

Published:

Scientific Inquiry and Review (SIR)

Volume 2, Issue 3, July 2018 ISSN (P): 2521-2427, ISSN (E): 2521-2435

Journal DOI: https://doi.org/10.32350/sir
Issue DOI: https://doi.org/10.32350/sir.23

Homepage: https://ssc.umt.edu.pk/sir/Home.aspx

Journal QR Code:

Article: On Reverse Super Edge Magic Total Labeling of Subdivided Trees

Author(s): Abdul Raheem

Online July 2018

Article doi.org/10.32350/sir.23.02

DOI:

Article QR
Code:

To cite this article:

Raheem A. On reverse super edge magic total labeling of subdivided trees. *Sci Inquiry Rev.* 2018;2(3):19–27.

Crossref

Copyright Information This article is open access and is distributed under the terms of Creative Commons Attribution – Share Alike 4.0 International License

Indexing Agency

A publication of the School of Science University of Management and Technology Lahore

On Reverse Super Edge Magic Total Labeling of Subdivided Trees

Abdul Raheem Department of Mathematics, National University of Singapore, Singapore 119076

rahimciit7@gmail.com

Abstract

A reverse edge magic total labeling of a graph G is a one-to-one map λ : $V(G) \cup E(G) \rightarrow \{1,2,...,|V(G) \cup E(G)|\} = [1,|V(G) \cup E(G)|]$ with the property that there is an integer constant k such that $\{\lambda(xy) - (\lambda(x) + \lambda(y))/xy \in V(G)\} = k$. If (V(G)) = [1,|V(G)|] then the reverse edge magic labeling is called reverse super edge-magic labeling. In this paper we will formulate the reverse edge magic labeling of two subclasses of trees.

Keywords: star, subdivision of star, reverse super edge magic labeling

Introduction

All graphs in this paper are finite, undirected, simple and planar. The graph G has the vertex set V(G) and the edge set E(G). A (v, e) graph G is a graph such that |V(G)| = v and |E(G)| = e. A general reference for graph-theoretic ideas can be seen in [1,2]. A labeling (or valuation) of a graph is a map that converts graph elements into numbers (usually to positive or non-negative integers). In this paper, the domain will be the set of all vertices and edges and such a labeling is known as total labeling. Some labeling alternatively uses either the vertex-set or the edge-set and we shall address them as vertex-labeling or edge-labeling, respectively.

Definition 1.1. A reverse edge magic total labeling of a graph G is a one-to-one map $\lambda: V(G) \cup E(G) \rightarrow \{1,2,...,|V(G) \cup E(G)|\} = [1,|V(G) \cup E(G)|]$ with the property that there is an integer constant k such that $\{\lambda(xy) - (\lambda(x) + \lambda(y))/xy \in V(G)\} = k$.

Definition 1.2. λ is called the reverse super edge magic total labeling and G is known as a reverse super edge magic total graph. Enomoto *et al.* [3] proposed the following conjecture,

Conjecture 1.1. Every tree admits a super edge magic total labeling.

In favor of this conjecture, many authors have considered a super edge magic total labeling for different classes of trees. For detailed studies the reader can see [4–14].

Definition 1.3. Let $n_i \ge 1, 1 \le i \le r$ and $r \ge 2$. A subdivided star $Sb(n_1, n_2, ..., n_r)$ is a tree obtained by inserting $n_i - 1$ nodes to each of the *ith* edge of the star $K_{1,r}$. Let us define the set of nodes and edges as follows,

$$V(G) = \{c\} \cup \{x_i^{l_i} | 1 \le i \le r; \ 1 \le l \le n_i\} \text{ and } E(G) = \{cx_i^{l_i} | 1 \le i \le r\} \cup \{x_i^{l_i} x_i^{l_i+1} | 1 \le i \le r; \ 1 \le l \le n_i - 1\}.$$

However, the investigation of different results related to a reverse super edge magic total labeling of the subdivided star $Sb(n_1, n_2, ..., n_r)$ for $n_1 \neq n_2, ..., \neq n_r$ is still an open problem. In this paper, we will formulate a reverse super edge magic total labeling of the subclasses of subdivided stars denoted by $Sb(mn, mn, mn, 2mn, n_6, n_r, ..., n_r)$ and $Sb(mn, mn, 2n, 2n + 2, 4n + 3, n_6, ..., n_r)$ under certain conditions.

