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Construction and Analysis of a Nonstandard Computational Method 

for the Solution of SEIR Epidemic Model 

Fazal Dayan * and Muhammad Iqbal 

Department of Mathematics, School of Science, University of Management 

and Technology, Lahore, Pakistan 

ABSTRACT 

This paper is concerned with the numerical methods of susceptible exposed 

infectious recovered (SEIR) epidemic model of coronavirus disease 2019 

(COVID-19). The model is explicated numerically with three numerical 

schemes, forward Euler, Runge-Kutta of order 4 (RK-4), and the proposed 

non-standard finite difference (NSFD) technique, respectively. In the 

epidemic model of infectious diseases, positivity is the main property of a 

consistent framework, since the negative value of a subpopulation is 

useless. The NSFD technique ends up being a more important and trustable 

numerical system than forward Euler and RK-4 techniques since it 

preserves positivity, stability, and convergence. On the contrary, forward 

Euler and RK-4 schemes do not hold these characteristics for some choices 

of step sizes. Numerical simulations confirmed the findings. 

Keywords: convergence, NSFD method, SEIR model, stability 

1. INTRODUCTION 

In 1965, scientists identified the first human coronavirus case [1]. Later 

on, experts discovered a group of related human and animal illnesses caused 

by a family of viruses named coronaviruses after their crest-like appearance. 

People can contract seven types of coronavirus infections. COVID-19 

sickness is a serious illness brought on by the SARS-CoV-2 infection [2]. 

The SARS-causing strain first appeared in southern China in 2002 and 

quickly spread to 29 different nations. By July 2003, 774 individuals had 

died and more than 8,000 had been infected [3]. Fever, headaches, and 

breathing problems, such as coughing and shortness of breath, are all 

brought on by coronavirus infection [4].  

Middle East Respiratory Syndrome (MERS) first appeared in Saudi 

Arabia. Many people who were exposed to it developed difficulty in 

breathing. It was difficult to treat the respiratory illnesses of such people 
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and they could not recover without needing special care. People who have 

hidden illnesses, such as diabetes, cardiovascular disease, or risky 

development, are more likely to transfer recognized illnesses. Being 

educated about the condition and how the disease spreads is the greatest 

strategy to prevent and tone down its transmission.  

On December 31, 2019, WHO received information regarding instances 

of pneumonia in Wuhan City, China with enigmatic explanations. On 

January 7, 2020, Chinese experts identified an original coronavirus as the 

cause and gave it the temporary designation ‘2019-nCoV’ [5]. According to 

[6], USA and Brazil are the two nations that are most affected by COVID-

19. Dhandapani et. Al provided stiff, fuzzy IRD-14 day average 

transmission model of COVID-19 pandemic disease [7]. To examine the 

factors involved in the spread of the coronavirus pandemic in Pakistan and 

its potential controls, S. Ullah and M.A. Khan developed a numerical model 

[8]. Duccio and Fanelli focused on the ephemeral aspects of the coronavirus 

disease 2019 in China, Italy, and France for the time period January 22 - 

March 15, 2020 [9]. The focus of Xiao and Ruan [10] remained on a 

pandemic model without a monotonic occurrence rate. The prescribed 

model depicts the psychological impact of specific illnesses on the local 

population as the number of infectious agents increase.  

Since the spread of coronavirus has resulted in a pandemic, numerous 

mathematicians have conducted various analyses to create a model to 

predict its expansion [11–29]. 

The NSFD scheme was introduced by Mickens [23]. The construction 

of the NSFD mathematical model for a two-layered differential condition 

was the focus of Cresson and Pierret [24], who also investigated the model's 

various aspects, such as combination and solidness of the plan, among 

others. Selected mathematical models were established and tested using the 

RK method. Euler algorithm for requests 2 and 4 were completed. In order 

to account for a jungle fever model, Anguelov et al. [25] constructed the 

NSFD plot and investigated its dependability and constituent parts. To 

resolve the nonlinear Riccati differential condition, Riaz et al. [26] 

presented a very stable non-standard limited distinction (NSFD) strategy. 

