Coefficient Inequalities for Certain Subclass of Starlike Function with respect to Symmetric points related to q-exponential Function

Coefficient Inequalities for Certain Subclass of Starlike Function with respect to Symmetric points related to q-exponential Function

Zameer Abbas*, and Sadia Riaz

Department of Mathematics, National University of Modern Languages, Islamabad, Pakistan

* Corresponding Author: zameermaths01gmail.com

ABSTRACT

The current study aims to define a class of starlike functions with respect to symmetric points subordinated with q-exponential functions. Furthermore, to investigate the coefficient inequalities and possible upper-bound of the third-order Hankel determinant for the functions belonging to our new class this study observed the new and already derived results for further analysis.

Keywords: analytic function, Hankel Determinant, q-derivative, symmetric point

INTRODUCTION

The analytic functions, also called holomorphic functions, are complex-valued functions that are defined and differentiable at every point within their domain of definition. The class of all analytical functionsf with the normalized condition in the open unit disc E = {z:|z| < 1}is asymbol by Aand has the Taylor series, which is stated as:

f(z)=z+a2 z2+a3 zc+a4 z4+⋯ (1.1)

The class of univalent and analytical function unit disc Eis proved by S. Caratheodory functions are a class of complex-valued functions, which are defined on a domain in the complex plane. They are named after the mathematician Constant in Caratheodory symbolized by and the function of this class is of the form

p(z.)=1+p1 z+p2 z2+p3 z3+p4 z4+⋯ (1.2)

The Schwarz function, named after the German mathematician Hermann Schwarz, is a complex-valued function that maps the unit disk E in the complex planes to itself. It is known by f(z)=(-z)/(1-z2 ) where z is a complex number. Specifically, if f and g are analytic functions defined on some domain D, then f ≺ g if there lie other analytic functions h defined on D such as f(z.)=g(h(z.)) ∀z in D.. Thomas [1], and Pommerenke [2] defined the Hankel determinant H_(k.) (c), for positive integer k.,c for the function in S. In the form eq (1), as shown below:

Hk (c)= |(a.)na.(n+1)… a.(n+q-1)a.(n+1) a.(n+2)… a.(n+q) a.(n+q-1) a.(n+q-2)⋯ a.(n+2q-2)| (1.3)

For fixedly positive integers k and c the growths of Hk (c)as have been determined by Obradovic [3], In 2023, with a boundedness boundary. Ehrenborg [4] investigated the Hankel determinant for exponential polynomials. The Hankel determinant of differentiable orders is achieved for k, c differential rates. For instance, when k = 2 and c = 1 it is defined as,

H2 (1)=|(a1 a2a2 a3 )|, |a1 a3-a22 | a1=1 (1.4)

The Fekete-Szego inequality is a well-known result in complex analysis and potential theory that provides an estimate for the growth of the Taylor coefficients of function that are analytical unit disk E. More precisely, let f (z) be functions that are analytical in the open unit disc , and let its Taylor series expansions be given by (1).In 2023, Singh et al. [5] and Fekete-Szego defined an inequality for the coefficient of a univalent analytic function on the unit disk. The Fekete-Szego inequality for some normalized analytic functions was investigated by various researchers working in the field of Geometric Functions Theory like Choi et al. [6], Ali et al. [7, 8], Owa and Cho [9, 10], Orhan and Cotirla [11], and Murugusundaramoorthy et al. [12]. In 2006, Shanmugam et al. [13] introduced The Fekete-Szego problem that can be applied to sub-classes of star-like functions when considering symmetrical points. Now for k = 2,c = 2 it can be obtained as,

H2 (2)=|(a2 a3a3 a4 )|, |a2⁡a4⁡- a32 | (1.5)

In 2012, Krishna and Ramreddy [14] introduced the 2nd Hankel determinant of means the univalent function, which is discussed here. Using a indeed close p, valent function the growth rate of the 2nd Hankel determinant was calculated by Shrigan [15] in 2022. Other researchers like Janteng et al. [16, 17], Bansal [18], Lee et al. [19], Lei et al. [20], Rain et al. [21], Rajya et al. [22], Zaprawa [23] introduced the coefficient of the function that belong to the sub-class S of univalent function or to its sub-classes the upper-bound of the Hankel determinant for k.=2,c.=3 such as, H2 (3) is defined as:

H2 (3)=|(a3 a4a4 a5 )|, |a3 a5-a42 | (1.6)

For k = 3, c = 1 the Hankel Determinant, H3 (1) is known as the 3rd Hankel Determinant we have

H.3 (1.)=|(a.1 a.2 a.3a.2 a.3 a.4a.3 a.4 a.5 )|a.5 (a.3-a.22),a.1=1

1.1. Applications

In mathematical physics, analytic ;functions are crucial for solving two-dimensional issues. Displacements and stresses in antiplane or in-plane fracture problems can be expressed as functions of complex potentials. Hankel matrices are created when an underlying state-space model or hidden Markov model is desired as a given sequence of output data. The A, B, and C matrices that characterize the state-space realization can be computed using the singular value decomposition of the Hankel matrix. The breakdown of non-stationary signals and time-frequency representation has been proven to be advantageous when using the Hankel matrix created from the signal. To get the weight parameters for the polynomial distribution approximation, the method of moments applied to polynomial distributions produces a Hankel matrix that must be inverted [24].

