

Scientific Inquiry and Review (SIR)

Volume 2, Issue 3, July 2018 ISSN (P): 2521-2427, ISSN (E): 2521-2435 Journal DOI:<https://doi.org/10.32350/sir> Issue DOI:<https://doi.org/10.32350/sir.23> Homepage[: https://ssc.umt.edu.pk/sir/Home.aspx](https://ssc.umt.edu.pk/sir/Home.aspx)

Journal QR Code:

School of Science University of Management and Technology Lahore

On A Simple Construction of Triangle Centers X(8), X(197), X(K) & X(594)

Dasari Naga Vijay Krishna Department of Mathematics, Narayana Educational Institutions Machilipatnam, Bengalore, India

vijay9290009015@gmail.com

Abstract

In this article, we provide a new method for constructing the Nagel *Point{X(8)} , Cevian quotient of Symmedian Point, Nagel Point {X(197)} and the isogonal conjugate of 1st Hatzipolakis-Yiu Point{X(594)}. In addition, we also establish some collinearity and concurrence.*

Keywords: triangle centers, Nagel point, Carnot's theorem, collinearity and concurrence

Introduction

In the literature of Encyclopedia of Triangle Centers [1], there is a list of over 2000 triangle centers. Among those $X(8)$, $X(197)$, $X(K)$ and X(594) are four such triangle centers. In this note, we devote our study for the construction of these points and their related coincidence.

In article [2], Larry Hoehn gives another way to construct the Nagel point using only the incircle and not the excircles. In this article we deal with a simple and an elegant construction of these four points which reveals a new characterization of $X(8)$, $X(197)$, $X(K)$, $X(594)$ and their unexpected coincidence.

Construction

Given a triangle *ABC*, let *D*, *E*, *F* be the midpoints of the sides BC, CA and AB, construct a circle *OA* with *A* as center and *AD* as radius which intersects the line drawn through D and parallel to the internal angular bisector of angle A at L_A (it is clear that the point L_A is the reflection of *D* with respect to the external angular bisector of angle *A*). Similarly, define the points L_B and L_C . Consider the points N_A , N_B and N_C as

$$
N_A = BL_C \cap CL_B
$$
, $N_B = AL_C \cap CL_A$ and $N_C = BL_A \cap AL_B$ then

(I) *The line segments AN_A, BN_B and CN_C concur at* $X(594)$

(II) *The line segments L_AN_A, L_BN_B and L_CN_C concur at* $X(8)$

Consider the points N'_A , N'_B , N'_C , L'_A , L'_B , L'_C , M'_A , M'_B and M'_C as $N'_A = AN_A \cap BC$, $N'_B = BN_B \cap CA$, $N'_C = CN_C \cap AB$, $L'_A = AX(8) \cap BC$ $L'_B = BX(8) \cap CA$, $L'_C = CX(8) \cap AB$, $M'_A = L_A N_A \cap BC$, $M'_B = L_B N_B \bigcap CA$ and $M'_C = L_C N_C \bigcap AB$ then

(III) The line segments AM'_{A} , BM'_{B} and CM'_{C} are concur at $X(K)$

(IV) *The lines* $N_{A}L'_{A}$, $N_{B}L'_{B}$ *and* $N_{C}L'_{C}$ *are concur at X(197)*

(V) *There exists a conic through any two triads out of three triads (D, E, F),*

 (N'_A, N'_B, N'_C) and (L'_A, L'_B, L'_C) .

In order to prove (1) , (II) , (III) , (IV) and (V) , we will make use of barycentric coordinates. If a triangle ABC has side lengths $BC = a$, CA $= b, AB = c$ then A = (1 : 0 : 0), B = (0 : 1 : 0), C = (0 : 0 : 1), D = (0 : 1 : 1), $E = (1 : 0 : 1)$ and $F = (1 : 1 : 0)$ in homogeneous barycentric coordinates with reference to ABC [4].