By comparing the results to those of other mathematical operations, such as 

Euler and RK-4, the proposed model’s accuracy and productivity were 

verified. A dynamic model for infection transmission components was 

proposed by Rafiq et al. [27].  
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A mathematical model is developed in the current study by comparing 

the results with prominent mathematical schemes including the Runge-

Kutta approach and the Euler scheme. In order to investigate how insect 

vectors affect the development of plant diseases, Rafiq et al. [28] proposed 

a one-of-a-kind, genuinely stable, non-standard finite differentiation 

(NSFD) numerical arrangement. Numerical assessments were supplied and 

the outcomes were distinguished. In order to plan the proposed model and 

determine the value of the limit boundary 𝑅0 for the model, Rafiq et al. [29] 

developed a model consisting of nonlinear differential conditions. To 

analyze the susceptible exposed infected recovered (SEIR) dynamic model 

of COVID-19 (coronavirus) with reference to bimodal infection 

transmission in vulnerable populations, Ahmed et al. [30] proposed a 

construction protecting nonstandard limited distinction plan. The suggested 

mathematical framework produced workable arrangements for the 

perplexing bi-modular SITR nonlinear model, combined actually consistent 

states, and reflected dynamic consistency with the perpetual feel of the 

model. The model's analysis revealed that it maintained some stability at 

focused consistent states. For the mathematical setup of the SEIR response 

dispersion pandemic model, [31] provided two innovative NSFD schemes. 

Moreover, [32] proposed an SIR model in a fuzzy environment. Euler, 

Runge Kutta of order 4 (RK-4, and the NSFD methods respectively were 

developed with fuzzy extensions for the solution of the model. Dayan et al. 

presented rumor based fuzzy model and developed an NSFD scheme for its 

solution [33]. Some researchers studied fuzzy epidemic models using NSFD 

schemes [34, 35]. Ali et al. applied the NSFD scheme for the numerical 

solution of a cancer disease model [36]. Alsallami et al. used Euler, RK, and 

NSFD methods to solve a real-world problem [37]. 

The remainder of this article is structured as follows. Model formulation 

is presented in Section 2. Section 3 discusses the model's equilibrium states, 

stability, and threshold analysis. Section 4 presents numerical simulation 

and discussion of the results, while Section 5 displays the numerical results. 

The novelty of the current work lies in the fact that the proposed model has 

not been analyzed before using the NSFD method.  

2. SEIR MODEL FOR COVID-19 

Consider the model  
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𝑑𝑆 

𝑑𝑡
=  Λ − µ𝑆 −

𝛽𝑆𝐼

𝑁
                                                                                       (2.1) 

𝑑𝐸 

𝑑𝑡
=  
𝛽𝑆𝐼

𝑁
− (𝜇 + 𝜖)𝐸                                                                                   (2.2) 

𝑑𝐼 

𝑑𝑡
= 𝜖𝐸 − (𝛾 + µ + 𝛼)𝐼                                                                              (2.3) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅                                                                                                   (2.4) 

2.1. Theorem  

The system (1 − 4) has a DFE point  (𝑆0 , 𝐸0 ,𝐼0 ,𝑅0 ,) =  (
Λ

𝜇
 , 0, 0, 0) 

and an endemic equilibrium point (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) = (
Λ

μ+
𝛽𝐼

𝑁
 
 ,

𝛽𝑆𝐼

𝑁

(𝜇+𝜖)
 ,

𝜖𝐸 

γ+µ+α
 ,
𝛾𝐼

𝜇
),  respectively. 

2.2. Basic Reproductive Number  

By incorporating the next generation matrix (NGM) approach, the value 

of  R0 is determined. Let  𝑋 = [𝑆, 𝐸]𝑡 , then 
𝑑𝑋

𝑑𝑡
 =  y(x) −  z(x),  where 

𝑌(𝑥) = (
𝛽𝑆𝐼

𝑁
0

) 

and 

𝑍(𝑥) = (
(µ +  𝜖)E

(+γ +  µ + 𝛼)I −  𝜖E
). 

Y and Z are now the Jacobeans of the 𝑌(𝑥) and z(x) respectively at 

DFEP. They are listed below.  

𝑌 = (0 𝛽
𝛽 ∧

𝜇𝑁
0 0

) 

and 
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𝑍 = (
(µ +  𝜖) 𝑂
−𝜖 γ +  µ +  α

). 

 Inverse of matrix Z is 

𝑍−1 = 

(

 
 

1

(µ +  𝜖)
𝑂

𝜖

(µ +  𝜖)(γ + µ + 𝛼) 

1

(γ + µ + 𝛼)
)

 
 
.    

