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ABSTRACT 

Nonlinear regression analysis holds significant popularity in mathematical, 

engineering, and social science domains. Disciplines like financial matters, 

biology, and natural chemistry have broadly utilized nonlinear regression 

models (NLRMs). Cloned datasets have their own importance in such areas 

which provide the same fit of bivariate and multivariate nonlinear 

regression models for the actual datasets. This article presents a sequence 

of cloned datasets that give exactly the same fit of bivariate and multivariate 

nonlinear regression models. 

Keywords: cloned data, nonlinear regression model,  fictitious datasets, 

data visualization. 

1. INTRODUCTION 

If genuine information is private and cannot be shown, a matching or 

alternative set of data is required which provide same summary statistics as 

of the actual data. Cloned data refers to the alternative or matching set of 

data through mathematical techniques that allow rapid provisioning in 

testing and developments. Data cloning has its own significance as an 

alternative method for protecting confidential information and database. 

Table 1 shows four fictitious distinct cloned datasets (CDSs) created by 

Anscombe [1] to demonstrate the significance of graphs in statistical 

analysis. The summary statistics (mean, standard deviation, and correlation) 

as well as the parameter estimates of the fitted regression equation R2 and 

estimated standard deviation of residuals are identical across these four 

distinct CDSs, however, they were vastly different scatter plots as shown in 

Figure 1. Dataset I was  strongly linear with a single outlier and II appears 

to follow a parabolic distribution,  whereas dataset III appears to adhere to 

a noisy linear regression model (LRM), and  dataset IV appears to follow a 

vertical line with the regression thrown off by a single outlier. Datesets in 

Table 1 are significant and frequently used to show how important visible 
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methods are. These datasets were  also known for their significant use in 

education. However, the method used to create the datasets was not 

explained in [1]. A genetic algorithm-based approach was proposed by 

Chatterjee and Firat [2], who generated 1,000 random datasets with 

comparable summary statistics and graphics for the basic datasets. 

Govindaraju and Haslett [3] devised a method for producing datasets by 

regressing the response on the covariate in the direction of their 

unconditional sample means, while maintaining identical LRM estimates. 

As a result, the variability in the response and the covariate decreased in 

each subsequent cloned dataset. Haslett and Govindaraju's [4] method for 

creating matched datasets was extended to include a multiple linear 

regression model, ensuring that the matched datasets have an identical fit to 

the original data. The idea of data-cloning emerged from both biostatistics 

[5, 6] and financial time series [7]. 

Cloning for maximum likelihood estimation using Bayesian software 

was  achieved by the simple device of replicating the original data many 

times [6]. Fung et al. [8] expressed that the creation of CDSs to anonymize 

sensitive data was  another application for datasets with the same statistical 

properties, as discussed in [3]. In this instance, it is critical that individual 

data points were  altered, while the data's overall structure remained 

unchanged. 

Haslett and Govindaraju [9] described a straightforward approach for 

modifying LRM data, while still obtaining the same fitted regression 

parameters. Ponciano et al. [10] showed how structural parameter non-

identifiability can be diagnosed with Data Cloning (DC) and distinguished 

from other parameter estimability issues, such as when parameters are 

structurally identifiable but not estimable in a given data set or when they 

are identifiable and weakly estimable. Bayesian phylogenetics software can 

be used to diagnose non-identifiability with the DC approach. Additionally, 

it was demonstrated that DC can be used to examine and eliminate the 

influence of priors, particularly when prior elicitation was  difficult. Finally, 

DC can be used to investigate at least two significant statistical issues when 

applied to phylogenetic inference, developing effective sampling strategies 

for computationally expensive posterior densities, and evaluating the 

identifiability of discrete parameters, such as the tree's topology. 

Data confidentiality is one of the designed goals of tunable encrypted 

deduplication, see Amvrosiadis and Bhadkamkar [11]. Additionally, it 
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reduced the risk of data leakage brought  by frequency analysis. 

Furthermore, it was identified that better ways of seeing and exploring data 

lead to better insights. The "Datasaurus" Cairo dataset was created by 

Alberto Cairo [12]. This, like Anscombe's Quartet, emphasized the 

significance of data visualization, despite the dataset's normal summary 

statistics, the plot it produced depicted a dinosaur. They started with the 

datasaurus and created additional datasets with the same summary statistics. 

Additionally, Cairo's Datasaurus data visualization prohibited to solely rely 

on the summary statistics of the used data. 

Resultantly, according to [2], datasets should be as graphically distinct 

as possible. With different standard deviations but identical means and 

LRM estimates, [3, 4, 9] data are intended to be graphically comparable. 

Matejka and Fitzmaurice [13] developed a novel method for creating 

datasets, which  are identical across a variety of statistical properties but 

visually distinct during the data exploration. To address the primary 

empirical facts of financial time series, numerous complex parametric 

stochastic volatility models were proposed in the subsequent literature. The 

models that Mao et al. [14, 15]  proposed  incorporated a broader 

asymmetric volatility function. 

Hussain et al. [16] used a simple procedure to clone data for nonlinear 

regression models having linearizable or nonlinearize regression functions, 

such as aXb, abX, aebX, k 𝑎𝑏𝑋
, ksX 𝑏𝑐𝑋

, k+abX,  
𝑘

1+𝑏𝑐𝑋 , A [a𝑋2
−𝑏 + (1 −

a)𝑋1
−𝑏]−

1

𝑏. They found that cloned data generated by linearizable or non-

linearizable estimable functions of parameters have unchanged estimates. 

