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Image Registration using the Rigid Group 
Muhammad Yousuf Tufail*, and Saima Gul 

NED University of Engineering and Technology, Karachi, Pakistan 

Abstract 
Image registration is the process of approximate matching of the source 
image to the target so that they resemble each other. In this study, two-
dimensional image registration is presented using the rigid group. This group 
is a finite dimensional group (four-dimensional in this case) under 
composition. The dimensions of the rigid group are scaling, rotation, and 
translations along the axes. In this paper, an algorithm for the construction 
of rigid transformation is presented using the discretized objective function. 
This objective function is based on SSD (sum of the squares of the distances 
between the pixels intensities) and calculates the discrepancy between the 
images. The coarse search and the gradient descent approaches have been 
used for the optimization. The proposed algorithm is implemented on 
variety of images. The numerical examples illustrate the ability of the 
proposed algorithm. 
Keywords: algorithms, coarse search, image registration, optimization, 
rigid group.  
1. INTRODUCTION

Image registration is the process of the approximate matching of the source 
image to the target so that their appearances resemble each other. The 
pioneer work of D’Arcy Thompson remains the original inspiration in the 
field of image registration. In his famous book On Growth and form [1, 2], 
which was first published in 1917 and then re-published in 1942, he 
presented the idea of image transformation between species. Some of the 
images and their relative transformations that he referred in his book 
motivated the current authors to further explore finite dimensional group, 
which is the scope of this paper. Although there have been many 
developments in image registration since 1942, still the most remarkable 
and influential approach is to find a diffeomorphism between the two 
images using a method known as “Large Deformation Diffeomorphic 
Metric Mapping (LDDMM)” [3–7].  
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Lisa Gottesfeld Brown published the first comprehensive review of image 
registration in 1992 [8]. Brown highlighted the various requirements of 
image registration namely (i) a feature space (contains information about the 
images), (ii) a search space (consists of a set of transformations), (iii) a search 
strategy (selection of transformations to get an optimal solution), and (iv) a 
similarity metric (to measure the discrepancy between the images). Brown 
suggested only three lists of transformations (all were finite) including (a) 
affine transformation (shearing, aspect ratio, and rigid), (b) perspective 
transformation (a transformation that maps 3D to 2D), and (c) polynomial 
transformation (suitable when minor information regarding camera geometry 
is available [2, 9]). The basic steps in image registration still remain the same. 
However, the choice of transformations has evolved drastically. The full set 
of diffeomorphisms, that is, non-rigid registration using infinite dimensional 
group is an integral part of image registration and widely applied in medical 
imaging [6–7, 10]. 

Several methods for image deformation have been developed and applied 
to the distinct fields of mathematics and computer science since 1992. These 
methods include artificial intelligence[11], image encryption [12], graph 
theory, [13] and many more  [14–26]. The adoption of diffeomorphic image 
registration has caused a revolutionary and significant change in the field. 
Diffeomorphisms refer to those smooth functions whose inverse are also 
smooth [2, 9, 27]. 

In this paper, image registration is presented using the group of rigid 
diffeomorphisms. Two-dimensional grey scale images [2, 9]  have been used to 
conduct the experiments. Image registration is subject to the optimal solution 
of the current study’s objective function which is defined in Eq. (2.2). This 
equation demonstrates how close the images are. This objective function is 
based on SSD (sum of the squares of the distances between the pixels 
intensities). For more details, see equation (2.9) in Section 2.2 in [2]).  
2. RIGID GROUP AND IMAGE REGISTRATION 

The rigid group of diffeomorphisms is one of the most common group 
which is extensively used in image registration. It has been studied 
extensively over the past several decades, both for medical and non-medical 
applications [28–33]. This group consists of uniform scaling, rotations, and 
arbitrary translations along the axes [8, 19, 34–36]. Let us first present each 
of these separately. 
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2.1. Rotation 

Suppose an arbitrary point �𝑋𝑋𝑌𝑌� in ℝ2. Let 𝜁𝜁 ∈ [0,2𝜋𝜋[ be the angle of 

rotation, then the rotation transformation 𝜓𝜓1 to generate a new point �𝑋𝑋
′

𝑌𝑌′
� 

in ℝ2 is defined as 

�𝑋𝑋
′

𝑌𝑌′
� = 𝜓𝜓1 �

𝑋𝑋
𝑌𝑌� = �cos 𝜁𝜁 −sin 𝜁𝜁

sin 𝜁𝜁 cos 𝜁𝜁 � �
𝑋𝑋
𝑌𝑌�. 

