝑑𝑛
,                                 (3.5) 

�̂�6𝑖 ≥ 0 ⟺ 𝜅𝑖 ≤
𝑎𝑖𝜕𝑖

𝜕1
   .                                                                                    (3.6) 

Also from Eq. (2.1), it implies that 𝜑 ∈  𝐶1[𝑟1, 𝑟𝑛], 

whenever  

−𝑎𝑖 < 𝜅𝑖 <  𝑎𝑖  

and 

  𝜉𝑖 − 𝜅𝑖𝜉𝑛 > 0 ⟺ 𝜅𝑖 <
�̂�𝑖+1−�̂�𝑖

�̂�𝑛−�̂�1
.                                                            (3.7) 

However,   �̂�2𝑖 >0 ⟺ 𝛿𝑖 >

𝜂𝑖(𝑑𝑖−
𝜅𝑖
𝑎𝑖

𝜕1)

(𝜉𝑖−𝜅𝑖𝜉𝑛)
.                                                        (3.8) 

Similarly,  �̂�5𝑖 > 0 ⟺ 𝜌𝑖 >
𝜔𝑖(𝜕𝑖+1−

𝜅𝑖
𝑎𝑖

𝜕𝑛)

(𝜉𝑖−𝜅𝑖𝜉𝑛)
.                                              (3.9) 

Finally, both �̂�3𝑖 > 0 and �̂�4𝑖 > 0 iff 

𝜌𝑖 > (
3𝜂𝑖𝜔𝑖−𝛿𝑖𝜔𝑖(𝜕𝑖+1−

𝜅𝑖
𝑎𝑖

𝜕𝑛)

𝛿𝑖(𝜉𝑖−𝜉𝑛)+𝜂𝑖(𝑑𝑖−
𝜅𝑖
𝑎𝑖

𝜕1)
),                                                                (3.10) 

provided 

𝛿𝑖 >
𝜂𝑖(𝜕𝑖−

𝜅𝑖
𝑎𝑖

𝜕1)

(𝜉𝑖−𝜅𝑖𝜉𝑛)
. 

Hence, the results of Eq. 3.5-3.10, proved the theorem. 

Corollary 1: If 𝜅𝑖 = 0, 𝑖 = 1,2, … , 𝑛 − 1  in above Theorem 3.1, the 

sufficient condition convert to  
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𝛿𝑖 >
𝜂𝑖𝜕𝑖

𝜉𝑖
 , 𝜌𝑖 > 𝑚𝑎𝑥 {

𝜔𝑖𝜕𝑖+1

𝜉𝑖
 , (

3𝜂𝑖𝜔𝑖−𝛿𝑖𝜔𝑖𝜕𝑖+1

𝛿𝑖𝜉𝑖+𝜂𝑖𝜕𝑖
)}. 

This is sufficient condition of monotonicity for classical GPRC. 

𝟒.  RESULTS AND DISCUSSION 

This section presents two experiments, which demonstrated the validity 

and adaptability of the proposed MHM. In these experiments, the 

derivatives values were calculated through geometric mean method. The 

monotone data set taken in Table 1 presents the experimental result 

concerning the watering the great northern beans. Distilled water with pH 

of 8.5 and Potassium Hydroxide was combined in the chemical solution, 

which was later used to watering the beans. After 40 days, the beans plant 

was taken out from vat to weight for the effect of chemical solution. It can 

be easily noticed that resulting data is monotone. The r-values represented 

the days and the v-values showed the height of beans. 

Table 1. Height of Great Northern Beans 

i 1 2 3 4 5 6 7 8 

𝒓𝒊 1 2 12 18 24 30 36 40 

�̂�𝑖 0 0 0.42 2.08 3.43 3.78 4.12 4.37 

The data demonstrated in Table 1 is monotone; therefore, the resulting 

curve must be monotone. However, from Figure 1, which is constructed 

through hybrid model [11] it can be observed that the arbitrary value (𝜂𝑖=7, 

𝛿𝑖=4, 𝜌𝑖=8.2, 𝜔𝑖=99, 𝜅𝑖=0.9) does not preserve the inherited monotonicity 

of the curve.  On the other hand, Figure 2 displays multiple curves, which 

are produced through the proposed MHM. In Figure 2, it is found that the 

curve at different iterations preserve the essential characteristic of the data, 

which is monotonicity, proficiently. Figures 3 and Figure 4 highlighted the 

effect of diverse values of  𝜆𝑖 and 𝜔𝑖 ,rescpectively. The data presented in 

these figures showed that with different choices of parameter values through 

MHM, monotone curve of any particular requirement may be easily gained. 

