

Scientific Inquiry and Review (SIR)

Volume 2, Issue 3, July 2018

ISSN (P): 2521-2427, ISSN (E): 2521-2435 Journal DOI: https://doi.org/10.32350/sir. Issue DOI: <a href="https://doi.org/10.32350/sir. 23

Homepage: https://ssc.umt.edu.pk/sir/Home.aspx

Journal QR Code:

Article: On A Simple Construction Of Triangle Centers X(8),

X(197), X(K) & X(594)

Author(s): Dasari Naga Vijay Krishna

Online July 2018 Published:

Article <u>doi.org/10.32350/sir.23.03</u> DOI:

Article QR
Code:

To cite this article: Krishna DNV. On A Simple Construction Of Triangle Centers X(8), X(197), X(K) & X(594). *Sci Inquiry Rev.* 2018;2(3):28–39.

Crossref

Copyright This article is open access and is distributed under the terms of Creative Commons Attribution – Share Alike 4.0 International License

A publication of the School of Science University of Management and Technology Lahore **Indexing Agency**

On A Simple Construction of Triangle Centers X(8), X(197), X(K) & X(594)

Dasari Naga Vijay Krishna Department of Mathematics, Narayana Educational Institutions Machilipatnam, Bengalore, India

vijay9290009015@gmail.com

Abstract

In this article, we provide a new method for constructing the Nagel Point $\{X(8)\}$, Cevian quotient of Symmedian Point, Nagel Point $\{X(197)\}$ and the isogonal conjugate of 1^{st} Hatzipolakis-Yiu Point $\{X(594)\}$. In addition, we also establish some collinearity and concurrence.

Keywords: triangle centers, Nagel point, Carnot's theorem, collinearity and concurrence

Introduction

In the literature of Encyclopedia of Triangle Centers [1], there is a list of over 2000 triangle centers. Among those X(8), X(197), X(K) and X(594) are four such triangle centers. In this note, we devote our study for the construction of these points and their related coincidence.

In article [2], Larry Hoehn gives another way to construct the Nagel point using only the incircle and not the excircles. In this article we deal with a simple and an elegant construction of these four points which reveals a new characterization of X(8), X(197), X(K), X(594) and their unexpected coincidence.

Terminology

Triangle center	Its name
X(8)	Nagel Point
X(197)	Cevian Quotient of Symmedian Point,Nagel Point
X(K)	Isogonal Conjugate of X(5019), Isotomic Conjugate of X(940), The Polar Conjugate of X(4185), The Trilinear Pole Of Line X(523)X(4391)
X(594)	Isogonal Conjugate of 1st Hatzipolakis-Yiu Point

Construction

Given a triangle ABC, let D, E, F be the midpoints of the sides BC, CA and AB, construct a circle O_A with A as center and AD as radius which intersects the line drawn through D and parallel to the internal angular bisector of angle A at L_A (it is clear that the point L_A is the reflection of D with respect to the external angular bisector of angle A). Similarly, define the points L_B and L_C . Consider the points N_A , N_B and N_C as

$$N_A = BL_C \cap CL_B$$
, $N_B = AL_C \cap CL_A$ and $N_C = BL_A \cap AL_B$ then

- (I) The line segments AN_A , BN_B and CN_C concur at X(594)
- (II) The line segments L_AN_A , L_BN_B and L_CN_C concur at X(8)

Consider the points
$$N'_A$$
, N'_B , N'_C , L'_A , L'_B , L'_C , M'_A , M'_B and M'_C as $N'_A = AN_A \cap BC$, $N'_B = BN_B \cap CA$, $N'_C = CN_C \cap AB$, $L'_A = AX(8) \cap BC$, $L'_B = BX(8) \cap CA$, $L'_C = CX(8) \cap AB$, $M'_A = L_AN_A \cap BC$, $M'_B = L_BN_B \cap CA$ and $M'_C = L_CN_C \cap AB$ then

- (III) The line segments AM'_A , BM'_B and CM'_C are concur at X(K)
- (IV) The lines $N_{A}L'_{A}$, $N_{B}L'_{B}$ and $N_{C}L'_{C}$ are concur at X(197)
- (V) There exists a conic through any two triads out of three triads (D, E, F),

$$(N'_A, N'_B, N'_C)$$
 and (L'_A, L'_B, L'_C) .