2.2. Scaling 

Suppose 𝛾𝛾 ∈ ℝ+, then the scaling transformation 𝜓𝜓2 over �𝑋𝑋𝑌𝑌� is 
represented below as 

�𝑋𝑋
′

𝑌𝑌′
� = 𝜓𝜓2 �

𝑋𝑋
𝑌𝑌� = 𝛾𝛾 �𝑋𝑋𝑌𝑌�. 

2.3. Translation along the Axes 

Suppose 𝑡𝑡𝑟𝑟𝑥𝑥, 𝑡𝑡𝑟𝑟𝑦𝑦 ∈ ℝ are the translations along the x-axis and y-axis 

respectively. The translation transformation 𝜓𝜓3 over �𝑋𝑋𝑌𝑌� is defined below 
as 

�𝑋𝑋
′

𝑌𝑌′
� = 𝜓𝜓3 �

𝑋𝑋
𝑌𝑌� = �

𝑋𝑋 + 𝑡𝑡𝑟𝑟𝑥𝑥
𝑌𝑌 + 𝑡𝑡𝑟𝑟𝑦𝑦

�. 

The diffeomorphims group generated by the composition of scaling, 
rotation, and translations along the axes is termed as the rigid group. See 
Proposition 2.1 for more details. The composition of individual 

transformations yields �𝑋𝑋
′

𝑌𝑌′
� = 𝜓𝜓��𝑋𝑋𝑌𝑌��, where 𝜓𝜓 = 𝜓𝜓3 ∘ 𝜓𝜓2 ∘ 𝜓𝜓1 

�𝑋𝑋
′

𝑌𝑌′
� = 𝛾𝛾 �cos 𝜁𝜁 −sin 𝜁𝜁

sin 𝜁𝜁 cos 𝜁𝜁 � �
𝑋𝑋
𝑌𝑌� + �

𝑡𝑡𝑟𝑟𝑥𝑥
𝑡𝑡𝑟𝑟𝑦𝑦� , 𝜁𝜁 ∈ [0,2𝜋𝜋[, 0 ≠ 𝛾𝛾 ∈ ℝ+. 

The formula to represent the inverse rigid diffeomorphism is defined as 
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�𝑋𝑋𝑌𝑌� =
1
𝛾𝛾
�cos 𝜁𝜁 − sin 𝜁𝜁

sin 𝜁𝜁 cos 𝜁𝜁 �
−1
��𝑋𝑋

′

𝑌𝑌′
� − �

𝑡𝑡𝑟𝑟𝑥𝑥
𝑡𝑡𝑟𝑟𝑦𝑦�� , 𝜁𝜁 ∈ [0,2𝜋𝜋[,0 ≠ 𝛾𝛾 ∈ ℝ+

 =
1
𝛾𝛾
� cos 𝜁𝜁 sin 𝜁𝜁
−sin 𝜁𝜁 cos 𝜁𝜁� ��

𝑋𝑋′
𝑌𝑌′
� − �

𝑡𝑡𝑟𝑟𝑥𝑥
𝑡𝑡𝑟𝑟𝑦𝑦�� , 𝜁𝜁 ∈ [0,2𝜋𝜋[, 0 ≠ 𝛾𝛾 ∈ ℝ+.