Calculus uses course equivalent q-calculus which is based on the solution of logical q-analogous outcomes without the use of limits. The systematic introduction of q-calculus is credited to Lashin [25]. Khanetal [26] introduced and presented definitions for q-derivative. q-derivative of functions f be a normalized-analytic function is known as

(f(qz.)-f(z.))/((q-1)z.⁡ ),z.≠E

and D_q f(0)=f'(0) where q ∈ (0, 1) taking q→1- we get D_q f→f.In 2007, Babalola [27] was defined as the 1st person to analyze the upper-bound of the 3rd Hankel determinant for sub-classes of Other researchers like Vamshee Krishna et al. [28], Patil and Khairnar [29], Prajapat et al. [30], Yalcin and Altinkaya [31], Cho et al. [32], Lecko et al. [33]. Kowalczyk et al. [34], Mohd Narzan et al. [35], Several other researchers like Mendiratta et al. [36], Haiyan Zhang et al. [37], khan et al. [38], and Senguttuvan et al. [39] defined A thorough sub-class of analytic functions with respect to the symmetrical point that has been developed. The current study is expanded by using quantum calculus and tends to investigate the upper bounds of the 3rd Hankel Determinant, for the classes of a star-like function with respect to symmetrical points subordinate to exponential functions. Mahmood et al. [40] Shi et al. [41], Verma et al. [42], Viswanadh et al. [43], Omer [44], Joshi et al. [45], Breaz et al [46], Wang [47], and investigated the class of univalent function star-like with respect to symmetrical points. Here, the following subclass of starlike function are defined below:

Definition 1.1. A function f∈A and f is known to be in the class Ss* (eqz) as

(2[zf' (z)])/(f(z)-f(-z)) eqz,z∈E, (1.8)

we note that taking q→1- in the above definition, we obtain the known class Ss* (ez ) see [48]. The following Lemmas are required to demonstrate the intended outcomes.

Lemma 1.1. [49] If p.∈P., then |p_n |≤2.,∀n∈N

Lemma 1.2. [50] If p(z)=1+p1 z+p2 z2+p3 z3+⋯.is such that Re(p(z.))>0. in E, then for some x.,z. with |x|≤1.,|z.|≤1., we have

for some 2p2=p12+x(4-p12 ), for some x,|x|≤1 (1.9)

4p3=p13+2p1 (4-p12 )x-p1 (4-p12 ) x2+2(4-p12 )(1-|x|2 )z (1.10)

Lemma 1.3. [51] If p∈P,then |p2-vp12 |≤max⁡|{1,|2v.-1.|} for any v.∈C.

3. MAIN RESULTS

Theorem.3.1: if f∈Ss* (eqz) then |a2 |≤q/2,|a3 |≤q/2,|a4 |≤|q/4+((-4q+3q2)/8)+((12q-18q2+5q3)/48)|,|a5 |≤|q/4+((-2q+q2)/4)+((-6q+9q2-3q3+q4)/24)|.

Proof: As f∈Ss* (eqz) as

(2[zf' (z⁡)])/(f(z.⁡)-f(-z.⁡) )=e^(qw(z)) . (2.1)

Using Eq. (2.1), we consider

(2[zf' (z⁡)])/(f(z⁡)-f(-z⁡) )=1+2a2 z+2a3 z2+(4a4 z4-2a3 a2)z3+(4a5 z5-2a23)z4+...

Let us define the function,

p(z.)=(1+qw(z.))/(1-qw(z.)).

Equivalent,

q.w(z.)=(p(z.)-1)/(p(z.)+1) ,

Consider

qw(z)=(p1 z)/2+(p2/2-(p12)/4) z2+(p3/2-(p1 p2)/2+(p13)/8) z3+(p4/2-(p1 p4)/2-(p22)/4+(3p12 p2)/8-(p14)/16) z4

Since we have

e(qw.(z))=1+qw(z.)+(qw(z.))2/2!+(qw(z.))3/3!+(qw(z.))4/4!+⋯ (2.5)

We get

eqw(z) =1+(qp1 z)/2+(p2/2-(p12)/8)q+((p12 q2)/8) z2+(p3/2-(p1 p2)/4+(p13)/48)q+((-p12 q2)/8+(p1 p2 q2)/4+(p13 q3)/48) z3+(p4/2-(p1 p3)/4-(p22)/8+(p12 p2)/16+(p14)/384)q+((p22)/8+(3p14)/32-(p12 p2)/4+(p1 p3)/4) q2+(-(p12 p2)/(16 )-(p14)/32) q3+((p14 q4)/384) z4+⋯ (26)

