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Abstract  

A third order parallel algorithm is proposed in this article to solve one dimensional 
non-homogenous heat equation with integral boundary conditions. For this 
purpose, we approximate the space derivative by third order finite difference 
approximation. This parallel splitting technique is combined with Simpson’s 1/3 
rule to tackle the nonlocal part of this problem. The algorithm developed here is 
tested on two model problems. We conclude that our method provides better 
accuracy due to the availability of real arithmetic.  

Keywords: parabolic partial differential equation, non-local boundary conditions, 
finite difference scheme, integral boundary condition. 

1. Introduction 

Partial differential equations (PDEs) with initial/boundary conditions (IBC) emerge 
from the mathematical models of real world problems. The PDEs often appear as 
mathematical equations relating various quantities and their derivatives, e.g., the 
movement of a particle in a straight line, the movement of a rocket, heat transition, 
vibration of a molecule and change in the molecular composition of a substance 
etc. Each one of these problems is represented by an elliptic, hyperbolic or parabolic 
partial differential equation (PPDE) and could be homogenous, in one, two or three 
dimensions with non-local boundary conditions (NLBC) along with initial 
conditions existing in the prose. In the family of PDEs, one of the most important 
class is PPDEs with NLBC. This class has been studied by different authors. In real 
life problems, parabolic equations with integral boundary conditions have a number 
of applications and sometimes we require only their numerical solutions. Thus 
PPDEs with NLBC have a considerable impact in fields like electrochemistry, 
biological and medical sciences and population dynamics [1]. The study of PPDEs 
with IBC is a well-motivated problem. Whenever it is difficult to develop a 
mathematical model which contains PPDEs, then nonlocal conditions are widely 
used in the development of such models pertaining to different physical phenomena 
[2]. The integral IBCs are the generalized form of discrete but regular IBCs. More 
specifically, when the boundaries are inaccessible then nonlocal conditions arise 
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during modeling. These partial differential equations are solved by using explicit 
and Nikolson finite difference (FD) scheme by various authors. Richardson [3] 
developed the FD technique to solve PDEs. Hartree and Womersley [4] proposed 
the solution of a PDE with some boundary conditions (BC) using FD 
approximation. The FD techniques are made by using Taylor expansion. Cannon 
[5] and Batten [6] independently discuss the development of nonlocal BC PPDEs. 
Kamynin [7] and Ionkin [8] investigated PPDEs with nonlocal BC for their 
numerical treatment. Such conditions appear in the modeling of plasma physics, 
thermal elasticity, heat transmission theory etc [9, 10]. This is the reason PPDEs 
with NLBC have gained a particular significance in the past and also in the present 
era. In order to tackle integral conditions which appeared in PDEs many techniques 
have been proposed in literature and some of these include finite element method, 
boundary element procedure, spectral schemes, Adomian decomposition approach 
and the semi-discretization technique [11, 12, 13, 14]. Dehghan [15] proposed 
three-level explicit finite difference method for the solution of wave 2 equation that 
merges integral and Neumann condition. Ang [16] developed a numerical 
technique for solving wave equation with NLBC whose basic assumption is an 
integro-differential equation and localized interpolating functions. Ramezani and 
his coworkers [17] introduced another numerical technique by combining FD and 
the spectral method to obtain numerical solutions of hyperbolic equations subject 
to NLBC. Bouziani and Benourar [18] studied a mixed PDE which more likely 
belongs to the class of hyperbolic equations with NLBC in terms of its numerical 
solution. Cannon and Lin [19, 20] provided a theoretical approach for the solution 
of PPDEs with NLBC. Dehgan utilized FD schemes [21, 22] and changed Tau 
method [23] for the solution of a related problem. Now we present the model 
problem described here. The one dimensional non homogeneous heat equation is 
given by 

2
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where ζ(x, t),F(x), ଵ(t),	 ଶ(t),  (x) are known and T is a given constant. 
Different examples of related problems of parabolic equations have been taken into 
account by many authors [24, 25, 26]. Taj et al. [27] proposed the numerical 
technique for the solution of PPDEs by utilizing FD scheme and Pade 
approximation. Rehman et al. [28] proposed the solution of PPDEs with NLBC by 
combining parallel method with Simpson’s 1/3 rule. Following a similar approach, 
we will utilize Simpson’s 1/3 rule for NLBC by combining it with parallel splitting 
algorithm to obtain a system of z linear ordinary differential equations. The Pade’s 
approximation will be used to approximate matrix exponential function [27]. 