 

Proposition 2.1. The existence of the composition of rigid diffeomorphisms 
in the domain Ω ⊂ ℝ2 implies the following fact: 

(𝜓𝜓1 ∘ 𝜓𝜓2) ⋅ �𝐼𝐼(𝒙𝒙)� = 𝜓𝜓1 ⋅ �𝜓𝜓2. 𝐼𝐼(𝒙𝒙)�,∀𝜓𝜓1,𝜓𝜓2 ∈ rig(Ω,ℝ2). 

Here, '.' denotes the action of 𝜓𝜓 over the image 𝐼𝐼, ∘ indicates the 
composition, see Section 1.2.4 in [2], and the set of rigid diffeomorphisms 
is represented with rig (Ω,ℝ2). 

Proof: Suppose 𝜓𝜓1 and 𝜓𝜓2 are rigid diffeomorphisms in Ω such that their 
composition 𝜓𝜓1 ∘ 𝜓𝜓2 is also a diffeomorphism in Ω, then 
(𝜓𝜓1 ∘ 𝜓𝜓2) ⋅ 𝐼𝐼(𝐱𝐱)  = 𝐼𝐼((𝜓𝜓1 ∘ 𝜓𝜓2)−1(𝐱𝐱))

 = 𝐼𝐼�(𝜓𝜓2−1 ∘ 𝜓𝜓1−1)(𝐱𝐱)�
 = 𝐼𝐼(𝜓𝜓2−1(𝐱𝐱) ∘ 𝜓𝜓1−1(𝐱𝐱))
 = 𝐼𝐼 ∘ 𝜓𝜓2−1(𝐱𝐱) ∘ 𝜓𝜓1−1(𝐱𝐱)
 = (𝐼𝐼 ∘ 𝜓𝜓2−1(𝐱𝐱)) ∘ 𝜓𝜓1−1(𝐱𝐱)
 = (𝜓𝜓2 ⋅ 𝐼𝐼(𝐱𝐱)) ∘ 𝜓𝜓1−1(𝐱𝐱)
 = 𝜓𝜓1 ⋅ �𝜓𝜓2 ⋅ 𝐼𝐼(𝐱𝐱)�

 

Definition 2.1. Suppose 𝐼𝐼1 and 𝐼𝐼2 are two greyscale images. The 
discrepancy between the images is computed with the following matching 
functional or objective function 

𝑀𝑀(𝜓𝜓) = �  
Ω

{(𝐼𝐼1 ∘ 𝜓𝜓−1)(𝒙𝒙) − 𝐼𝐼2(𝒙𝒙)}2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝒙𝒙 = (𝑋𝑋,𝑌𝑌)𝑇𝑇 ∈ Ω ⊂ ℝ2    (2.1) 

where 𝜓𝜓 represents an element from the rigid group (See Section 2). Then, 
the process of finding an optimal 𝜓𝜓 that minimizes Eq. (2.1) is termed as a 
rigid registration. It is clear that Eq. (2.1) is the continuous version of the 
objective function. As far as numerical computation is concerned, the 
continuous form is discretized. Suppose we define our discrete domain 𝔻𝔻. 
This domain serves as the discrete domain for all the images presented in 
this paper. Suppose 𝑀𝑀 is a positive integer and 𝔻𝔻 = {([0,𝑀𝑀 − 𝛼𝛼]/(𝑀𝑀−
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𝛼𝛼) − 0.5) × ([0,𝑀𝑀 − 𝛼𝛼]/(𝑀𝑀− 𝛼𝛼) − 0.5);𝛼𝛼 = 1} is a uniform square grid 
that contains 𝑀𝑀2 grid points, a simple example by setting 𝑀𝑀 = 100 is shown 
in Figure 1. Consider 𝑀𝑀 = 100 for all the numerical examples in this paper. 
The discrete form of the objective function (defined in Eq. (2.1)) is 

𝑀𝑀(𝜓𝜓) = � 
𝑀𝑀

𝑖𝑖=1

�  
𝑀𝑀

𝑗𝑗=1

�(𝐼𝐼1 ∘ 𝜓𝜓−1)�𝑑𝑑𝑖𝑖𝑗𝑗� − 𝐼𝐼2�𝑑𝑑𝑖𝑖𝑗𝑗��
2

.                               (2.2) 

Here, 𝑑𝑑𝑖𝑖𝑗𝑗 indicates the value of the image at position (𝑖𝑖, 𝑗𝑗) in the image 
matrix. 