The procedure increased the sample size of cloned data without changing 

the parameters estimates, which was for n original sample points (x, y). This 

generated n2 observations by adding [ai: i = 1, 2, …, n] to the data points y 

over ∑ 𝑎𝑖𝑖  = 0. Due to increased sample size, cloned estimates showed 

smaller standard errors as compared to the original standard errors. This 

procedure used by [16] was sufficient for the first iteration because in the 

next iterations, it became  tedious work. This procedure was useful for 

modeling but not for confidentialising or encrypting data, as in the design 

matrix variables remained  unchanged. In this case, the term 

"confidentializing" referred to making the values of particular variables 

certain for particular people that cannot be deduced from the data. Our goal 

in this article is to create datasets with the same fit for nonlinear linear 
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regression models (NLRMs). [3, 4] methods were  used to generate these 

cloned data sets. To get around the problem in [16], nonlinear regression 

models with linearizeable regression functions were  the prime focus of this 

article. 

Table 1. Anscombe’s CDSs with Pairs (x, y1), (x, y2), (x, y3) and (x4, y4) 

x y1 y2 y3 x4 y4 

7 6.42 7.26 4.82 8 7.91 

4 5.39 3.10 4.26 19 12.5 

11 7.81 9.26 8.33 8 8.47 

13 12.74 8.74 7.58 8 7.71 

8 6.77 8.14 6.95 8 5.76 

5 5.73 4.74 5.68 8 6.89 

12 8.15 9.13 10.84 8 5.56 

6 6.08 6.13 7.24 8 5.25 

10 7.46 9.14 8.04 8 6.58 

9 7.11 8.77 8.81 8 8.84 

14 8.84 8.10 9.96 8 7.04 

 

 
Figure 1. Scatter Plots of Anscombe’s Datasets with Matched Simple 

Regression Models 

2. THE NONLINEAR REGRESSION MODEL 
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2.1. The Regression Model (RM) 

The Regression Model (RM) talks about the relationship between a 

response variable 𝑌 and one or more covariates 𝑋(𝑗). The general model is: 

𝑌𝑖 = 𝐻(𝑋𝑖
(1)

, 𝑋𝑖
(2)

, … , 𝑋𝑖
(𝑚)

; 𝐴1, 𝐴2, … , 𝐴𝑝) + 𝐸𝑖 

Here, 𝐻  is a suitable function that relies on the covariates 

𝑋𝑖
(1)

, 𝑋𝑖
(2)

, … , 𝑋𝑖
(𝑚)

 and parameters 𝐴1, 𝐴2, … , 𝐴𝑝 . The unstructured 

deviations from 𝐻  are defined by means of random errors (REs) 

𝐸𝑖~𝑁(0, 𝜎2). 

2.2. The Linear Regression Model 

In multiple LRM (MLRM), function 𝐻 are characterized as linear in the 

parameters. 

𝐻(𝑋𝑖
(1)

, 𝑋𝑖
(2)

, … , 𝑋𝑖
(𝑚)

; 𝐴1, 𝐴2, … , 𝐴𝑝) = 𝐴1�̃�𝑖
(1)

+ 𝐴2�̃�𝑖
(2)

+ ⋯ + 𝐴𝑝�̃�𝑖
(𝑚)

 

where �̃�𝑖
(𝑗)

 can be arbitrary functions of the original covariates 𝑋𝑖
(𝑗)

. 

2.3. The Nonlinear Regression Model 

In NLRM, function 𝐻 is  regarded in such a way that it can’t be written 

as linear in parameters. In case, there are infinite ways to explain  the 

deterministic part of the model. 

2.4. Linearizable Regression Functions (LRFs) 

In NLRMs, functions 𝐻can be linearized by the transformation of the 

variable of interest and the explanatory variables. Therefore, the regression 

is named as function 𝐻 which is linearizable if it can be converted  into a 

function linear in the parameters. 

2.5. A Few Examples of Nonlinear Regression Functions 

1- 𝐻(𝑋𝑖; 𝐴1, 𝐴2) = 𝐴1𝑋𝑖
𝐴2 

2- 𝐻(𝑋𝑖; 𝐴1, 𝐴2) = 𝐴1𝐴2
𝑋𝑖 

3- 𝐻(𝑋𝑖; 𝐴1, 𝐴2) = 𝐴1𝑒𝐴2𝑋𝑖 

4- 𝐻(𝑋𝑖
(1)

, 𝑋𝑖
(2)

; 𝐴1, 𝐴2, 𝐴3) = 𝐴1(𝑋𝑖
(1)

)𝐴2(𝑋𝑖
(2)

)𝐴3 

2.6. Linearizable Regression Function Model  
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A LRM with the LRF in the referred example is based on the model 

given below: 

ln(𝑌𝑖) = 𝐵1 + 𝐵2�̃�𝑖
(1)

+ 𝐵3�̃�𝑖
(2)

+ 𝐸𝑖;  �̃�𝑖
(1)

= ln(𝑋𝑖
(1)

) , �̃�𝑖
(2)

= ln(𝑋𝑖
(2)

) 

Where, 𝐸𝑖 follows the normal distribution. This model was back-converted 

and for this reason, the following equation was obtained: 

𝑌𝑖 = 𝐴1(𝑋𝑖
(1)

)𝐴2(𝑋𝑖
(2)

)𝐴3�̃�𝑖  ;  �̃�𝑖 = exp(𝐸𝑖) , 𝑖 = 1,2, … , 𝑛 

The errors �̃�𝑖  follows lognormal distributed and contributed 

multiplicatively. The assumptions about the random deviations were  

accordingly now appreciably distinct  for a model, which was primarily 

based on: 

𝑌𝑖 = 𝐴1(𝑋𝑖
(1)

)𝐴2(𝑋𝑖
(2)

)𝐴3 + 𝐸𝑖
∗ 

with random deviations 𝐸𝑖
∗ that follows normal distribution and contributed 

additively. 