In order to prove (1), (II), (III), (IV) and (V), we will make use of barycentric coordinates. If a triangle ABC has side lengths BC = a, CA = b, AB = c then A = (1:0:0), B = (0:1:0), C = (0:0:1), D = (0:1:1), E = (1:0:1) and E = (1:1:0) in homogeneous barycentric coordinates with reference to ABC [4].

Preposition 1

The equation of line joining of two points with coordinates $(x_1 : y_1 : z_1)$ and

$$(x_2: y_2: z_2) is \begin{vmatrix} x & y & z \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = 0 \text{ or } x(y_1 z_2 - y_2 z_1) + y(z_1 x_2 - z_2 x_1)$$

$$+z(x_1y_2 - x_2y_1) = 0$$

Preposition 2

The intersection of the two lines $p_1x + q_1y + r_1z = 0$ and $p_2x + q_2y + r_2z = 0$ is the point $(q_1r_2 - q_2r_1 : r_1p_2 - r_2p_1 : p_1q_2 - p_2q_1)$.

Preposition 3

Three lines $p_i x + q_i y + r_i z = 0$, i = 1, 2, 3, are concurrent if and only if

$$\begin{vmatrix} p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \\ p_3 & q_3 & r_3 \end{vmatrix} = 0$$

Preposition 4

The barycentric coordinate of the points which are the reflection of an arbitrary point P(u:v:w) with respect to the external angular bisector of angle A is

$$P_A = (c^2 v + b^2 w + b c (u + v + w) : -b^2 w : -c^2 v)$$

with respect to the external angular bisector of angle B is

$$P_B = (-a^2 w : c^2 u + a^2 w + a c (u + v + w) : -c^2 u),$$

and with respect to the external angular bisector of angle C is $P_C = (-a^2 \ v : -b^2 \ u : b^2 \ u + a^2 \ v + a \ b \ (u + v + w)) \ [4].$

Corollary

By replacing u = 0, v = w = 1 then $P_A = L_A = ((b+c)^2 : -b^2 : -c^2)$

By replacing v = 0, u = w = 1 then $P_B = L_B = (-a^2: (a+c)^2: -c^2)$

By replacing w = 0, u = v = 1 then $P_C = L_C = (-a^2: -b^2: (a+b)^2)$

Note:

- 1. The triangles ABC and $P_A P_B P_C$ are perspective with perpector of the isogonal conjugate of P [4].
- 2. The excentral triangle and $P_A P_B P_C$ are perspective if and only if P lies on the Neuberg cubic of excentral triangle [4].

Using the prepositions listed above we list out the barycentric coordinates of the specified points and equation of the lines in barycentric system (we use standard notations such as a = BC, b = CA, c = AB and s = semi perimeter, R = circum radius, r = inradius, $\Delta = area$).

Table 1a. Point and its Barycentric Coordinates

Point	Barycentric Coordinates	Point	Barycentric Coordinates
L_A	$((b+c)^2:-b^2:-c^2)$	$L_{\scriptscriptstyle A}^{\prime}$	(0:(s-b):(s-c))
L_B	$(-a^2:(a+c)^2:-c^2)$	$L_{\!\scriptscriptstyle B}^{\prime}$	((s-a) :0: (s-c))
L_C	$(-a^2:-b^2:(a+b)^2)$	L_{C}^{\prime}	((s-a): (s-b):0)
N_A	$(-a^2:(c+a)^2:(a+b)^2)$	$N_{\scriptscriptstyle A}^{\prime}$	$(0: -(c+a)^2: -(a+b)^2)$
N_B	$((b+c)^2:-b^2:(a+b)^2)$	N_B'	$(-(b+c)^2:0:-(a+b)^2)$
N_C	$((b+c)^2:(c+a)^2:-c^2)$	N_C'	$(-(c+b)^2: -(c+a)^2: 0)$