 
Figure 1. A Total of 10,000 Points for a Square Grid are Given. The range 
for Data Points is �[−𝛽𝛽, 𝜂𝜂] × [−𝛽𝛽, 𝜂𝜂];𝛽𝛽 = 𝜂𝜂 = 1

2
�, with 100 Grid Points per 

Side, i.e., 𝑀𝑀 = 100. 
Moreover, the values of I1 are defined over the uniform grid points, i.e., 

at 𝑑𝑑𝑖𝑖𝑗𝑗 and not at ψ−1(𝑑𝑑𝑖𝑖𝑗𝑗). Furthermore, it must be noticed that the domain 
of I1 ◦ ψ−1 is not Ω, instead it is ψ(Ω) at the continuous level. It is highly 
likely (for some points) that I1 ◦ ψ−1 move outside Ω in the registration. 
Thus, Ω is a restricted subset of R2. As far as computation is concerned, the 
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following values for I1 ◦ ψ−1(𝑑𝑑𝑖𝑖𝑗𝑗) are used. 

1. If ψ−1(𝑑𝑑𝑖𝑖𝑗𝑗) ∈ Ω, bilinear interpolation (Section 2.1.2 in [2]) is used by 
using the values of I1 corresponding to four neighboring edges of a square 
that contains ψ−1(𝑑𝑑𝑖𝑖𝑗𝑗). 

2. If ψ−1(𝑑𝑑𝑖𝑖𝑗𝑗) ∉ Ω,, a constant background value (0 for a black background 
in Example 4.1 and 1 for a white background in Examples 4.2 and 
4.3) is set. 

The central goal for the registration is to minimize M(ψ) for ψ ∈ G. In this 
paper, two methods are used for optimization namely (i) the method of 
coarse search (that surveys the whole discretized domain for all the 
parameters, four in our case), and (ii) the trust- region-reflective method.  

The latter method is used when researchers encounter the non-linear least 
squares problem and it yields a local optimal solution. The trust-region-
reflective algorithms have been used through MatLab, see example 4.3 . 

Eq. (2.2) denotes the general form of the least-squares optimisation 
(based on SSD) function for any choice of planar transformation group (i.e., 
G is a Lie group that acts on the plane [37], G is the rigid group for this 
study). This is a numerical optimization problem. Optimization is a huge 
field with many known algorithms [9, 38–40] whose applicability depends 
on the nature of the objective function. The purpose here is not to survey 
this field but to demonstrate some simple applications. 
3. COARSE SEARCH 

In this method, firstly, the domain for the matching functional is defined. 
This matching functional is computed for several points ψ ∈ G, see 
Algorithm 4.1 for further details. This algorithm contains four nested 
loops, that is, the parameters of the rigid group. The values of individual 
parameters are set as 𝑀𝑀𝜁𝜁 = 21,𝑀𝑀𝛾𝛾 = 13,𝑀𝑀𝑥𝑥 = 11, and 𝑀𝑀𝑦𝑦 = 11. The 
total search for optimal solution (minimization in this case) is the product 
of all four nested loops, that is, a total of 33,033 computations for the 
objective function. 
4. EXPERIMENTS 

In this section, the implementation of Algorithm 4.1 over synthetic data 
is presented. In synthetic data,  the target is generated (by using known 
rigid transformation) from the source. Three examples are presented in which 
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the first example involves a pair of smooth images, whereas the other two 
examples are related to the registration of non-smooth images. 