3. DATA CLONING BY USING REGRESSING Y ON X AND X ON 

Y 

Assuming 𝑛 paired observations of 𝑋 and 𝑌 say (𝑥𝑖, 𝑦𝑖) 𝑖 = 1,2, ⋯ , 𝑛. 
The following procedure from [3] would generate a sequence of CDSs by 

obtaining the same fitted NLRM equations. 

3.1. Procedure for Bivariate Nonlinear Regression Model 𝒀 = 𝑨𝑿𝑩 

The simple NLRM (a geometric or power curve) 𝑌 = 𝐴𝑋𝐵  was  

linearizable due to logarithmic transformation as �̃� = 𝑎 + 𝐵�̃� where �̃� =
ln(𝑌) , �̃� = 𝑙𝑛(𝑋), 𝑎 = ln (𝐴)  ,and 𝐴 = exp (𝑎) . The inverse nonlinear 

regression model (INLRM) of 𝑌 = 𝐴𝑋𝐵 is = (
𝑌

𝐶
)

1

𝐷  , which was also 

linearizable as �̃� = 𝑐 + 𝑑�̃�  where 𝑑 =
1

𝐷
, 𝐷 =

1

𝑑
 , 𝑐 = −

ln (𝐶)

𝐷
 , 𝐶 =

exp (−
𝑐

𝑑
). 

1. First fit regression �̃�  on �̃� , namely �̃�1 = 𝑎 + 𝐵�̃� . Also fit inverse 

regression (IR) �̃� on �̃�, namely �̃�1 = 𝑐 + 𝑑�̃�. 

2. The regression of �̃�1  on �̃�1 would be �̃�2 = 𝑎 + 𝐵�̃�1, preserving same 

parameter estimates. Likewise, �̃�2 = 𝑐 + 𝑑�̃�1. Note that 𝑆�̃�1

2 < 𝑆�̃�
2 and 

𝑆�̃�1

2 < 𝑆�̃�
2. 
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3. The above method can be iterated with �̃�2 and �̃�2 as done in step 1 to 

gain cloning sets of data having the identical linearizable regression 

equation (LRE). Again 𝑆�̃�2

2 < 𝑆�̃�1

2 < 𝑆�̃�
2 and 𝑆�̃�2

2 < 𝑆�̃�1

2 < 𝑆�̃�
2 and so on. 

4. If preferred, transform back for CDSs, having same coefficients of 

NLRM. It was  noted that variability in Y and X of the cloned datasets 

fluctuated after every iteration (see Table 2). 

Example 1. Consider the variables X= (0.5, 1.5, 2.5, 5.0, 10.0)T  and Y= 

(3.4, 7.0, 12.8, 29.8, 68.2)T, resulting in the nonlinear regression fit  

�̂� = 5.709057𝑋1.01876                                                     (3.1) 

Steps 1-4 given above would yield the CDSs proven in Table 2. with exactly 

the  same equation of fitted NLRM as in (Eq. 3.1). 

Table 2. Cloned Data Sets Having the same Non Linear Regression Fit 𝑌 =
𝐴𝑋𝐵 

 

Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

0.5 3.4 0.61884 2.81765 0.51656 3.50135 

1.5 7.0 1.23925 8.62897 1.51542 7.10350 

2.5 12.8 2.21417 14.52011 2.49958 12.83071 

5.0 29.8 4.99031 29.42030 4.92915 29.36222 

10.0 68.2 11.06349 59.61073 9.72023 66.07545 

Mean 3.9 24.24 4.02521 22.99955 3.83619 23.77465 

Variances 14.425 706.448 18.2784 516.8321 13.50223 657.32050 

Correlation - 0.99684 - 0.99803 - 0.99679 

 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

0.63657 2.91275 0.53332 3.60356 0.65443 3.00903 

1.25687 8.71936 1.53068 7.20638 1.27437 8.80883 

2.21927 14.51765 2.49918 12.86087 2.22429 14.51524 

4.91979 28.99566 4.86072 28.93958 4.85168 28.58561 

10.73187 57.91217 9.45374 64.05832 10.41665 56.29510 

Mean 3.952877 22.61152 3.77553 23.33374 3.88428 22.24276 

Variances 17.04036 483.35930 12.65003 612.24240 15.9017 452.4788 

Correlation - 0.99797 - 0.99672 - 0.99791 

3.2. Procedure for Bivariate Nonlinear Regression Model 𝒀 = 𝑨𝑩𝑿 

A simple nonlinear regression model (an exponential curve) 𝑌 = 𝐴𝐵𝑋 

was  linearizable due to logarithmic transformation as �̃� = 𝑎 + 𝑏𝑋where 
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�̃� = ln(𝑌) , 𝑎 = ln (𝐴) , 𝐴 = exp (𝑎) , 𝑏 = ln(𝐵),  and 𝐵 = exp (𝑏) . The 

inverse nonlinear regression model of 𝑌 = 𝐴𝐵𝑋 was  𝑋 = 𝑙𝑛(
𝑌

𝐶
)

1

ln (𝐷), which 

was also linearizable, as 𝑋 = 𝑐 + 𝑑�̃�  where 𝑑 =
1

ln (𝐷)
, 𝐷 = exp (

1

𝑑
) , 𝑐 =

−
ln (𝐶)

ln (𝐷)
 , 𝐶 = exp (−

𝑐

𝑑
). 