Computing the product  Y 𝑍−1  we get, 

𝑌𝑍−1 = (0 𝛽
𝛽 ∧

𝜇𝑁
0 0

)

(

 
 

1

(µ +  𝜖)
𝑂

𝜖

(µ +  𝜖)(γ + µ + 𝛼) 

1

(γ + µ + 𝛼)
)

 
 

 

𝑌𝑍−1 = (
𝛽𝜖

(µ + 𝜖)(γ+µ+𝛼) 

𝛽

(γ+µ+𝛼) 

0 0
). 

Calculating the spectral radius of 𝑌𝑍−1 we get, 

 𝜆 =
𝛽𝜖

(µ +  𝜖)(γ + µ + 𝛼) 
. 

The spectral radius of 𝑌𝑍−1 is equable to  R0 which is the maximal 

eigenvalue of  𝑌𝑍−1.  

Therefore, 

R0 =
𝛽𝜖

(µ +  𝜖)(γ + µ + 𝛼) 
.                                                                          (2.5) 

2.3. Normalized Forward Sensitivity Index (NFSI) 

Chitins developed the idea of sensitivity indices by calculating the 

sensitivity indices of R0 [38]. A parameter's normalized forward sensitivity 

index (NFSI) is calculated as NFSI(ζ) =
ζ ∂

R 𝑜 ∂ζ
(R0).  

The NSFIs of 𝛽, 𝜖, 𝛽, 𝛾, and 𝛼 are clalculated as follows: 

NFSI(𝛽) =
𝛽 ∂R0

R 𝑜 ∂𝛽
=

𝛽
𝛽𝜖

(µ + 𝜖)(γ+µ+𝛼)

 
∂(𝛽𝜖)

(µ + 𝜖)(γ+µ+𝛼)
= 

(µ + 𝜖)(γ+µ+𝛼)  

ϵ 
   

ϵ

(µ + 𝜖)(γ+µ+𝛼) 
= 1. 
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Similarly,  

NFSI(𝜖) =
𝜖
𝛽𝜖

(µ + 𝜖)(γ+µ+α) 

 
∂𝛽𝜖

 ∂𝜖(µ + 𝜖)(γ+µ+𝛼) 
 =  

µ

(µ + 𝜖)
. 

NFSI(µ) =  −
γ 

(µ + 𝜖)(γ+µ+𝛼) 
, and 

NFSI(𝛼) =
𝛼  

(γ+µ+𝛼)
. 

These findings unambiguously demonstrate that 𝛽 is the most sensitive 

parameter. 

2.4. Stability Analysis 

The Jacobean of the system (1-4) is 

 𝐽 =

(

 
 
 
𝜇 − 𝛽

𝐼

𝑁
0 −𝛽

𝑆

𝑁
0

𝛽
𝐼

𝑁
−(µ +  𝜖) 𝛽

𝑆

𝑁
0

0 −𝜖 −(γ + µ + 𝛼) 0
0 0 γ −𝜇)

 
 
 

 

𝐽(𝜉0)  =

(

 
 

𝜇 0 −𝛽 0

𝛽
𝐼

𝑁
−(µ +  𝜖) 𝛽 0

0 −𝜖 −(γ + µ + 𝛼) 0
0 0 γ −𝜇)

 
 

 

If the absolute eigenvalues of 𝐽(𝜉0) are smaller than unity, that is, |𝜆𝑖 | 
< 1, i = 1, 2, 3. The numerical scheme converges in all cases. The eigenvalue 

from the aforementioned Jacobean matrix were extracted, where 𝜆1 = 𝜆4= 

−µ, 𝜆2 =−(µ +  𝜖), and  𝜆3 =  −(γ + µ + 𝛼). 

2.4.1. Stability at Endemic Equilibrium Point. Jacobean matrix at 

the EE point is 

𝐽(𝐸∗) =

(

 
 
 
𝜇 − 𝛽

𝐼∗

𝑁
0 −𝛽

𝑆∗

𝑁
0

𝛽
𝐼∗

𝑁
−(µ +  𝜖) 𝛽

𝑆∗

𝑁
0

0 −𝜖 −(γ + µ + 𝛼) 0
0 0 γ −𝜇)

 
 
 

, 

where   
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 𝑆∗ =
Λ

𝜇+𝛽
𝐼

𝑁

 and 𝐼∗ =
 𝜖𝐸

(γ+µ+𝛼)
. 