Example 4.1 (pair of smooth images). In this first warm-up example, 2D 
Gaussian blob (an example of smooth image) is considered for image 
registration. The Gaussian function is considered as the source of image 
registration. A rigid transformation, with the parameters values ζ =
pi/2, γ = 0.8, trx = 0.2 and try = 0.4, are  used to generate the target. 
Algorithm 4.1 yields the optimized set of parameters whose values are 
ζopt = π/2, γopt = 0.8, txopt = 0.2 and tyopt = 0.4. These optimised 
parameters are used to transform the source with a rigid transformation. The 
transformed source is then subtracted from the target. By doing this, 
attention is drawn toward the fact that how good the images are aligned 
(transformed source and the target). Midgrey pixels indicate a perfect 
match,1 whereas the evidence of mismatch appears as black (pixel value is 
≈ 0 ) or white (pixel value is ≈ 1 ). Figure 2 displays the results of 
registration. An excellent registration is obtained (as expected). The optimal 
solution is highlighted with a red circle in the bottom part of Figure 2. 

Figure.2. Image Registration is Given for Example 4.1. Top: Left: Source 

 
1 Perfect match here and elsewhere means good visual registration, i.e., there is no 
mismatch (apparently) between the transformed source and the target; and evidence of 
midgrey pixels screen when the transformed source is subtracted from its corresponding 
target.   
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(the Gaussian exp (−5𝑑𝑑2 − 3𝑑𝑑2)�, Target, Deformed Source, and 
Difference Image �(𝐼𝐼1 ∘ 𝜓𝜓−1 − 𝐼𝐼2 + 1)/2�, Uniform Mid Grey Confirms 
that Perfect Registration between the Images is Obtained; Right: Rigid 
Diffeomorphism 𝜓𝜓−1 Applied to the Target Grid with the Comparison of 
Contour Plots of 𝐼𝐼1 ∘ 𝜓𝜓−1 (the Transformed Source ) and 𝐼𝐼2 (the Target). 
The contour plots Have Been Made by Plotting Green Contours on Top of 
Red Contours. No Red Line Can Be Seen Due to Perfect Registration. 
Bottom: The Registration Errors Are Given. The Optimal Solution Is 
Identified as A Red Circle. 

Example 𝟒𝟒.𝟐𝟐 (pair of non-smooth images). Image registration for non-
smooth images is always challenging [9]. Consider the pair of non-smooth 
images. Alike the previous example, again the synthetic data is considered, 
that is, ζ = pi/2, γ = 1.1, trx = −0.2, and try = 0.1 are set as the initial 
parameters for the known rigid transformation. The implementation of 
Algorithm 4.1 produces optimized parameters that are ζopt = π

2
, γopt =

1.1, txopt = −0.2, and tyopt = 0.1. After obtaining these optimized 
parameters, the source is transformed by following the same steps as in the 
Example 4.1. The results of image registration are given in Figure 3. Alike 
the previous example, a perfect registration is obtained. 

 
Figure 3. Implementation of Algorithm 4.1 Over A Pair of Nonsmooth 
Images Used for Example 4.2. 
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Example 4.3 (pair of non-smooth images). Now consider a slightly harder 
example in which the target is generated from the source with the help of 
rigid transformation. The values ζ = 1.6, γ = 1.25, tr  x = −0.27 and try =
0.13 are set as parameter values for rigid transformation. Resultantly, 
Algorithm 4.1 produced ζopt = π/2, γopt = 1.2, txopt = −0.3 and tyopt = 
0.1 as optimized parameters. These parameter values are noticeably 
different from those values of parameters that were used to construct the 
target. The reason for discrepancy (in values) is due to the fact that the set 
of allowable values for the parameters in coarse search do not contain the 
exact values of the parameters that were used to generate the target. Thus, 
Figure 4 displays adequate but not perfect registration. 