1. First fit the regression of �̃� on 𝑋specifically �̃�1 = 𝑎 + 𝑏𝑋. Also, fit the 

IR of 𝑋 on �̃� particularly 𝑋1 = 𝑐 + 𝑑�̃�. 

2. The regression of �̃�1  on 𝑋1  would be �̃�2 = 𝑎 + 𝑏𝑋1 , maintaing the 

identical parameter estimates. Similarly, 𝑋2 = 𝑐 + 𝑑�̃�1. Note that 𝑆�̃�1

2 <

𝑆�̃�
2 and 𝑆𝑋1

2 < 𝑆𝑋
2. 

3. The above prcedure can be iterated with �̃�2 and 𝑋2 as in step 1 to obtain 

CDSs having the same LRE. Again 𝑆�̃�2

2 < 𝑆�̃�1

2 < 𝑆�̃�
2 and 𝑆𝑋2

2 < 𝑆𝑋1

2 < 𝑆𝑋
2 

and so on. 

4. If preferred, convert back to produce a sequence of CDSs, all with the 

same NLRM coefficients. Therefore, it was observed that variability in 

Y of the cloned datasets fluctuated after each and every generation (see 

Table 3). 

Example 2. Consider the variables X= (0, 1, 2, 3, 4, 5, 6, 7, 8)T  and Y= 

(0.75, 1.20, 1.75, 2.50, 3.45, 4.70, 6.20, 8.25, 11.50)T and resulting in the 

nonlinear regression fit  

�̂� = (0.8573324)(1.392474)𝑋                                                        (3.2) 

Steps 1-4 described above would generate the CDSs presented by Table 3 

having exactly same NLRM fitted equation as in (Eq. 3.2). 

Table 3. Cloned Data Sets Having the same Nonlinear Regression Fit 𝑌 =
𝐴𝐵𝑋 

 Raw data First iteration Second iteration 

       

 

X Y X1 Y1 X2 Y2 

0 0.75 -0.3781 0.8573 0.0235 0.7565 

1 1.20 1.0332 1.1938 1.0176 1.2070 

2 1.75 2.1660 1.6624 2.0118 1.7563 

3 2.50 3.2370 2.3148 3.0059 2.5037 

4 3.45 4.2041 3.2233 4.0000 3.4486 

5 4.70 5.1325 4.4883 4.9941 4.6896 

6 6.20 5.9642 6.2499 5.9882 6.1762 
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 Raw data First iteration Second iteration 

7 8.25 6.8219 8.7028 6.9824 8.2045 

8 11.50 7.8192 12.1184 7.9765 11.4143 

Mean 4 4.47778 4 4.53456 4 4.46187 

Variances 7.5 12.95069 7.45591 14.67662 7.41209 12.73009 

Correlation - 0.95442 - 0.91709 - 0.95498 

 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

-0.3524 0.8640 0.0469 0.7629 -0.3268 0.8707 

1.0506 1.2008 1.0352 1.2140 1.0679 1.2078 

2.1768 1.6688 2.0234 1.7626 2.1875 1.6753 

3.2415 2.3193 3.0117 2.5075 3.2459 2.3238 

4.2029 3.2233 4.0000 3.4473 4.2017 3.2233 

5.1258 4.4796 4.9883 4.6793 5.1192 4.4709 

5.9526 6.2256 5.9766 6.1526 5.9412 6.2016 

6.8053 8.6521 6.9648 8.1596 6.7888 8.6021 

7.7968 12.0245 7.9531 11.3298 7.7744 11.9318 

Mean 4 4.51756 4 4.44617 4 4.50081 

Variances 7.36852 14.41740 7.32521 12.51401 7.28215 14.16366 

Correlation - 0.91777 - 0.95553 - 0.91844 

3.3. Procedure for Bivariate Nonlinear Regression Model 𝒀 = 𝑨𝒆𝑩𝑿 

The simple nonlinear regression model (an exponential curve) 𝑌 =
𝐴𝑒𝐵𝑋 was  linearizable due to logarithmic transformation as �̃� = 𝑎 + 𝐵𝑋, 
where �̃� = ln(𝑌) , 𝑎 = ln(𝐴), and 𝐴 = exp (𝑎) . The inverse nonlinear 

regression model of 𝑌 = 𝐴𝑒𝐵𝑋  was  𝑋 = 𝑙𝑛(
𝑌

𝐶
)

1

𝐷 , which was also 

linearizable as 𝑋 = 𝑐 + 𝑑𝑌 ̃ where 𝑑 =
1

𝐷
, 𝐷 =

1

𝑑
 , 𝑐 = −

ln (𝐶)

𝐷
 , 𝐶 =

exp (−
𝑐

𝑑
). 