Using the MATLAB database, the biggest eigenvalues of 𝐽(𝐸∗) were 

plotted. At the endemic equilibrium point, the Jacobean spectral radius has 

a maximum value that is smaller than unity, as is evident from the preceding 

figure, proving the intended assertion. 

3. NUMERICAL MODELING OF SEIR MODEL FOR COVID-19  

3.1. Forward Euler Method  

𝑆𝑛+1 =     𝑆𝑛 + ℎ[Λ − µ𝑆𝑛 − 𝑆𝑛
𝛽𝐼𝑛

𝑁
]                                                        (3.1) 

𝐸𝑛+1 = 𝐸𝑛 + ℎ [
𝛽𝑆𝑛𝐼𝑛

𝑁
− (𝜇 + 𝜖)𝐸𝑛]                                                       (3.2) 

𝐼𝑛+1 = 𝐼𝑛 + ℎ  [𝜖𝐸𝑛  −  (𝛾 +  µ +  𝛼)𝐼𝑛 ]                                               (3.3)  

𝑅𝑛+1 = 𝑅𝑛 + h  [𝛾𝐼𝑛 −   µ 𝑅𝑛]                                                                   (3.4)  

3.2. Fourth Order Runge-Kutta (RK-4) Scheme 

3.2.1. Step 1 

𝑘1 = 𝑆
𝑛 + ℎ[Λ − µ𝑆𝑛 − 𝑆𝑛

𝛽𝐼𝑛

𝑁
]                                                                 (3.5) 

𝑚1 = 𝐸
𝑛 + ℎ[

𝛽𝑆𝑛𝐼𝑛

𝑁
− (𝜇 + 𝜖)𝐸𝑛]                                                             (3.6) 

𝑛1 = 𝐼
𝑛 + ℎ  [𝜖𝐸𝑛  −  (𝛾 +  µ +  𝛼)𝐼𝑛 ]                                                    (3.7) 

𝑝1 = 𝑅
𝑛 + h  [𝛾𝐼𝑛 − µ 𝑅𝑛]                                                                           (3.8) 

3.2.2. Step 2 

 𝑘2 =      ℎ[Λ − µ(𝑆
𝑛 +

𝑘1
2
) − β

(𝑆𝑛 +
𝑘1
2 )(𝐼

𝑛 +
𝑛1
2 )

𝑁
]                            (3.9) 

𝑚2 = ℎ[β
(𝑆𝑛 +

𝑘1
2 )(𝐼

𝑛 +
𝑛1
2 )

𝑁
− (𝜇 + 𝜖)(𝐸𝑛 +

𝑚1
2
)]                          (3.10) 

𝑛2 = ℎ  [𝜖(𝐸
𝑛 +

𝑚1
2
) − (𝛾 +  µ +  𝛼)(𝐼𝑛  +

𝑛1
2
)]                             (3.11)  
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𝑝2 =  h  [𝛾(𝐼
𝑛 +

𝑛1
2
) − µ( 𝑅𝑛 +

𝑝1
2
)]                                                        (3.12) 

3.2.3. Step 3 

𝑘3 =      ℎ[Λ − µ(𝑆
𝑛 +

𝑘2
2
) − β

(𝑆𝑛 +
𝑘2
2 )(𝐼

𝑛 +
𝑛2
2 )

𝑁
]                           (3.13) 

𝑚3 = ℎ[β
(𝑆𝑛 +

𝑘2
2 )(𝐼

𝑛 +
𝑛2
2 )

𝑁
− (𝜇 + 𝜖)(𝐸𝑛 +

𝑚2
2
)]                          (3.14) 

𝑛3 = ℎ  [𝜖(𝐸
𝑛 +

𝑚2
2
)  − (𝛾 + µ +  𝛼)(𝐼𝑛  +

𝑛2
2
)]                                (3.15) 

𝑝3 =  h  [𝛾 (𝐼
𝑛 +

𝑛2
2
) − µ ( 𝑅𝑛 +

𝑝2
2
)]                                                    (3.16) 

3.2.4. Step 4 

 𝑘4  =      ℎ[Λ − µ(𝑆
𝑛 + 𝑘3) − β

(𝑆𝑛 + 𝑘3)(𝐼
𝑛 + 𝑛3)

𝑁
]                         (3.17) 

 𝑚4 = ℎ[β
(𝑆𝑛 + 𝑘3)(𝐼

𝑛 + 𝑛3)