Table 1b. Point and its Barycentric Coordinates

Point	Barycentric Coordinates
M_A'	$(0: sc^2+abc: sb^2+abc) = (0: c^2+4Rr: b^2+4Rr)$
$M_{\it B}^{\prime}$	$(c^2+4Rr:0:a^2+4Rr)$
M_{C}^{\prime}	$(b^2 + 4Rr : a^2 + 4Rr : 0)$

Table 1c. Point and its Barycentric Coordinates

Point	Barycentric Coordinates
X(8)	$((s-a):(s-b):(s-c)) = (\cot A/2:\cot B/2:\cot C/2)$
	$(a^{2}[s^{2}(b^{2}+c^{2}-a^{2})-s(bc(b+c)+ca(c-a)+ab(b-a)+abc(b+c-a)]:b^{2}[s^{2}(c^{2}+a^{2}-b^{2})-s(ca(c+a)+ab(a-b)+bc(c-b)+abc(c+a-b)]:c^{2}[s^{2}(a^{2}+b^{2}-c^{2})-s(ab(a+b)+bc(b-c)+ca(a-c)+abc(a+b-c)])$
X(197)	= af(A,B,C) : bf(B,C,A) : cf(C,A,B)
	Where $f(A,B,C) = a[-a^2 tan A/2 + b^2 tan B/2 + c^2 tan C/2]$
X(594)	$((c+b)^2: (c+a)^2: (a+b)^2)$
X(K)	$((b^2+4Rr)(c^2+4Rr):(c^2+4Rr)(a^2+4Rr):(a^2+4Rr)(b^2+4Rr))$

Table 2a. Line and its Barycentric Equation

Line	Equation	Line	Equation	Line	Equation
AL_B	$yc^2 + z(c+a)^2$ $= 0$	BL_A	$xc^2 + z(b+c)^2$ $= 0$	CL_B	$x(c+a)^2 + ya^2$ $= 0$
AL_C	$y(a+b)^2 + zb^2$ $= 0$	BL_C	$x(a+b)^2 + za^2$ $= 0$	CL_A	$xb^2 + y(b+c)^2$ $= 0$

Table 2b. Line and its Barycentric Equation

Equation
$y(a+b)^2 - z(c+a)^2 = 0$
$x(a+b)^2 - z(b+c)^2 = 0$
$x(c+a)^2 - y(b+c)^2 = 0$

Table 2c. Line and its Barvcentric Equation

Line	Equation
AX(8)	y(s-c) - z(s-b) = 0
BX(8)	x(s-c) - z(s-a) = 0
CX(8)	x(s-b) - y(s-a) = 0

Table 2d. Line and its Barycentric Equation

Line	Equation
L_AN_A	$xbc(b-c) - s[b^2(x+y) - c^2(x+z)] - abc(y-z) = 0$
L_BN_B	$yca(c-a) - s[c^2(y+z) - a^2(y+x)] - abc(z-x) = 0$
L_CN_C	$zab(a-b) - s[a^2(z+x) - b^2(z+y)] - abc(x-y) = 0$

Table 2e. Line and its Barycentric Equation

Line	Equation	
AM'_A	$y(b^2 + 4Rr) - z(c^2 + 4Rr) = 0$	
BM'_{B}	$x(a^2 + 4Rr) - z(c^2 + 4Rr) = 0$	
CM'_{C}	$x(a^2 + 4Rr) - y(b^2 + 4Rr) = 0$	

Table 2f. Line and its Barycentric Equation

Line	Equation
$N_A L_A'$	$a^{2}[y(s-c)-z(s-b)] + x(b-c)[s(b+c)-bc] = 0$
$N_{\scriptscriptstyle B}L_{\scriptscriptstyle B}'$	$b^{2}[z(s-a)-x(s-c)] + y(c-a)[s(c+a)-ca] = 0$
$N_C L_C'$	$c^{2}[x(s-b)-y(s-a)] + z(a-b)[s(a+b)-ab] = 0$

Theorem-1

The line segments AN_A , BN_B and CN_C are concur at X(594).

Proof: Using table 2a, it is easy to check that the point $X(594)\{((c+b)^2 : (c+a)^2 : (a+b)^2)\}$ satisfies the lines $AN_A \{y(a+b)^2 - z(c+a)^2 = 0\}$, $BN_B \{x(a+b)^2 - z(b+c)^2 = 0\}$ and $CN_C \{x(c+a)^2 - y(b+c)^2 = 0\}$.