1. First fit simple LRM of �̃� on 𝑋 representing �̃�1 = 𝑎 + 𝐵𝑋. Also, fit the 

simple inverse LRM of 𝑋 on �̃� describing as𝑋1 = 𝑐 + 𝑑�̃�. 

2. The regression of �̃�1  on 𝑋1 would be �̃�2 = 𝑎 + 𝐵𝑋1, saving the alike 

parameter estimates. In the same way, 𝑋2 = 𝑐 + 𝑑�̃�1. Note that 𝑆�̃�1

2 <

𝑆�̃�
2 and 𝑆𝑋1

2 < 𝑆𝑋
2. 

3. The approach used  above can be iterated with �̃�2 and 𝑋2 as in step 1 to 

get CDSs with the same LRE. Again 𝑆�̃�2

2 < 𝑆�̃�1

2 < 𝑆�̃�
2 and 𝑆𝑋2

2 < 𝑆𝑋1

2 <

𝑆𝑋
2 and so on. 
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4. If preferred, transform back to get a sequence of CDSs, all with the same 

NLRM coefficients. It was observed that variability in Y of the cloned 

datasets fluctuate after every iteration (see Table 4). 

Example 3. Consider the variables X= (0.5, 0.8, 1.4, 2.0, 2.5)T  and Y= (9.1, 

8.5, 7.5, 6.7, 6.1)T and resulting in the nonlinear regression fit  

�̂� = 9.989049𝑒−0.1991399𝑋                                                          (3.3) 

Here, the CDSs would be yielded as shown in Table 4, using steps 1-4 

discussed earlier, to produce same equation of  fitted NLRM as given in 

(Eq. 3.3). 

Table 4.  Cloned Data Sets Having the Same Nonlinear Regression Fit 𝑌 =
𝐴𝑒𝐵𝑋 

We have generated the cloned data sets for following nonlinear 

regression models 𝑌 =
1

𝐴+𝐵𝑋
, 𝑌 = 𝐴 +

𝐵

1+𝑋
, 𝑌 = 𝐴 + 𝐵√𝑋 , 𝑌 = 𝐴𝑋2 +

𝐵𝑋  and 𝑌 = 𝐴 + 𝐵𝑋 + 𝐶𝑋2  by using the procedure given by [3] and 

presented, respectively in Table 5-9. 

 

Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

0.5 9.1 0.46924 9.04235 0.50111 9.09792 

0.8 8.5 0.81135 8.51797 0.80076 8.49874 

1.4 7.5 1.43912 7.55866 1.40005 7.50000 

2.0 6.7 2.00487 6.70739 1.99934 6.70089 

2.5 6.1 2.47543 6.07171 2.49875 6.10149 

Mean 1.44 7.58 1.44 7.57961 1.44 7.57980 

Variances 0.6830 1.532 0.68219 1.51378 0.68138 1.52834 

Correlation - -0.99617 - -0.99976 - -0.99618 

 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

0.47039 9.04035 0.50222 9.09583 0.47153 9.03835 

0.81209 8.51668 0.80151 8.49748 0.81283 8.51540 

1.43912 7.55859 1.40009 7.50000 1.43912 7.55851 

2.00420 6.70827 1.99868 6.70179 2.00353 6.70916 

2.47420 6.07322 2.49749 6.10298 2.47298 6.07474 

Mean 1.44 7.57942 1.44 7.57962 1.44 7.57923 

Variances 0.68058 1.51018 0.67977 1.52469 0.67897 1.50657 

Correlation - -0.99976 - -0.99618 - -0.99976 
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Table 5. Cloned Data Sets Having the Same Non Linear Regression 

Fit 𝑌 =
1

𝐴+𝐵𝑋
; 𝐴 = 82.97359, 𝐵 = −36.58871 

Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

2.000 0.0615 1.225281 0.102081 1.313470 0.026218 

2.000 0.0527 1.188237 0.102081 1.313470 0.025318 

0.667 0.0334 1.038642 0.017074 0.648053 0.022237 

0.667 0.0258 0.918315 0.017074 0.648053 0.020254 

0.400 0.0138 0.458482 0.014633 0.514769 0.015106 

0.400 0.0258 0.918315 0.014633 0.514769 0.020254 

0.286 0.0129 0.389507 0.013791 0.457862 0.014551 

0.286 0.0183 0.701590 0.013791 0.457862 0.017451 

0.222 0.0083 -0.196641 0.013360 0.425914 0.011090 

0.222 0.0169 0.639830 0.013360 0.425914 0.016789 

0.200 0.0129 0.389507 0.013218 0.414932 0.014551 

0.200 0.0087 -0.121065 0.013218 0.414932 0.011441 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

0.926740 0.028641 0.970763 0.020381 0.777712 0.021073 

0.908248 0.028641 0.970763 0.020104 0.768481 0.021073 

0.833572 0.016874 0.638594 0.019057 0.731203 0.016776 

0.773506 0.016874 0.638594 0.018291 0.701219 0.016776 

0.543963 0.015591 0.572061 0.015855 0.586634 0.016118 

0.773506 0.015591 0.572061 0.018291 0.701219 0.016118 

0.509531 0.015101 0.543653 0.015545 0.569446 0.015852 

0.665320 0.015101 0.543653 0.017056 0.647214 0.015852 

0.216933 0.014839 0.527705 0.013327 0.423385 0.015707 

0.634490 0.014839 0.527705 0.016734 0.631824 0.015707 

0.509531 0.014751 0.522223 0.015545 0.569446 0.015658 

0.254660 0.014751 0.522223 0.013577 0.442217 0.015658 

Table 6. Cloned Data Sets Having the Same Non Linear Regression Fit 𝑌 =

𝐴 +
𝐵

1+𝑋
 ; 𝐴 = 0.086506, 𝐵 = −0.091625 

Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

2.000 0.0615 2.332049 0.055964 1.805105 0.059008 
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Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