Preposition 1

The equation of line joining of two points with coordinates (x1 : y1 : z1) and

$$
(x_2 : y_2 : z_2) \text{ is } \begin{vmatrix} x & y & z \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = 0 \text{ or } x(y_1z_2 - y_2z_1) + y(z_1x_2 - z_2x_1)
$$
\n
$$
+z(x_1y_2 - x_2y_1) = 0
$$

SCIENTIFIC INQUIRY AND REVIEW 30

Preposition 2

The intersection of the two lines $p_1x + q_1y + r_1z = 0$ *and* $p_2x + q_2y + r_2z$ $= 0$ *is the point (q₁r₂ - q₂r₁ : r₁p₂ - r₂p₁ : p₁q₂ - p₂q₁).*

Preposition 3

Three lines $p_i x + q_i y + r_i z = 0$ *, i = 1, 2, 3, are concurrent if and only if*

$$
\begin{vmatrix} p_1 & q_1 & r_1 \ p_2 & q_2 & r_2 \ p_3 & q_3 & r_3 \end{vmatrix} = 0
$$

Preposition 4

The barycentric coordinate of the points which are the reflection of an arbitrary point P (u : v : w) with respect to the external angular bisector of angle A is

$$
P_A = (c^2 v + b^2 w + b c (u + v + w) : -b^2 w : -c^2 v),
$$

with respect to the external angular bisector of angle B is $P_B = (-a^2 w : c^2 u + a^2 w + a c (u + v + w) : -c^2 u),$

and with respect to the external angular bisector of angle C is $P_C = (-a^2 v : -b^2 u : b^2 u + a^2 v + a b (u + v + w))$ [4].

Corollary

By replacing $u = 0$, $v = w = 1$ then $P_A = L_A = ((b+c)^2 : -b^2 : -c^2)$ By replacing $v = 0$, $u = w = 1$ then $P_B = L_B = (-a^2)(a+c)^2$: $-c^2$) By replacing $w = 0$, $u = v = 1$ then $P_C = L_C = (-a^2 : -b^2 : (a+b)^2)$ *Note:*

- *1. The triangles ABC and PAPBPC are perspective with perpector of the isogonal conjugate of P [4].*
- *2. The excentral triangle and PAPBPC are perspective if and only if P lies on the Neuberg cubic of excentral triangle [4].*

Using the prepositions listed above we list out the barycentric coordinates of the specified points and equation of the lines in barycentric system (we use standard notations such as $a = BC$, $b = CA$, $c = AB$ and s = semi perimeter, R= circum radius, r = inradius, Δ = area).

Point	Barycentric Coordinates	Point	Barycentric Coordinates
L_A	$((b+c)^2 : -b^2 : -c^2)$	$L'_{\scriptscriptstyle{A}}$	$(0:(s-b):(s-c))$
L_B	$(-a^2:(a+c)^2:-c^2)$	$L'_{\scriptscriptstyle R}$	$((s-a):0:(s-c))$
L_C	$(-a^2 : -b^2 : (a+b)^2)$	$L_{\!\scriptscriptstyle C}^\prime$	$((s-a):(s-b):0)$
N_A	$(-a^2:(c+a)^2:(a+b)^2)$	N'_A	$(0:(c+a)^2:(a+b)^2)$
N_B	$((b+c)^2 : -b^2 : (a+b)^2)$	$N_{\rm\scriptscriptstyle B}^\prime$	$(-(b+c)^2 : 0: -(a+b)^2)$
N_C	$((b+c)^2:(c+a)^2:-c^2)$	N_c'	$(-(c+b)^2:-(c+a)^2:0)$

Table 1a. Point and its Barycentric Coordinates

Table 2f. Line and its Barycentric Equation

Theorem-1

The line segments AN_A *, BN_B and CN_C are concur at X(594).*

Proof: Using table 2a, it is easy to check that the point $X(594){((c+b)^2)}$: $(c+a)^2$: $(a+b)^2$ } satisfies the lines AN_A {y(a+b)² - z(c+a)² = 0}, BN_B ${x(a+b)^2 - z(b+c)^2 = 0}$ and CN_C{ $x(c+a)^2 - y(b+c)^2 = 0$ *}.*

Hence the lines *AN_A*, *BN_B* and *CN_C* are concurrent at *X*(594)*.* (Figure 1)

Figure 1. Concurrency of the lines AN_A , BN_B and CN_C

Theorem-2

The line segments $L_A N_A$, $L_B N_B$ and $L_C N_C$ are concur at $X(8)$.