Let us consider the following Lemma which we will use frequently in the main theorems.

Lemma 1.1. A graph with vertices v and e edges is reverse super edge magic total labeling if and only if there exists a bijective function $\lambda: V(G) \to [1, v]$ such that the set consists of consecutive integers. In such a case, λ extends to a reverse super edge magic total labeling of G with magic constant k = 2v - s - 1, where $s = \max(S)$.

2. Main Results

In this section, we will prove the main results related to a reverse super edge magic total labeling of the more generalized subclasses of subdivided trees.

Theorem 2.1. The graph $G \cong Sb(n,n,n,n,2n,n_6,...,n_r)$ admits the reverse edge magic total labeling for any odd $n \ge 3$, $r \ge 6$, $n_p = 2^{p-4}n - 2p + 11$ and $6 \le p \le r$

Proof: Let v = |V(G)| and e = |E(G)| then

$$v = 6n + 1 + \sum_{t=6}^{r} [2^{t-4}n - 2t]$$
 and $e = v - 1$

Let us define $\lambda : V(G) \rightarrow [1, v]$ as follows,

$$\lambda(c) = (4n+2) + \sum_{t=6}^{r} [2^{t-5}n - t + 6]$$

For odd $1 \le l \le n_i$, where $1 \le i \le 5$ and for $1 \le i \le r$:

$$\lambda(w) = \begin{cases} \frac{l_1 + 1}{2}, & if \ w = x_1^{l_1} \\ n + 1 - \frac{l_2 - 1}{2}, & if \ w = x_2^{l_2} \\ (n + 2) + \frac{l_3 - 1}{2}, & if \ w = x_3^{l_3} \\ 2(n + 1) + \frac{l_4 - 1}{2}, & if \ w = x_4^{l_4} \\ (3n + 2) - \frac{l_5 - 1}{2}, & if \ w = x_5^{l_5} \end{cases}$$

$$\lambda(x_i^{l_i}) = (3n+2) + \sum_{t=6}^{i} [2^{t-5}n - t + 6] - \frac{l_i-1}{2}$$
 accordingly.

For even $1 \le l \le n_i$ and $\gamma = (3n+2) + \sum_{t=6}^{r} [2^{t-6}n+1]$, where $1 \le i \le 5$ and for $6 \le i \le r$:

$$\lambda(w) = \begin{cases} (\gamma + 1) \frac{l_1 - 2}{2}, & if \ w = x_1^{l_1} \\ (\gamma + n - 1) - \frac{l_2 - 2}{2}, & if \ w = x_2^{l_2} \\ (\gamma + n + 1) + \frac{l_3 - 2}{2}, & if \ w = x_3^{l_3} \\ (\gamma + 2n - 1) + \frac{l_4 - 2}{2}, & if \ w = x_4^{l_4} \\ (\gamma + 3n - 1) - \frac{l_5 - 2}{2}, & if \ w = x_5^{l_5} \end{cases}$$

$$\lambda(x_i^{l_i}) = (\gamma + 3n - 1) + \sum_{t=6}^{i} [2^{t-5}(3n) - 2t + 11] - \frac{l_i - 2}{2}$$

Accordingly.

By using the above scheme of labeling, we get the set of edge-sums consecutive integer sequence $S = [\gamma + 2, \gamma + 1 + e]$. Therefore, by Lemma 1.1 can be extended to a reverse edge magic total labeling with magic constant $k = (3n - 2) + \sum_{t=0}^{i} [2^{t-6}(3n) - 2t + 10]$.