2.000 0.0527 1.565860 0.055964 1.805105 0.050796 

0.667 0.0334 0.705670 0.031542 0.652333 0.032788 

0.667 0.0258 0.506758 0.031542 0.652333 0.025696 

0.400 0.0138 0.272456 0.021059 0.404582 0.014499 

0.400 0.0258 0.506758 0.021059 0.404582 0.025696 

0.286 0.0129 0.257787 0.015258 0.296953 0.013659 

0.286 0.0183 0.351251 0.015258 0.296953 0.018698 

0.222 0.0083 0.187800 0.011526 0.236035 0.009367 

0.222 0.0169 0.325711 0.011526 0.236035 0.017392 

0.200 0.0129 0.257787 0.010151 0.215011 0.013659 

0.200 0.0087 0.193575 0.010151 0.215011 0.009740 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

2.072216 0.053842 1.644782 0.056682 1.863838 0.051862 

1.444278 0.053842 1.644782 0.049020 1.340783 0.051862 

0.687722 0.031054 0.638878 0.032217 0.671312 0.030599 

0.504364 0.031054 0.638878 0.025600 0.502137 0.030599 

0.284091 0.021273 0.408885 0.015152 0.295141 0.021472 

0.504364 0.021273 0.408885 0.025600 0.502137 0.021472 

0.270142 0.015859 0.307342 0.014368 0.281892 0.016421 

0.358695 0.015859 0.307342 0.019070 0.365715 0.016421 

0.203334 0.012377 0.249424 0.010363 0.218200 0.013172 

0.334572 0.012377 0.249424 0.017851 0.342948 0.013172 

0.270142 0.011095 0.229361 0.014368 0.281892 0.011975 

0.208864 0.011095 0.229361 0.010711 0.223486 0.011975 

Table 7. Cloned Data Sets Having the Same Non Linear Regression Fit 𝑌 =

𝐴 + 𝐵√𝑋; 𝐴 = −2.341445, 𝐵 = 3.011197 

Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

1.0 1.1 1.389823 0.669752 1.099958 1.208477 

1.5 1.3 1.536094 1.346503 1.571153 1.390611 

2.0 1.6 1.769221 1.917031 2.033473 1.663810 

2.5 2.0 2.105666 2.419675 2.490122 2.028076 

3.0 2.7 2.764870 2.874101 2.942743 2.665542 
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Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

3.5 3.4 3.513706 3.291989 3.392311 3.303008 

4.0 4.1 4.352175 3.680949 3.839463 3.940474 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

1.468250 0.816665 1.195129 1.307264 1.541545 0.950454 

1.604771 1.432959 1.637384 1.473126 1.668620 1.511692 

1.820930 1.952519 2.064198 1.721920 1.868668 1.984837 

2.130380 2.410261 2.481144 2.053645 2.153013 2.401687 

2.730323 2.824090 2.891081 2.634163 2.699051 2.778547 

3.404599 3.204646 3.295707 3.214682 3.306735 3.125107 

4.153208 3.558859 3.696127 3.795200 3.976065 3.447676 

Table 8. Cloned Data Sets Having the Same Non Linear Regression Fit 𝑌 =
𝐴𝑋2 + 𝐵𝑋; 𝐴 = 0.4, 𝐵 = 5.0 

Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

0 1 0.1933 0.0000 0.0000 1.0107 

1 5 0.9156 5.4708 0.9989 5.0388 

2 12 2.0321 11.7428 1.9970 12.0451 

3 20 3.1495 18.8161 2.9944 20.0064 

4 25 3.7859 26.6907 3.9914 24.9641 

5 36 5.0621 35.3665 4.9881 35.8353 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

0.1932 0.0000 0.0000 1.0211 0.1931 0.0000 

0.9148 5.5123 0.9980 5.0763 0.9140 5.5523 

2.0291 11.7893 1.9941 12.0884 2.0263 11.8338 

3.1436 18.8311 2.9889 20.0114 3.1377 18.8445 

3.7780 26.6377 3.9829 24.9279 3.7701 26.5848 

5.0499 35.2093 4.9762 35.6734 5.0376 35.0546 

Table 9. Cloned Data Sets Having the Same Non Linear Regression Fit 𝑌 =
𝐴 + 𝐵𝑋 + 𝐶𝑋2; 𝐴 = 1.0, 𝐵 = −0.20, 𝐶 = 0.20 

Raw data First iteration Second iteration 

X Y X1 Y1 X2 Y2 

1.0 1.1 0.99760 1.08571 0.99972 1.09900 
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1.5 1.3 1.52005 1.29286 1.50226 1.30180 