Proof: Using table 2b, it is easy to check that the point $X(8)$ { (s-a) : (sb) : (s-c))} satisfies the lines L_AN_A { xbc(b-c) - s[b²(x+y) - c²(x+z)] abc(y-z) = 0 }, L_BN_B { yca(c-a) - s[c²(y+z) - a²(y+x)] - abc(z-x) = 0} and L_CN_C { zab(a-b) - s[a²(z+x) - b²(z+y)] - abc(x-y) = 0 }*.*

For example

Consider xbc(b-c) - $s[b^2(x+y) - c^2(x+z)]$ - abc(y-z) = 0 (1)

SCIENTIFIC INOUIRY AND REVIEW 34

Replace $x = (s-a)$, $y=(s-b)$, $z = (s-c)$, $x+y = c$, $x+z = b$ and $y-z = c-b$ xbc (b-c) - s[b²(x+y) - c²(x+z)] – abc (y-z) = bc (s-a) (b-c) - s[b²c - c²b]abc (c-b)

= bc (s-a) (b-c) - bc(s-a) (b-c)=0

Hence (1) is satisfied by the point $X(8){($ ((s-a) : (s-b) : (s-c))}

That is the line $L_A N_A$ contains $X(8)$.

In the similar manner we can verify that $L_B N_B$ and $L_C N_C$ also contains X(8).

So the lines $L_A N_A$, $L_B N_B$ and $L_C N_C$ are concur at $X(8)$. (Figure 2)

Figure 2. Concurrency of the lines $L_A N_A$, $L_B N_B$ and $L_C N_C$

Theorem – 3

The line segments AM'_{A} *,* BM'_{B} *and* CM'_{C} *are concur at* $X(K)$ *.*

Proof: It is clear using table 2c, the equations of lines AM'_{A} , BM'_{B} and CM'_c are

$$
y(b^2+4Rr) - z(c^2+4Rr) = 0
$$
, $x(a^2+4Rr) - z(c^2+4Rr) = 0$ and $x(a^2+4Rr) - y(b^2+4Rr) = 0$.

Now using Preposition 3, to prove that these lines are concurrent, it is

enough to prove that
$$
\begin{vmatrix} 0 & (b^2 + 4Rr) & -(c^2 + 4Rr) \ a^2 + 4Rr & 0 & -(c^2 + 4Rr) \ (a^2 + 4Rr) & -(b^2 + 4Rr) & 0 \end{vmatrix} = 0
$$

which is true.

They concur at a point $X(K)$ whose barycentric coordinate is $((b²+4Rr) (c²+4Rr) : (c²+4Rr)(a²+4Rr) : (a²+4Rr)(b²+4Rr)).$ (Figure 3)

Figure 3. Concurrency of the line segments AM'_{A} , BM'_{B} and CM'_{C}

Note:

The point $X(K)$ is noted as the isogonal conjugate of $X(5019)$ by Francisco Javier [5] and as the isotomic conjugate of X(940), the polar conjugate of $X(4185)$ and the trilinear pole of line $X(523)$, $X(4391)$ by Randy **[**6].