The monotone data set in Table 2 reports the varying degree of 

saturation of hemoglobin with partial pressure of oxygen. It was observed 

that saturation of hemoglobin was directly proportional to the partial 

pressure of oxygen. The r-values represented the partial pressure of oxygen 

and z-values indicated the percentage of saturation. 
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Table 2. The varying ability of hemoglobin 

𝒊 1 2 3 4 5 

𝒓𝒊 0 2 8 10 18 

�̂�𝑖 0 70 91 91 110 

The data demonstrated in Table 2 shows the monotone relationship, 

therefore, the curve must exhibit the same characteristic. Figure 5 is 

generated through the random values to the shape parameters and scaling 

factors (𝜂𝑖=2.9, 𝛿𝑖=3, 𝜌𝑖=7, 𝜔𝑖=15, 𝜅𝑖=0.7) in the description of hybrid 

model as defined in Eq. (2.4). Figure 5 depicts non-monotone hemoglobin 

dissociation curve (HDC) which does not make any sense, as the behaviour 

of the curve should retain monotonicity. This flaw is removed in Figure 6 

by using the proposed method presented in Section 3. It can easily be 

observed that Figure 6 conserve monotonicity at each level of iterations. 

Figures 6 and 7 showed the profile of HDC with diverse values of 𝜂𝑖 and 𝜔𝑖. 

It is worth noticing that although various parameters may lead to different 

results but all conserve monotonicity. 
 

  

Figure 1.  Hybrid model [1] Figure 2.  MHM using 𝜂𝑖 = 0.5, 

𝜔𝑖 = 70 
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Figure 3. Effect of  𝜼𝒊 using 𝝎𝒊 =
𝟗𝟗𝟖𝟏 

Figure 4. Effect of  𝜔𝑖 using 𝜂𝑖 =
87.65 

 

 

Figure 5. Hybrid model[1] Figure 6. MHM using 𝜂𝑖 =
73665, 𝜔𝑖 = 115 

  

Figure 7. Effect of  𝜂𝑖 using 

𝜔𝑖 = 3.8 

Figure 8. Effect of  𝜔𝑖 using 𝜂𝑖 =
0.00001 
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4.1. Comparative Analysis 

The proposed method guarantees to produce monotone model as 

compared to the hybrid model [11], which does not ensure to exhibit 

monotone model when data is monotone. All the existing models [3, 12, 

13], failed to provide even a single degree of freedom, so MHM was a 

noteworthy addition as it offered two degree of freedom to modify and 

enhance the model. Unlike, [14] and [12], it is easy in the applicability, as 

it does not constrain the interval length or impose any conditions on 

derivatives, respectively. The scheme developed in [7] only works for 

regular data but the proposed approach, which is generalization of [7] is 

applicable for both regular and irregular datasets.  

4.2. Conclusion  

General Piecewise Rational Cubic Fractal Interpolation Function 

(GPRCFIF) was developed to provide a deeper understanding of the data, 

which displays rough, irregular, and fragmented configuration. Generally, 

it originates from complex functions or experiments. The GPRCFIF offers 

the family of four parameters and one scaling factor to modify, upgrade, 

and change the visual images. One of the most prominent characteristics of 

the GPRCFIF is its capacity to visualize data with smooth curves by setting 

all scaling factors to zero.  The current study, in particular addressed the 

problem of monotonicity through the novel proposed model MHM. The 

experimental results illustrated that the performance of the proposed MHM 

was very efficient and heterogeneous as it contains the ability (due to 

recursive nature) to produce multiple monotone curves for the same 

monotone data according to the user’s desire.  
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