2.0 1.6 1.98929 1.62143 2.00206 1.60299 

2.5 2.0 2.44462 2.07143 2.50109 2.00294 

3.0 2.7 3.05159 2.64286 2.99979 2.70103 

3.5 3.4 3.53894 3.33571 3.49833 3.39798 

4.0 4.1 3.95791 4.15000 3.99676 4.09427 

Third iteration Fourth iteration Fifth iteration 

X3 Y3 X4 Y4 X5 Y5 

0.99730 1.08491 0.99945 1.09800 0.99700 1.08412 

1.52239 1.29459 1.50450 1.30362 1.52472 1.29631 

1.99134 1.62433 2.00410 1.60599 1.99338 1.62719 

2.44578 2.07414 2.50217 2.00589 2.44694 2.07680 

3.05120 2.64404 2.99959 2.70207 3.05081 2.64518 

3.53715 3.33401 3.49667 3.39597 3.53537 3.33230 

3.95486 4.14408 3.99355 4.08856 3.95181 4.13819 

4. CLONING FOR MULTIPLE NONLINEAR REGRESSION 

MODEL 𝒀 = 𝑨𝟎(𝑿𝒊
(𝟏)

)𝑨𝟏(𝑿𝒊
(𝟐)

)𝑨𝟐 VIA PIVOTS 

In accordance with [4], the current approach was  extended to a structure 

of an arbitrary error covariance after discussing data that were  independent 

and identically distributed (iid). Let us give the multiple NLRM in (Eq. 4.1). 

𝑌𝑖 = 𝐴0(𝑋𝑖
(1)

)𝐴1(𝑋𝑖
(2)

)𝐴2𝐸𝑖                                                          (4.1) 

Where 𝑌 is response vector, 𝑋 = (𝑋(1): 𝑋(2)) is the covariate data matrix 

(CDM), 𝛼 = (𝐴0, 𝐴1, 𝐴2)𝑇  is parameters vector, and 𝐸  random error 

vector. 

Eq. 4.1 is linearizable due to logarithmic transfomation, then Eq. 4.1 

becomes ln(𝑌𝑖) = ln(𝐴0) + 𝐴1 ln(𝑋𝑖
(1)

) + 𝐴2 ln(𝑋𝑖
(2)

) + �̃� . Setting �̃� =

ln (𝑌𝑖) , �̃�(1) = ln (𝑋𝑖
(1)

) , �̃�(2) = ln (𝑋𝑖
(2)

) , �̃� = ln (𝐸𝑖) , 𝐵0 = ln (𝐴0) , 

𝐵1 = 𝐴1 and 𝐵2 = 𝐴2  we get 

�̃� = 𝐵0 + 𝐵1�̃�(1) + 𝐵2�̃�(2) + �̃�                                                 (4.2) 

where �̃� is response vector, �̃� = (�̃�(1): �̃�(2)) is CDM, 𝛽 = (𝐵0, 𝐵1, 𝐵2)𝑇 is 

unknown parameters vector and �̃� errors vector. When matrix �̃� of rank full 

as column, estimates of 𝛽  by ordinary least square (OLS) is 𝑏 =
(�̃�𝑡�̃�)−1�̃�𝑡�̃�, and fitted multiple LRE is  
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�̃�1 = 𝑏0 + 𝑏1�̃�(1) + 𝑏2�̃�(2)                                                          (4.3) 

These consequences follow whether or not �̃�, �̃�(1)  ,and �̃�(2) are mean 

corrected (MCtD), as here. Due to the MCtD, (Eq. 4.3) , which can be 

written as: 

�̂� = 𝑏1𝑥1 + 𝑏2𝑥2                                                                      (4.4) 

where �̂� = �̃� − �̅̃� , 𝑥1 = �̃�(1) − �̅̃�(1)  and 𝑥2 = �̃�(2) − �̅̃�(2)  (In order to 

avoid any loss of generality, the column of 1 in design matrix X is 

eliminated following the imply MCtD because it transforms into a column 

of zeros). 

The identified problem here was  to create a new response variable 

vector, 𝑌𝑐𝑙𝑜𝑛𝑒, and a new covariate data matrix, 𝑋𝑐𝑙𝑜𝑛𝑒. This can be easily 

accomplished by transposing back to �̃�𝑐𝑙𝑜𝑛𝑒and �̃�𝑐𝑙𝑜𝑛𝑒, such that 

𝑏 = (�̃�𝑐𝑙𝑜𝑛𝑒
𝑡 �̃�𝑐𝑙𝑜𝑛𝑒)−1�̃�𝑐𝑙𝑜𝑛𝑒

𝑡 �̃�𝑐𝑙𝑜𝑛𝑒 

Alternatively, multivariate CDSs to be required  (𝑌𝑐𝑙𝑜𝑛𝑒 , 𝑋𝑐𝑙𝑜𝑛𝑒
(1)

, 𝑋𝑐𝑙𝑜𝑛𝑒
(2)

) 

which  produced the same multiple NLRM equation as the original dataset 

(𝑌, 𝑋(1), 𝑋(2)). 

Returning to the case of iid, how generation of CDSs can be 

accomplished via manipulating any one covariate, was exhibited, say 𝑥𝑗, 

where 𝑗 = 1,2., using the steps below. 

1) Iniatially, fit multiple linearizable RM (Eq. 4.4), using MCtD data. 

2) Select a covariate 𝑥2. 

3) Let �̂� = 𝑘 + 𝑏2𝑥2 , where 𝑘 = 𝑏1𝑥1 = �̂� − 𝑏2𝑥2 . To obtain the 

estimated values of �̂�𝑘 and �̂�2, perform simple RM of 𝑦𝑘 = 𝑦 − 𝑘 on 𝑥2 

and inverse simple regression of 𝑥2 on 𝑦𝑘. 