Theorem 2.2. The graph $G \cong T(3n, 3n, 3n, 3n, 6n, n_6, ..., n_r)$ admits the reverse edge magic total labeling with k = 2v - s - 1 for any odd $n \ge 3$, $r \ge 6$, $n_p = 2^{t-6}(3n) - 2t + 11$ and $6 \le p \le r$

Proof: Let
$$v = |V(G)|$$
 and $e = |E(G)|$ then $v = (18n + 1) + \sum_{t=6}^{r} [2^{t-4}(3n) - 2t + 11]$ and $e = v - 1$

Let us define $\lambda: V(G) \to [1, v]$ as follows,

$$\lambda(c) = (12n+2) + \sum_{t=6}^{r} [2^{t-5}(3n) - t + 6]$$

For odd $1 \le l \le n_i$, where $1 \le i \le 5$ and for $1 \le i \le r$:

$$\lambda(w) = \begin{cases} \frac{l_1 + 1}{2}, & if \ w = x_1^{l_1} \\ 3n + 1 - \frac{l_2 - 1}{2}, & if \ w = x_2^{l_2} \\ (3n + 2) + \frac{l_3 - 1}{2}, & if \ w = x_3^{l_3} \\ (6n + 2) - \frac{l_4 - 1}{2}, & if \ w = x_4^{l_4} \\ (9n + 2) - \frac{l_5 - 1}{2}, & if \ w = x_5^{l_5} \end{cases}$$

$$\lambda(x_i^{l_i}) = (9n+2) + \sum_{t=6}^{i} [2^{t-5}(3n) - t + 6] - \frac{l_i-1}{2}$$
 accordingly.

For even $1 \le l \le n_i$ and $\gamma = (9n + 2) + \sum_{t=6}^{r} 2^{t-5} (3n) - t + 6$, where $1 \le i \le 5$ and for $6 \le i \le r$:

$$\lambda(w) = \begin{cases} (\gamma + 1)\frac{l_1 - 2}{2}, & if \ w = x_1^{l_1} \\ (\gamma + 3n - 1) - \frac{l_2 - 2}{2}, & if \ w = x_2^{l_2} \\ (\gamma + 3n + 1) + \frac{l_3 - 2}{2}, & if \ w = x_3^{l_3} \\ (\gamma + 6n - 1) - \frac{l_4 - 2}{2}, & if \ w = x_4^{l_4} \\ (\gamma + 9n - 1) - \frac{l_5 - 2}{2}, & if \ w = x_5^{l_5} \end{cases}$$

$$\lambda(x_i^{l_i}) = (\gamma + 9n - 1) + \sum_{t=6}^{i} [2^{t-5}(3n) - 2t + 11] - \frac{l_i - 2}{2}$$
 accordingly.

By using the above scheme of labeling, we get the set of edge-sums consecutive integer sequence $S = [\gamma + 2, \gamma + 1 + e]$. Therefore, by Lemma 1.1 can be extended to a reverse edge magic total labeling with magic constant $k = (9n - 2) + \sum_{t=6}^{i} [2^{t-6}(3n) - t + 5]$.

Theorem 2.3 The graph $G \cong Sb(mn, mn, mn, 2mn, n_6, ..., n_r)$ admits the reverse edge magic total labeling with k = 2v - s - 1 for any odd $n \ge 3, r \ge 6, n_p = 2^{p-4}kn - 2p + 11$ and $6 \le p \le r$

Proof: Let Let v = |V(G)| and e = |E(G)| then $v = (6kn + 1) + \sum_{t=6}^{r} [2^{m-4}kn - 2m + 11]$ and e = v - 1 Let us define $\lambda: V(G) \to [1, v]$ as follows,

$$\lambda(c) = (4kn + 2) + \sum_{t=6}^{r} [2^{m-5}kn - m + 6]$$

For odd $1 \le l \le n_i$, where $1 \le i \le 5$ and for $1 \le i \le r$:

$$\lambda(w) = \begin{cases} \frac{l_1 + 1}{2}, & if \ w = x_1^{l_1} \\ mn + 1 - \frac{l_2 - 1}{2}, & if \ w = x_2^{l_2} \\ (mn + 2) + \frac{l_3 - 1}{2}, & if \ w = x_3^{l_3} \\ 2(mn + 2) - \frac{l_4 - 1}{2}, & if \ w = x_4^{l_4} \\ (3mn + 2) - \frac{l_5 - 1}{2}, & if \ w = x_5^{l_5} \end{cases}$$

 $\lambda(x_i^{l_i}) = (3mn + 2) + \sum_{t=6}^{i} [2^{t-5}mn - m + 6] - \frac{l_i - 1}{2}$ accordingly.