 
Figure 4. Result of Image Registration Using Algorithm 4.1 for 
Example 4.3. 
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MatLab based optimizer lsqnonlin is used for the current non-linear 
problem. This optimizer is used for the (typical) least squares functions for 
optimization [2, 41]. 

lsqnonlin requires an initial guess for optimization. For this purpose, the 
above optimized parameters that were obtained at the first step of 
optimization (the coarse search), that is, ζini = π/2, γini = 1.2, txini = 
−0.3, and tyini = 0.1 were chosen as an initial guess. The optimizer yields 
a global minimum and the corresponding values of the parameters are 
ζopt = 1.6, γopt = 1.25, txopt = −0.27, and tyopt = 0.13. Figure 5 confirms 
a perfect registration. 

 
Figure 5. Results of Image Registration for Example 𝟒𝟒.𝟑𝟑 Using Lsqnonlin. 
Top Row: Pair of Relevant Images for the Registration. Second Row: The 
Transformed Source (𝐼𝐼1 ∘ 𝜓𝜓−1 ) And the Subtraction Between the 
Transformed Source and The Target. Bottom Row: The Transformed Grid 
and The Target Grid. These Identical Grids Indicate the Perfect Registration 
Between the Source and The Target. 
Algorithm 4.1. Minimization of Eq. (2.2) using Coarse Search 

Input : Source 𝐼𝐼1 and target 𝐼𝐼2 

output: Warp 𝜓𝜓−1 along with the transformed image 𝐼𝐼1 ∘ 𝜓𝜓−1 

for 𝜁𝜁 = 0:𝜋𝜋/10: 2𝜋𝜋 do 

for 𝛾𝛾 = 0.1: 0.1: 1.3 do 
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for 𝑡𝑡𝑟𝑟𝑥𝑥 = −0.5: 0.1: 0.5 do 

for 𝑡𝑡𝑟𝑟𝑦𝑦 == −0.5: 0.1: 0.5 do 

Computation of deformation of source using bi-linear interpolation, 

𝐼𝐼1 ∘ 𝜓𝜓−1�𝑑𝑑𝑖𝑖𝑗𝑗�∀𝑑𝑑𝑖𝑖𝑗𝑗 ∈ 𝑆𝑆  

Compute 𝑑𝑑 = ∥∥𝐼𝐼1 ∘ �̃�𝜓−1�𝑑𝑑𝑖𝑖𝑗𝑗� − 𝐼𝐼2�𝑑𝑑𝑖𝑖𝑗𝑗�∥∥
2
∀𝑑𝑑𝑖𝑖𝑗𝑗 ∈ 𝑆𝑆

Compute  𝜓𝜓−1 = �̃�𝜓−1 for the optimal solution of 𝑑𝑑, 

final deformation of source: 𝐼𝐼1 ∘ 𝜓𝜓−1 
5. Conclusion

In this research, an algorithm for the construction of rigid 
diffeomorphisms has been presented. This algorithm gives an optimal 
solution for the objective function which calculates the discrepancy 
between the images (see Eq. (2.2)). It worked very well for the selected 
examples and found the optimal solution for perfect match. However, 
there is a deficiency in the algorithm that it gets stuck on the local 
minimum for some examples (not reported here). Due to this deficiency, 
the current authors were unable to find a perfect match (see Example 
4.3). Thus, other optimization techniques are also needed to overcome 
this deficiency. Gradient descent (there are few more, see [42, 43]) is 
one of the approaches and used in Example 4.3.  

The major benefit of the proposed algorithm is that (as it is based on 
coarse search) it surveys the whole domain and provides a good initial 
guess for more sophisticated optimization. Apparently, this method is 
very simple but it is always recommended to search for each parameter 
(over a relatively small number of values) in the whole domain. In light 
of modern research on optimization, it is worthy to implement coarse 
search because (i) it is worthless to compute the derivative at the first 
step (function might not be differentiable) and (ii) function might have 
several local minima scattered all over the domain. It becomes nearly 
impossible for the derivative-based optimization method (such as 
steepest descent) to find the global minimum. In this situation, the 
method of coarse search is the best option to get a better initial guess 
(possibly very near to the global minimum, see Example 4.3) in order 
to find the desired optimal solution for the perfect match. 
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