𝑁
− (𝜇 + 𝜖)(𝐸𝑛 +𝑚3)]                         (3.18) 

𝑛4 = ℎ  [𝜖(𝐸
𝑛 +𝑚3)  −  (𝛾 +  µ +  𝛼)(𝐼

𝑛  + 𝑛3)]                              (3.19) 

𝑝4 =  h  [𝛾(𝐼
𝑛 + 𝑛3) −   µ( 𝑅

𝑛 + 𝑝3)]                                                      (3.20) 

3.2.5. Step 5 

𝑆𝑛+1 =   𝑆𝑛 +
1

6
 [𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4 ]                                               (3.21) 

𝐸𝑛+1 =   𝐸𝑛 +
1

6
 [𝑚1 + 2𝑚2 + 2𝑚3 +𝑚4   ]                                        (3.22) 

𝐼𝑛+1 =     𝐼𝑛 +
1

6
 [𝑛1 + 2𝑛2 + 2𝑛3 + 𝑛4]                                               (3.23) 

𝑅𝑛+1 =     𝑅𝑛 +
1

6
 [𝑝1 + 2𝑝2 + 2𝑝3 + 𝑝4]                                              (3.24) 

3.3. Non-Standard Finite Difference (NSFD) Scheme  

To develop an explicit NSFD scheme, consider the above system as 
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df(t)

dS
=
f(t + h) − f(t)

h
+ 0(ℎ)                            ℎ → 0.  

𝑆𝑛, 𝐸𝑛, 𝐼𝑛,  and  𝑅 𝑛are approximations. Here, ℎ is the time step size.  

  
𝑆𝑛+1  −  𝑆𝑛

h
 =  Λ − µ𝑆𝑛+1 − 𝑆𝑛+1

𝛽𝐼𝑛

𝑁
                                                ( 3.25) 

𝑆𝑛+1 = 
 𝑆𝑛 + ℎΛ

1 + ℎµ + h
𝛽𝐼𝑛

𝑁

                                                                              (3.26) 

𝐸𝑛+1 =
𝐸𝑛 + ℎ

𝛽𝑆𝑛𝐼𝑛

𝑁 ]  

1 + ℎ(𝜇 + 𝜖)
                                                                              (3.27) 

𝐼𝑛+1 = 
𝐼𝑛 + ℎ 𝜖𝐸𝑛     

1 + ℎ (𝛾 + µ + 𝛼)
                                                                        ( 3.28) 

 𝑅𝑛+1 =     
 𝑅𝑛 + h 𝛾𝐼𝑛     

1 + ℎµ 
                                                                          (3.29) 

3.4. Stability Analysis of the NSFD Technique 

 The NSFD scheme of the SEIR model is carried out in this section at 

DFEP (𝑆0 , 𝐸0 ,𝐼0 ,𝑅0)  =  (
Λ

𝜇
 , 0, 0, 0). Consider the Eq. (3.25) to (3.28),  

𝐹 =  𝑆𝑛+1 = 
 S+ℎΛ

1+ℎµ+h
𝛽I

𝑁

                                                                                 (3.30)  

𝐺 =  𝐸𝑛+1 =
E + ℎ

𝛽SI
𝑁 ]  

1 + ℎ(𝜇 + 𝜖)
                                                                         (3.31) 

𝐻 = 𝐼𝑛+1 = 
I + ℎ 𝜖E     

1 + ℎ (𝛾 + µ + 𝛼)
                                                                (3.32) 

𝐾 =  𝑅𝑛+1 =     
 R + h 𝛾𝐼     

1 + ℎµ 
                                                                      (3.33) 

Jacobean matrix of the Eq. (3.30) to (3.33) at the DFEP is as follows: 
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𝐽(𝜉0)  =

(

 
 
 
 
 

1

1+ℎ𝜇
0 −

(
Λ

𝜇
+ℎΛ)(

hβ

𝑁
)

[1+ℎ𝜇]2
0

0
1

1+ℎ(𝜇+𝜖)

hβΛ

𝜇𝑁
0

0
hϵ

1+ℎ(γ+µ+𝛼)

1

1+ℎ(γ+µ+𝛼)
0

0 0
hγ

1+ℎ𝜇

1

1+ℎ𝜇)

 
 
 
 
 

 . 

The eigenvalues of the aforementioned Jacobean matrix are 𝜆1 = 
1

1+ℎ𝜇
 < 

1 and 𝜆2 = 
1

1+ℎ𝜇
 < 1. The following matrix is used to compute the remaining 

eigenvalues. 