For even $1 \le l \le n_i$ and $\gamma = (3kn + 2) + \sum_{t=6}^{r} [2^{t-6}2kn - (m-6)]$, where $1 \le i \le 5$ and for $6 \le i \le r$:

$$\lambda(w) = \begin{cases} (\gamma + 1)\frac{l_1 - 2}{2}, & if \ w = x_1^{l_1} \\ (\gamma + mn - 1) - \frac{l_2 - 2}{2}, & if \ w = x_2^{l_2} \\ (\gamma + mn + 1) + \frac{l_3 - 2}{2}, & if \ w = x_3^{l_3} \\ (\gamma + 2mn - 1) - \frac{l_4 - 2}{2}, & if \ w = x_4^{l_4} \\ (\gamma + 3mn - 1) - \frac{l_5 - 2}{2}, & if \ w = x_5^{l_5} \end{cases}$$

 $\lambda(x_i^{l_i}) = (\gamma + 3mn - 1) + \sum_{t=6}^{i} [2^{t-5}(mn) - 2m + 11] - \frac{l_i - 2}{2}$ accordingly.

By using the above scheme of labeling, we get the set of edge-sums consecutive integer sequence $S = [\gamma + 2, \gamma + 1 + e]$. Therefore, by

Lemma 1.1 can be extended to a reverse edge magic total labeling with magic constant $k = (3mn - 2) + \sum_{t=6}^{i} [2^{t-6}(mn) - t + 10].$

Theorem 2.4 The graph $G \cong Sb(mn, mn. 2n, 2n + 2, 4n + 3, n_6, ..., n_r)$ admits the reverse edge magic total labeling with k = 2v - s - 1, for any odd $n \ge 3$, $r \ge 6$, $n_p = 2^{p-5}(4n + 2) + 1$ and $6 \le p \le r$

Proof: Let Let v = |V(G)| and e = |E(G)| then $v = [(2k+8)n+6] + \sum_{t=6}^{r} [2^{m-5}(4n+2)+1]$ and e = v-1 Let us define $\lambda: V(G) \to [1, v]$ as follows,

$$\lambda(c) = [(2k+4)n+4] + \sum_{t=6}^{r} [2^{m-6}(4n+2)+1]$$

For odd $1 \le l \le n_i$, where $1 \le i \le 5$ and for $6 \le i \le r$:

$$\lambda(w) = \begin{cases} \frac{l_1 + 1}{2}, & \text{if } w = x_1^{l_1} \\ mn + 1 - \frac{l_2 - 1}{2}, & \text{if } w = x_2^{l_2} \\ (mn + 2) + \frac{l_3 - 1}{2}, & \text{if } w = x_3^{l_3} \\ (m + 2)n + 2 - \frac{l_4 - 1}{2}, & \text{if } w = x_4^{l_4} \\ (m + 2)n + 4 - \frac{l_5 - 1}{2}, & \text{if } w = x_5^{l_5} \end{cases}$$

 $\lambda(x_i^{l_i}) = [(2k+4)n+4] + \sum_{t=6}^{r} [2^{m-6}(4n+2)+1] \frac{l_i-1}{2}$ accordingly.