Hence the lines AN_A , BN_B and CN_C are concurrent at X(594). (Figure 1)

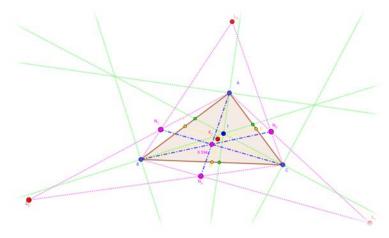


Figure 1. Concurrency of the lines AN_A , BN_B and CN_C

Theorem-2

The line segments L_AN_A , L_BN_B and L_CN_C are concur at X(8).

Proof: Using table 2b, it is easy to check that the point $X(8)\{((s-a):(s-b):(s-c))\}$ satisfies the lines $L_AN_A\{xbc(b-c)-s[b^2(x+y)-c^2(x+z)]-abc(y-z)=0\}$, $L_BN_B\{yca(c-a)-s[c^2(y+z)-a^2(y+x)]-abc(z-x)=0\}$ and $L_CN_C\{zab(a-b)-s[a^2(z+x)-b^2(z+y)]-abc(x-y)=0\}$.

For example

Consider
$$xbc(b-c) - s[b^2(x+y) - c^2(x+z)] - abc(y-z) = 0$$
 (1)

Replace x = (s-a), y=(s-b), z = (s-c), x+y = c, x+z = b and y-z = c-b xbc (b-c) - $s[b^2(x+y)$ - $c^2(x+z)]$ - abc (y-z) = bc (s-a) (b-c) - $s[b^2c$ - $c^2b]$ - abc (c-b)

$$= bc (s-a) (b-c) - bc(s-a) (b-c) = 0$$

Hence (1) is satisfied by the point $X(8)\{((s-a):(s-b):(s-c))\}$

That is the line L_AN_A contains X(8).

In the similar manner we can verify that L_BN_B and L_CN_C also contains X(8).

So the lines L_AN_A, L_BN_B and L_CN_C are concur at X(8). (Figure 2)

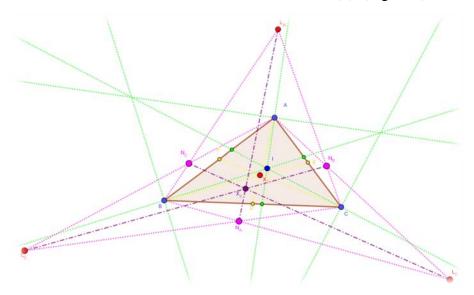


Figure 2. Concurrency of the lines L_AN_A, L_BN_B and L_CN_C

Theorem - 3

The line segments AM'_A , BM'_B and CM'_C are concur at X(K).

Proof: It is clear using table 2c, the equations of lines AM'_A , BM'_B and CM'_C are

$$y(b^2+4Rr) - z(c^2+4Rr) = 0$$
, $x(a^2+4Rr) - z(c^2+4Rr) = 0$ and $x(a^2+4Rr) - y(b^2+4Rr) = 0$.

Now using Preposition 3, to prove that these lines are concurrent, it is

enough to prove that
$$\begin{vmatrix} 0 & \left(b^2 + 4Rr\right) & -\left(c^2 + 4Rr\right) \\ \left(a^2 + 4Rr\right) & 0 & -\left(c^2 + 4Rr\right) \\ \left(a^2 + 4Rr\right) & -\left(b^2 + 4Rr\right) & 0 \end{vmatrix} = 0$$

which is true.

They concur at a point X(K) whose barycentric coordinate is $((b^2+4Rr)(c^2+4Rr):(c^2+4Rr)(a^2+4Rr):(a^2+4Rr)(b^2+4Rr))$. (Figure 3)

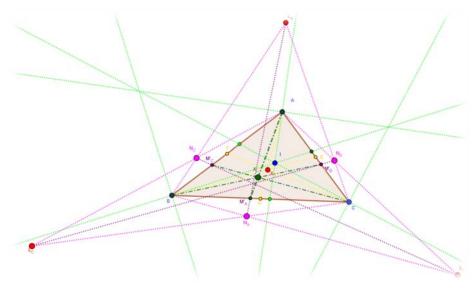


Figure 3. Concurrency of the line segments AM'_A , BM'_B and CM'_C

Note:

The point X(K) is noted as the isogonal conjugate of X(5019) by Francisco Javier [5] and as the isotomic conjugate of X(940), the polar conjugate of X(4185) and the trilinear pole of line X(523), X(4391) by Randy [6].