Theorem 4

The lines $N_A L_A^{\prime}$, $N_B L_B^{\prime}$ and $N_C L_C^{\prime}$ are concurrent at X(197) *Proof:* Using table 2d, it is easy to check that the point $X(197)$ {af (A,B,C) : bf (B, C, A) : cf (C, A, B) } satisfies the lines $N_A L'_A$ { $a^2[y(s-c)-z(s-b)] + x(b-c)[s(b+c)-bc] = 0$ }, $N_{B}L_{B}'$ {b²[z(s-a)-x(s-c)] + y(c-a)[s(c+a)-ca] = 0}

SCIENTIFIC INOUIRY AND REVIEW 36

and $N_c L_c'$ {c²[x(s-b)-y(s-a)] + z(a-b)[s(a+b)-ab] = 0}*.* Consider $a^2[y(s-c)-z(s-b)] + x(b-c)[s(b+c)-bc] = 0$ (1) Replace $x = af(A, B, C), y = bf(B, C, A), z = cf(C, A, B)$ where $f(A, B, C) = a[-a^2 \tan A/2 + b^2 \tan B/2 + c^2 \tan C/2]$ $a^2[y(s-c)-z(s-b)] = a^2[b(s-c) f(B, C, A) - c(s-b) f(C, A, B)]$ $= a^2$ {s[b f(B, C, A) - c f(C, A, B)] – bc [f(B,C,A) - f(C, A, B)] } $= a^2 {a^2 \tan A/2(b-c) (sb+sc-bc)-b^2 \tan B/2(b-c) (sb+sc-bc)-c^2 \tan C/2(b-c)}$ $(sb+sc-bc)$ $=$ -a²(b-c) (sb+sc-bc) f(A, B, C) = - x(b-c)[s(b+c)-bc Hence (1) is satisfied by the point $X(197)$ {af(A, B, C) : bf(B, C, A) : $cf(C, A, B)$ That is the line $N_A L_A'$ contains X(197). In a similar manner, we can verify that $N_B L_B'$ and $N_C L_C'$ also contains X(197).

So, the lines $N_A L'_A$, $N_B L'_B$ and $N_C L'_C$ are concur at X(197). (Figure 4)

Figure 4. Concurrency of the lines $N_A L_A'$, $N_B L_B'$ and $N_C L_C'$

Preposition -5

Carnot's theorem

Suppose a conic L intersect in the side line BC at X , *X* ′, *CA at Y*, *Y*′

and AB at Z, Z' then
$$
\left(\frac{BX}{XC}\right)\left(\frac{BX'}{XC}\right)\left(\frac{CY'}{YA}\right)\left(\frac{AY'}{YA}\right)\left(\frac{AZ}{ZB}\right)\left(\frac{AZ'}{Z'B}\right) = 1
$$

Preposition -6

If X, Y, Z are the traces of a point P and X ′ *, Y*′ *and Z*′ *are the traces of another point Q on the sides of BC, CA, and AB of the triangle ABC such that P* = $(u : v: w)$ *and Q* = $(u': v': w')$ *, then using Carnot's theorem there is a conic through six points. The equation of the conic is* $\left[\frac{2}{1} - \left(\frac{1}{1} + \frac{1}{1} \right) yz \right] = 0$ *cyclic* $\left(\frac{x^2}{4} - \left(\frac{1}{4} + \frac{1}{4}\right)yz\right)$ $\sum_{\text{value}} \left[\frac{x^2}{uu'} - \left(\frac{1}{vw'} + \frac{1}{v'w} \right) yz \right] = 0, [4].$

Theorem -5

a) *There exists conic through (D, E, F) and (* N'_A *,* N'_B *,* N'_C *)whose barycentric equation is* 2 $\frac{1}{2} - \left(\frac{1}{(a+b)^2} + \frac{1}{(a+a)^2} \right) yz = 0$ $\int_{cyclic}^{cyclic} (b+c)^2 \quad (a+b)^2 \quad (c+a)$ $\sum_{\text{value}} \left[\frac{x^2}{(b+c)^2} - \left(\frac{1}{(a+b)^2} + \frac{1}{(c+a)^2} \right) yz \right] =$

b) *There exists conic through* (N'_A , N'_B , N'_C) *and* (L'_A, L'_B, L'_C) *whose barycentric equation is*

$$
\sum_{\text{cyclic}} \left[\frac{x^2}{(s-a)(b+c)^2} - \left(\frac{1}{(s-b)(a+b)^2} + \frac{1}{(s-c)(c+a)} \right) yz \right] = 0
$$

c) *There exists conic through (D, E, F) and* (L'_A, L'_B, L'_C) *whose*

$$
barycentric equation is \sum_{\text{cyclic}} \left[\frac{x^2}{(s-a)} - \left(\frac{1}{(s-c)} + \frac{1}{(s-b)} \right) yz \right] = 0
$$