For even $1 \le l \le n_i$ and $\gamma = (3kn + 2) + \sum_{t=6}^{r} [2^{t-6}2kn - (m-6)]$, where $1 \le i \le 5$ and for $6 \le i \le r$:

$$\lambda(w) = \begin{cases} (\gamma + 1)\frac{l_1 - 2}{2}, & if \ w = x_1^{l_1} \\ (\gamma + mn - 1) - \frac{l_2 - 2}{2}, & if \ w = x_2^{l_2} \\ (\gamma + mn + 1) + \frac{l_3 - 2}{2}, & if \ w = x_3^{l_3} \\ (\gamma + (m + 2)n - 1) - \frac{l_4 - 2}{2}, & if \ w = x_4^{l_4} \\ (\gamma + (m + 2)n + 2) - \frac{l_5 - 2}{2}, & if \ w = x_5^{l_5} \end{cases}$$

$$\lambda(x_i^{l_i}) = [\gamma + (m+4)n + 2] + \sum_{t=6}^{i} [2^{t-6}(4n+2) + 1] - \frac{l_i-2}{2}$$
 accordingly.

By using the above scheme of labeling, we get the set of edge-sums consecutive integer sequence $S = [\gamma + 2, \gamma + 1 + e]$. Therefore, by Lemma 1.1 can be extended to a reverse edge magic total labeling with magic constant $k = (mn + 4) + \sum_{t=0}^{i} [2^{t-6}(4n + 2)]$.

3. Conclusion

In this paper, we have proved that the following subclasses of subdivided stars admit reverse super edge magic total labeling,

- For $n \ge 3$ and $k \ge 1$ are odd, $r \ge 6$, $Sb(mn, mn, mn, 2mn, n_6, \dots, n_r)$ with $n_p = 2^{p-4} 2p + 11$ for $6 \le p \le r$.
- For $n \ge 3$ and $k \ge 1$ are odd, $r \ge 6$, $Sb(mn, mn, 2n, 2n + 2, 4n + 3, n_6, ..., n_r)$ with $n_p = 2^{p-5}(4n + 2) + 1$ for $6 \le p \le r$.

The problem is still open for the remaining subclasses of subdivided stars with different combinations of m and n.

References

- [1] West DB. An introduction to graph theory. New Jersey: Prentice-Hall, 1996.
- [2] Gallian JA. A dynamic survey of graph labeling. *Electron J Combin*. 2017; 17:42–45.
- [3] Enomoto H, Lladó, AS, Nakamigawa T, Ringel G. Super edge-magic graphs, *SUT J Math.* 1998; 34:105–109.
- [4] Baskoro ET, Sudarsana, IW, Cholily YM, How to construct new super edge-magic graphs from some old ones. *J Indones Math Soc* (*MIHIM*). 2005;11(2):155–162.
- [5] Figueroa-Centeno RM, Ichishima R, Muntaner-Batle FA. On super edge-magic graph. *Ars Combinatori*. 2002;64: 81–95.
- [6] Javaid M, Hussain M, Ali K, Dar KH. Super edge-magic total labeling on w-trees. *Utilitas Math.* 2011; 86:183–191.
- [7] Ngurah AAG, Simanjuntak R, Baskoro ET. On (super) edge-magic total labeling of subdivision of $K_{1,3}$. SUT J Math. 2007; 43:127–136.

- [8] Salman ANM, Ngurah, AAG, Izzati N. On super edge-magic total labeling of a subdivision of a Star S_n . *Utilitas Mthematica*. 2010; 81:275–284.
- [9] Sharief BS. Reverse super edge magic labeling on w-trees. *Int J Comput Eng Res Trends*. 2015;2(11):719–721.
- [10] Sharief BS. Madhusudhan RK. Reverse magic strength of festoon trees. *Ital J Pure Appl Math.* 2014; 33:191–200.
- [11] Raheem AM, Javaid M, Baig AQ. On antimagicness of subdivided stars. *Discuss Math Graph Theory*. 2015; 35:663–673.
- [12] Raheem A, Baig AQ. Antimagic labeling of the union of subdivided stars, *TWMS J Appl Eng Math.* 2016; 6:244–250.
- [13] Raheem A, Baig AQ, Javaid M. On (a,d)-EAT labeling of subdivision of $K_{1,r}$. J Inf Optim Sci. 2018;39(3):643–650.
- [14] Venkata RS, Sharief BS. On reverse super edge-magic labeling of graphs, *Int Rev Pure Appl Math*. 2010;6(1):181–188.