𝐽(𝜉0) =

(

 
 

1

1 + ℎ(𝜇 + 𝜖)

hβΛ

𝜇𝑁
hϵ

1 + ℎ(γ + µ + 𝛼)

1

1 + ℎ(γ + µ + 𝛼)

  

)

 
 
.         

The other eigenvalues are quite complicated to be calculated algebraically. 

Therefore, they have been calculated numerically (shown in Figure 1). 

Figure 1. Eigenvalues of 𝐽(𝜉0) 

The spectral radius of the Jacobean matrix at the DFE point has a 

maximum value that is less than unity, as is evident from the following 

figure, proving the intended assertion. 
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4. NUMERICAL SIMULATION OF THE SEIR MODEL  

The findings are discussed in detail in this section. Additionally, Euler, RK-

4, and NSFD methods in the model are compared in terms of their use. 

Figure 2. Infected Population using Forward Euler Scheme at h =0.0 

 
Figure 3. Infected Population using Euler Scheme at h =0.1 
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Figure 4. Infected Population using Euler Scheme at h =1 

Figure 5. Infected Population using Euler Scheme at h =10 
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Figure 6. Infected Population using RK-4 Method at h =0.01 

Figure 7. Infected Population using RK-4 Method at h =0.1 
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Figure 8. Infected Population using RK-4 Method at h =1 

 

Figure 9. Infected Population using RK-4 Method at h =10 
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Figure 10. Infected Population using NSFD Scheme at h =0.01 

 

Figure 11. Infected Population using NSFD Scheme at h =0.1 
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Figure 12. Infected Population using NSFD Scheme at h =1 

 

Figure 13. Infected Population using NSFD Scheme at h =10 
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Figure 14. Comparison of Euler, RK-4, and NSFD Scheme at h=0.01 

 

Figure 15. Comparison of Euler, RK-4, and NSFD Scheme at h=0.1 
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Figure 16. Comparison of Euler, RK-4, and NSFD Scheme at h=1 

 

Figure 17. Comparison of Euler, RK-4, and NSFD Scheme at h=10 



Construction and Analysis of a Nonstandard… 

106 

Scientific Inquiry and Review 

Volume 7 Issue 1, 2023 

 

The behavior of the SEIR model is presented in the above graphs. Figure 

2 and Figure 3 show that the Euler technique behaves favorably and converges 

at small step sizes (ℎ = 0.01 and ℎ = 0.1). In Figure 4 and Figure 5, the 

Euler method shows divergence at slightly large step sizes (ℎ = 1 and ℎ =
10). In Figure 6 and Figure 7, the RK-4 method shows convergence at small  

step sizes (ℎ = 0.01 and ℎ = 0.1). The method shows divergence as the 

step size increases, as shown in Figure 8 and Figure 9, respectively. In   Figure 

10-13, the NSFD method converges to the same equilibrium points at 

different step sizes. In Figure 14-17, a comparison of Euler’s method, RK-

4 method, and NSFD method is depicted. It is clear from the above graphs 

that all models show similar behaviors at small step sizes and converge to 

the same equilibrium points. The Euler and RK-4 methods show divergence 

and negative behavior as  step size increases, while the NSFD method 

converges to the same point. Graphical depiction of behaviors demonstrates 

that the Euler and RK-4 methods only provide convergence solutions for 

small step sizes and remain inconclusive for large step sizes. The NSFD 

scheme, on the other hand, exhibits good behavior and also provides a 

convergent solution for step sizes that are extremely large. 

5. CONCLUSION 

The mathematical study of the SEIR model for the spread of COVID-

19 was carried out in this research. For this purpose, the reproduction 

number R0, sensitivity of R0, and equilibrium points of the model were 

determined. It was shown that both equilibrium points have similar stability 

properties. In order to solve the investigated model, Euler, RK-4, and NSFD 

algorithms were deployed. Different time step sizes were used for numerical 

experiments at DFE and EE locations. The collected results were examined 

and compared. From the said examination, the current study concludes that 

the suggested method yields findings that converge to true stable states for 

any time step size. However, the Euler and RK-4 methods do not hold for 

large time step sizes. Moreover, the NSFD method is bounded, dynamically 

consistent, and preserves the positivity of the solution which are important 

requirements when modeling a prevalent disease. 
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