4) Regress 𝑥1  on 𝑥2  and obtain �̂�1 . Also, obtain 𝑥1,2 = 𝑥1 −

𝑥2(𝑥2
𝑡𝑥2)−1𝑥2

𝑡𝑥1 = (𝐼 − 𝑥2(𝑥2
𝑡𝑥2)−1𝑥2

𝑡)𝑥1 , where 𝐼  is the identity 

matrix. 

5) Form 𝑦𝑘,𝑐𝑙𝑜𝑛𝑒 = �̂�𝑘 + ∑ 𝑏1𝑥1,2. 

6) On all newly acquired 𝑥1,2 and �̂�2 , perform multiple LREs of 𝑦𝑘,𝑐𝑙𝑜𝑛𝑒 

at the same time, where �̂�2 = 𝑦(𝑦𝑡𝑦)−1𝑦𝑡𝑥2  in which 𝑦 = (1: �̂�)  is 

𝑛 × 2. 



Hussain et al. 

17 
School of Science 

Volume 7 Issue 3, 2023 

7) If you prefer, you can add back �̅̃�, �̅̃�(1), and �̅̃�(2) to the cloned data or 

multiply all of the cloned data by the same scale factor. 

8) Transform back to the cloned data in step 7. 

9) Repeat from one to eight steps to create a series of datasets with identical 

NLRM coefficients. At each iteration, a different possible value of j can 

be chosen. 

Example 4. With uncorrelated data and design matrix of full-rank, consider 

variables X1, X2 and Y in Table 9 and resulting in the multiple NLRM fit  

�̂� = 1.663079𝑋1
0.6163121𝑋2

0.2931787                                        (4.5) 

For CDSs in Table 10, 1-9 steps specified above were used (first X2 was  

used for manipulation) for which the fitted multiple NLRM equation was  

exactly the same as in (Eq. 4.5). 

Table 10. Cloned Data Sets Having the Same Multiple Nonlinear 

Regression Fit 𝑌 = 𝐴0𝑋1
𝐴1𝑋2

𝐴2 

X1 X2 Y X1,clone X2,clone Yclone 

23.81 11.33 22.76 25.583 10.257 24.988 

75.83 25.92 76.73 37.324 35.179 40.197 

9.46 7.03 8.62 15.945 3.818 16.234 

5.71 29.68 10.98 2.473 14.871 7.852 

85.78 21.81 86.77 49.689 39.486 45.583 

0.37 0.57 0.97 6.672 2.411 4.543 

8.82 11.25 11.82 9.540 9.225 13.577 

8.99 19.01 16.63 5.928 20.744 11.810 

37.65 75.25 67.40 6.780 73.887 19.203 

8.43 8.40 8.81 12.012 4.796 14.364 

16.10 30.30 21.54 6.839 16.206 14.786 

0.64 1.20 1.34 5.718 2.327 5.138 

5.28 6.93 12.38 9.021 22.489 11.379 

30.40 70.18 58.37 5.847 71.736 17.173 

33.66 21.06 29.90 20.152 11.872 25.870 

15.72 11.86 14.54 16.178 6.394 19.093 

8.44 14.53 17.54 7.172 26.020 12.274 

30.20 34.20 29.43 11.444 13.458 21.041 

8.89 8.68 11.41 12.282 8.357 14.702 
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X1 X2 Y X1,clone X2,clone Yclone 

5.14 2.84 5.45 20.372 3.117 14.474 

Figure 2, represent a matrix plot of raw and cloning data in Table 10, 

which show the effect on X2 done by orthogonal manipulation as described 

in steps 1-9 of the algorithm. Bivariate relationship strength between X2,clone 

and Yclone is much weaker than X2 and Y. However, this is not the case with 

X1,clone and Yclone , because the manipulation was not done with X1. 

 

Figure 2. Matrix Plot of raw and cloned data 

5. DISCUSSION 

This study showed that the parameter estimates of the original datasets 

discussed in this artical  and their generated cloned datasets were  identical. 

As a result, it was identified that data cloning had the potential to be used 

in a wide range of applications, including data encryption, visualization, and 

smoothing. The application of encryption was  particularly intriguing 

because it can be used to generalize the databases even when regression 

modeling was  not desired. In prior literature, cloned datasets were  
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generated for linear regression models. However, it had equal importance 

to be generated for the nonlinear regression models. In this context, new 

methods can be developed for nonlinear regression models to conduct 

cloning for the datasets or databases. 

5.1. Conclusion 

CDSs have been presented for bivariate and multivariate NLRMs that 

have linearizable regression functions including 

𝐴𝑋𝐵 , 𝐴𝐵𝑋 , 𝐴𝑒𝐵𝑋 ,
1

𝐴+𝐵𝑋
, 𝐴 +

𝐵

1+𝑋
, 𝐴 + 𝐵√𝑋, 𝐴𝑋2 + 𝐵𝑋, 𝐴 + 𝐵𝑋 + 𝐶𝑋2 

and 𝐴0(𝑋𝑖
(1)

)𝐴1(𝑋𝑖
(2)

)𝐴2  with exactly the same nonlinear regression 

coefficients. In terms of bivariate LRFs, the response and a covariate of the 

CDSs collapsed to their means, which  had smaller variability when 

compared to the original dataset. 
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