Theorem 4

The lines $N_A L'_A$, $N_B L'_B$ and $N_C L'_C$ are concurrent at X(197) **Proof:** Using table 2d, it is easy to check that the point X(197) {af (A,B,C) : bf(B,C,A) : cf(C,A,B)} satisfies the lines $N_A L'_A \{a^2[y(s-c)-z(s-b)] + x(b-c)[s(b+c)-bc] = 0\}$, $N_B L'_B \{b^2[z(s-a)-x(s-c)] + y(c-a)[s(c+a)-ca] = 0\}$

and $N_c L'_c \{c^2[x(s-b)-y(s-a)] + z(a-b)[s(a+b)-ab] = 0\}.$

Consider $a^2[y(s-c)-z(s-b)] + x(b-c)[s(b+c)-bc] = 0$ (1)

Replace x = af(A, B, C), y = bf(B, C, A), z = cf(C, A, B)

where $f(A, B, C) = a[-a^2 \tan A/2 + b^2 \tan B/2 + c^2 \tan C/2]$

 $a^{2}[y(s-c)-z(s-b)] = a^{2}[b(s-c) f(B, C, A) - c(s-b) f(C, A, B)]$

 $= a^2 \{s[b f(B, C, A) - c f(C, A, B)] - bc [f(B,C,A) - f(C, A, B)] \}$

 $= a^2 \{a^2 \tan A/2(b-c) (sb+sc-bc)-b^2 \tan B/2(b-c) (sb+sc-bc)-c^2 \tan C/2(b-c) \}$ (sb+sc-bc)}

 $=-a^{2}(b-c)$ (sb+sc-bc) f(A, B, C) = -x(b-c)[s(b+c)-bc]

Hence (1) is satisfied by the point X(197) {af(A, B, C) : bf(B, C, A) : cf(C, A, B)

That is the line $N_A L'_A$ contains X(197).

In a similar manner, we can verify that $N_B L_B'$ and $N_C L_C'$ also contains X(197).

So, the lines $N_A L'_A$, $N_B L'_B$ and $N_C L'_C$ are concur at X(197). (Figure 4)

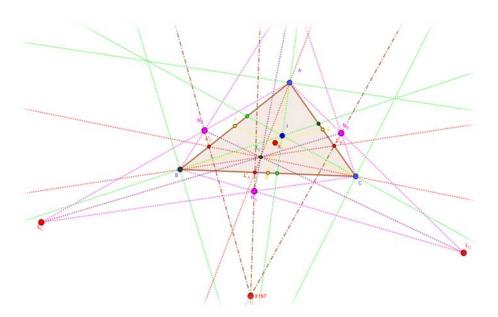


Figure 4. Concurrency of the lines $N_A L'_A$, $N_B L'_B$ and $N_C L'_C$

Preposition -5

Carnot's theorem

Suppose a conic L intersect in the side line BC at X, X', CA at Y, Y'

and AB at Z, Z' then
$$\left(\frac{BX}{XC}\right)\left(\frac{BX'}{X'C}\right)\left(\frac{CY}{YA}\right)\left(\frac{CY'}{Y'A}\right)\left(\frac{AZ}{ZB}\right)\left(\frac{AZ'}{Z'B}\right) = 1$$

Preposition -6

If X, Y, Z are the traces of a point P and X', Y' and Z' are the traces of another point Q on the sides of BC, CA, and AB of the triangle ABC such that P = (u : v : w) and Q = (u' : v' : w'), then using Carnot's theorem there is a conic through six points. The equation of the conic is

$$\sum_{cyclic} \left[\frac{x^2}{uu'} - \left(\frac{1}{vw'} + \frac{1}{v'w} \right) yz \right] = 0, [4].$$