2. Non Local Boundary Conditions Treatment 

Let us take a positive odd integer z ≥ 9 and split spatial range [0, 1] into 
further z + 1 intervals of length h provided that (z + 1)h = X. Let us also split the 
open ended variable of time t into subintervals of length l which results into a 
rectangular mesh having coordinates (xE, zn) = (mh, nl)(m = 0, 1, 2, ..., z, z + 1) and 
(n = 0, 1, 2, 3, ...), provided a region R = [0 < x < 1] × [t > 0] of mesh points and its 
boundary ∂R involving lines x = 0, x = 1 and t = 0. Consider third order FD scheme 
given by 

 
2 4 6

2 5
1 1 2 32 6

( , ) 1 ( , )
11 20 6 4 ( ),    

12 90
          as h 0, j=1,2,...,z 2                                                (5)

j j j j j

u x t h u x t
h u u u u u O h

x x   

 
      

 
 

 

By applying Eq. (5) in equation Eq. (1), we get a compact form as follows 
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This system of ordinary differential equations is valid only for the mesh 
points (x, t) = (xm, tn) with m = 1, 2...z − 2. Hence we need to develop special FD 
approximations for remaining mesh points in order to get the same accuracy. So, 
for m = z−1, z the third order FD schemes with the same accuracy are given by 
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By applying Eqs. (6) and (7) in equation Eq. (1), we obtain two differential 

equations 
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2
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At any time level t = tn, we get a system of z linear ordinary differential 
equations with z+2 unknowns functions U0, U1, .....Uz+1 which emerge by applying 
FD approximations to our model problem. The NLBC in Eqs. (4) and Eq. (4) are 
tackled with the help of Simpson’s 1/3 rule in the following way [28], 
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In the next few lines we will elaborate the development of system of 
ordinary liner differential equations for z = 11. Putting z=1,2,3,...,9 in Eq. (6) 
respectively, we get 
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 29
8 9 10 11 12 92
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and putting z = 10 in Eq. (6) 
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12

du
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similarly putting z = 11 in Eq. (7) 
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In this way, we can generalize the algorithm and the system of equation can 
be written in matrix-vector form as 

( )
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where T denotes transpose and coefficient matrix will transform as 
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The quantities in the matrix are given by 

ߦ ൌ െ20 െ 12݄ଶ 

Where 
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2 2 4 1
1
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The solution of system (15) with (2) is given by [27] 
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To surmise the lattice exponential in (2), we utilize the normal approximation for 
genuine scalar (θ) which is of the shape 
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Choosing the estimations of parameters a1, a2, a3 as  
ଽଵ

ଶ
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ଵ	

ଵ
  so that 

the strategy utilizes only real arithmetic when p and q are factorized into straight 
components. The fundamental term showing up in condition (2) is approximated as 

1 1 2 2 3 3exp[( ) ] ( ) v(s )+ v(s ) v(s )                                   (32)
t l
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1 2 3 1 2 3 s s s  and W,W  and W  .where are matrices   We have [27] 

1 1exp[( ) ] s  = M , k = 1,2,3,                                  (33)
t l k k

j j kt
t l s A s ds W

      

With 



Third Order Parallel Splitting Method for Nonhomogeneous Heat Equation with 
Integral Boundary Conditions 

 
76 
 

1 1 1
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3.  Applications 

Here, we will apply the method develop in the above section to two model 
problems already found in literature. 