Proof: Clearly the triads (D, E, F) , (N_A', N_B', N_C') and (L_A', L_B', L_C') are the traces of centroid ${X(2)} (1 : 1: 1)$, the isogonal conjugate of first Hatzipolakis-Yiu Point $\{X(594)\}$ $((c+b)^2 : (c+a)^2 : (a+b)^2)$ and Nagel Point $\{X(8)\}$ ((s-a) : (s-b) : (s-c)).

Hence, using Carnot's theorem there exists a conic through the traces of any two of the following three points $X(2)$, $X(594)$ and $X(8)$. Their corresponding barycentric equations can be calculated using preposition 6. Using tools similar to those used in this article, the following generalization can be demonstrated.

Generalization

In a given triangle *ABC*, $P_a(0: v:w)$, $P_b(u: 0:w)$, and $P_c(u:v: 0)$ are the traces of an arbitrary point $P(u : v : w)$ on the sides *BC*, *CA*, *AB*

SCIENTIFIC INQUIRY AND REVIEW 38

respectively. P_A , P_B and P_C are the reflections of the points P_a , P_b , P_c with respect to the external angular bisectors of angles *A*, *B* and *C*. Let Q be the isogonal conjugate of *P*. Consider the points R_A , R_B and R_C as $R_A = BP_C \cap CP_B$, $R_B = AP_C \cap CP_A$ and $R_C = BP_A \cap AP_B$, then

(I) *The line segments* AR_A *,* BR_B *and* CR_C *concur at R.*

(II) *The line segments* $P_A R_A$ *,* $P_B R_B$ *and* $P_C R_C$ *concur at T.*

Consider the points R'_A , R'_B , R'_C , T'_A , T'_B , T'_C , M'_A , M'_B and M'_C as $R'_{A} = AR_{A} \cap BC$, $R'_{B} = BR_{B} \cap CA$, $R'_{A} = CR_{A} \cap AB$, $T'_{A} = AT \cap BC$, $T'_B = BT \bigcap CA$, $T'_C = CT \bigcap AB$, $S'_A = P_A R_A \bigcap BC$ $S'_B = P_B R_B \bigcap CA$ and $S'_c = P_c R_c \bigcap AB$ then

(III) The line segments AS'_{A} , BS'_{B} and CS'_{C} are concur at S.

(IV) The lines $R_A T_A'$, $R_B T_B'$ and $R_C T_C'$ are concur at Z.

(V) *The points T, Q and R are collinear.*

For further study about Nagel's point $(X(8))$ [2] is referred.

Acknowledgement

The author would like to thanks the anonymous referee for his/her kind comments and suggestions, which lead to a better presentation of this paper.

References

- [1] Kimberling C. *Encyclopedia of triangle centers.* Available from: http://faculty.evansville.edu /ck6/encyclopedia/ETC.html.
- [2] Krishna DNV. The fundamental property of Nagel point A new proof. *J Sci Arts*. 2017; 1(38):31–36.
- [3] Hoehn L. A new characterization of the Nagel point. Missouri J Math Sci. 2007;19(1):45–48*.*
- [4] Yiu P. *Introduction to the Geometry of the Triangle* (Florida Atlantic University Lecture Notes: Summer 2011). Florida: Florida Atlantic University; 2013*.*
- [5] Francisco Javier. *Hyacinthos message 4293 (*advanced plane geometry yahoo group), January, 2018.
- [6] Randy. *Hyacinthos message 4293 (*advanced plane geometry yahoo group), January, 2018.