Theorem -5

a) There exists conic through (D, E, F) and (N'_A, N'_B, N'_C) whose

barycentric equation is
$$\sum_{cyclic} \left[\frac{x^2}{(b+c)^2} - \left(\frac{1}{(a+b)^2} + \frac{1}{(c+a)^2} \right) yz \right] = 0$$

b) There exists conic through (N'_A, N'_B, N'_C) and (L'_A, L'_B, L'_C) whose barycentric equation is

$$\sum_{cyclic} \left[\frac{x^2}{(s-a)(b+c)^2} - \left(\frac{1}{(s-b)(a+b)^2} + \frac{1}{(s-c)(c+a)} \right) yz \right] = 0$$

c) There exists conic through (D, E, F) and (L'_A, L'_B, L'_C) whose

barycentric equation is
$$\sum_{cyclic} \left[\frac{x^2}{(s-a)} - \left(\frac{1}{(s-c)} + \frac{1}{(s-b)} \right) yz \right] = 0$$

Proof: Clearly the triads (D, E, F), (N'_A, N'_B, N'_C) and (L'_A, L'_B, L'_C) are the traces of centroid $\{X(2)\}$ (1:1:1), the isogonal conjugate of first Hatzipolakis-Yiu Point $\{X(594)\}$ $((c+b)^2:(c+a)^2:(a+b)^2)$ and Nagel Point $\{X(8)\}$ (s-a):(s-b):(s-c).

Hence, using Carnot's theorem there exists a conic through the traces of any two of the following three points X(2), X(594) and X(8). Their corresponding barycentric equations can be calculated using preposition 6. Using tools similar to those used in this article, the following generalization can be demonstrated.

Generalization

In a given triangle ABC, $P_a(0:v:w)$, $P_b(u:0:w)$, and $P_c(u:v:0)$ are the traces of an arbitrary point P(u:v:w) on the sides BC, CA, AB

respectively. P_A , P_B and P_C are the reflections of the points P_a , P_b , P_c with respect to the external angular bisectors of angles A, B and C. Let Q be the isogonal conjugate of P. Consider the points R_A , R_B and R_C as $R_A = BP_C \cap CP_B$, $R_B = AP_C \cap CP_A$ and $R_C = BP_A \cap AP_B$, then

- (I) The line segments AR_A , BR_B and CR_C concur at R.
- (II) The line segments P_AR_A , P_BR_B and P_CR_C concur at T.

Consider the points
$$R'_A$$
, R'_B , R'_C , T'_A , T'_B , T'_C , M'_A , M'_B and M'_C as $R'_A = AR_A \cap BC$, $R'_B = BR_B \cap CA$, $R'_A = CR_A \cap AB$, $T'_A = AT \cap BC$, $T'_B = BT \cap CA$, $T'_C = CT \cap AB$, $S'_A = P_AR_A \cap BC$ $S'_B = P_BR_B \cap CA$ and $S'_C = P_CR_C \cap AB$ then

- (III) The line segments AS'_A , BS'_B and CS'_C are concur at S.
- (IV) The lines $R_A T'_A$, $R_B T'_B$ and $R_C T'_C$ are concur at Z.
- (V) The points T, Q and R are collinear.

For further study about Nagel's point (X(8)) [2] is referred.

Acknowledgement

The author would like to thanks the anonymous referee for his/her kind comments and suggestions, which lead to a better presentation of this paper.

References

- [1] Kimberling C. *Encyclopedia of triangle centers*. Available from: http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- [2] Krishna DNV. The fundamental property of Nagel point A new proof. *J Sci Arts*. 2017; 1(38):31–36.
- [3] Hoehn L. A new characterization of the Nagel point. Missouri J Math Sci. 2007;19(1):45–48.
- [4] Yiu P. *Introduction to the Geometry of the Triangle* (Florida Atlantic University Lecture Notes: Summer 2011). Florida: Florida Atlantic University; 2013.
- [5] Francisco Javier. *Hyacinthos message 4293* (advanced plane geometry yahoo group), January, 2018.
- [6] Randy. *Hyacinthos message 4293* (advanced plane geometry yahoo group), January, 2018.