Example 1 

Assume the heat equation 

 
2

2
2

0,1 , (380 )2 , ,
u

u t t x t Tx
t

u

x

 
      

 
 

with initial condition 

 0,1 ,(0, ) , 0 , (39)u t x t Tx    

 and the integral BCs 

1 2

0

1
( , ) , 0 (40)

2
x t dx t t Tu      

1 2

0

1 1
( , ) , 0 (41)

3 2
xu x t dx t t T     

Table 1. Error table for example 1 with l=0.00001 

l=10-5 Exact  
Solution 

Approximate 
Solution      

Relative 
Error 

  N=7       1.124980  1.124991   9.6736ൈ10-6 

  N=9        1.099980  1.099906   9.6751ൈ10-6 

  N=11       1.083313  1.083324   9.6775ൈ10-6 

  N=13       1.071409  1.071419   9.6287ൈ10-6 

  N=15       1.062480  1.062492   9.5876ൈ10-6 

 

We can make sure that the exact solution to this problem is   2,u x t x t   [29]. 

The numerical solution of the problem is obtained by the method described in the 
above sections for different values of ℓ= 0.00001, 0.0000001 and z = 7,9,11, 13, 
15. The relative error and absolute error are given in Table 1 and Table 2. The 
results obtained here are very precise which shows that this method is very accurate. 

Example 2 

Assume the heat equation 

   
2

2
0,1 , (42)10 2 , 0 ,tu

u x e t T
t t

u
x

x
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with initial condition 

 0,( 10, ,) 5 , 0 , (43)u t x tx T     

 and the integral BCs 

1

0

9
( , ) , 0 (44)

2
tx t dx e tu T     

1

0

13
( , ) , 0 (45)

6
txu x t dx e t T    

The exact solution for the issue is ( , ) (5 ) tu u t x e   [29]. The numerical 
solution of the problem is obtained by the method described in the above sections 
for different values of l = 0.00001, 0.0000001 and z = 7, 9, 11, 13, 15. The relative 
error and absolute error are given in Table 3 and Table 4. The results obtained here 
are very precise which shows that this method is very accurate. 

Table 2. Error table for example 1 with l=0.0000001 

 
Table 3. Error table for example 2 with l=0.00001 

l=10-5 Exact  
Solution 

Approximate 
Solution      

Relative 
Error 

  N=7       12.23215  12.23222   6.2741ൈ10-6 

  N=9        12.23215   12.23223   6.3084ൈ10-6 

  N=11       12.23215  12.23222   6.3283ൈ10-6 

  N=13       12.23215  12.23222   6.3376ൈ10-6 

  N=15       12.23215  12.23222   6.3432ൈ10-6 

 

Table 4. Error table for example 2 with l=0.0000001  

l=10-7 Exact solution Approximate 
Solution 

Relative Error       

 N=7 1.124999 1.125007 6.5984ൈ10-6 

 N=9 1.099999 1.100009 8.2648ൈ10-6 

N=11 1.083333 1.083344 9.6225ൈ10-6 

N=13 1.071428 1.071439 1.0778ൈ10-6 

N=15 1.062499 1.062512 1.1567ൈ10-6 
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l=10-7 Exact  
Solution 

Approximate 
Solution      

Relative 
Error 

  N=7       11.21291 11.21297 5.6001ൈ10-6 

  N=9        11.14495 11.14503 6.9319ൈ10-6 

  N=11       11.09965 11.09974 7.9881 ൈ10-6 

  N=13       11.06729 11.06739 8.9277ൈ10-6 

  N=15       11.043018 11.043012 9.5369ൈ10-6 

4. Conclusion and Discussion  

In this work, we have developed a new method for solving 
nonhomogeneous PPDEs with NLBC. A third order FD scheme is deployed to heat 
equation to get numerical approximations at grid points. Simpson’s 1/3 rule is used 
to tackle integral boundary conditions which help in the construction of a system z; 
ordinary differential equation with Z variables. The main role of Simpson’s 1/3 rule 
is the elimination of two additional variables which arise due to NLBC. The 
developed method is applied to two test problems found in literature and the 
numerical results obtained here are highly accurate due to the use of real arithmetic 
only. This technique can be easily coded in serial or parallel computing 
environment. 
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