From Eq. (2.2) and Eq. (2.6), we compare the coefficient, and we get

a2≤(qp1)/4,a3=((p2 )/4-(p12)/8)q+(q2 p12)/16,

a4=(p3 q)/8-(p1 p2 q)/8+(3p1 p2 q2)/32+(p13 q)/32-(p13 q2)/64+(5p13 q3)/384,

a5=((p4 q)/8+(-(p1 p3 q)/8+(p1 p3 q2)/16)+((3p12 p2 q )/32-(3p12 p2)/32-(3p12 p2 q2)/32)+((p14 q2)/128-(p14 q)/64-(p14 q3)/128+(p14 q4)/384). (2.7)

By using Lemma 1.1 and Lemma 1.3 in Eq. (2.7), we get

|a2 |≤q/2,|a3 |≤q/2,|a4 |≤|q/4+((-4q+3q2)/8)+((12q-18q2+5q3)/48)|,|a5 |≤|q/4+((-2q+q2)/4)+((-6q+9q2-3q3+q4)/24)|. (2.8)

which are the required results.

Theorem 3.2: If f∈Ss* (eqz) then |a3-a22 |≤q/2

Proof: From Eq. (2.7) in Theorem 3.1 we have

a2≤(qp1)/4,a3=((p2 )/4-(p12)/8)q+(q2 p12)/16. (2.9)

On simplifying, we get

|a3-a22 |=|(qp2)/4-(q2 p12)/8|. (2.10)

By using Lemma 1.3, we get

|a3-a22 |≤q/2 . (2.11)

which are the required results.

Theorem 3.3: If f∈Ss* (eqz) then |a2 a3-a4 |≤

1/48(q2-6q-12) (3q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q4-

36q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2 q3+

6q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q4+12q5+

2q4 √(-2q3+8q2+48q+64)+36q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2 q2-

72q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q3-144q4-

8√(-2q3+8q2+48q+64) q3+432q (-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2 q+

72q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q2+144q3-

48√(-2q3+8q2+48q+64) q2+432q (-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2+

864q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))q+1728q2-

16 √(-2q3+8q2+48q+64) q+864q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))+1600q.

Proof: From Eq. (2.7) in Theorem 3.1 we have

|a2 a3-a4 |=|(q2 p1 p2)/16-(p13 q2)/32+(q3 p13)/64-(p3 q)/8+(p1 p2 q)/8-(3p1 p2 q2)/32-(p13 q2)/32+(p13 q2)/64-(5p13q3384|. (2.12)

Denotes |x|=t∈[0,1],p1=e∈[0,2], using triangle inequality (2.12) we have

|a2 a3-a4 |≤(e(4-e2 )qt2)/32-(t(4-e2 ) q2 e)/64-q(4-e2 )/16+(e3 q3)/384,

suppose that

F(e,1)≡(e(4-e2 )qt2)/32-(t(4-e2 ) q2 e)/64-q(4-e2 )/16+(e3 q3)/384.

Thus, we get ∂F/∂t=((4-e2)etq)/16-((4-e2 )eq2)/64≥0, the function F(e,t) is non-decreasing for any t in [0,1].this show that F(e,t) has max value at t=1.

MaxF(e,t)=F(e,1)=(e(4-e2 )qt2)/32-(t(4-e2 ) q2 e)/64-q(4-e2 )/16+(e3 q3)/384,

which implies that

(e)=(e(4-e2 )qt2)/32-(t(4-e2 ) q2 e)/64-q(4-e2 )/16+(e3 q3)/384,

Then,

M' (e)=(-(qe2)/16+(-e2+4)q/32-(e2 q2)/32-((-e2+4) q2)/64-eq/8+(e2 q3)/128),

M' (e)= be lost e=m*=-2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)

A simple computational yield that M''(e)<0, which means that the functions M.(e) can take a max value at m*=-(2(-4+√(-2q3+8q2+48q+64)))/(q2-6q-12).

Hence we get

|a2 a3-a4 |≤1/48(q2-6q-12) (3q(3q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q4-

36q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2 q3+

6q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q4+12q5+

2q4 √(-2q3+8q2+48q+64)+36q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2 q2-

72q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q3-144q4-

8√(-2q3+8q2+48q+64) q3+432q (-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2 q+

72q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12)) q2+144q3-

48√(-2q3+8q2+48q+64) q2+432q (-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))2+

864q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))q+1728q2-

16 √(-2q3+8q2+48q+64) q+864q(-(2(-4+√(-2q3+8q2+48q+64))/(q2-6q-12))+1600q.

which are the required results. (2.13)

Theorem 3.4: If f∈Ss* (eqz) then |a2 a4-a32 |≤(3q2)/8

Proof: From Eq. (2.7) in Theorem 3.1 we have

|a2 a4-a32 |=|(p1 p3 q2)/(32 )+(3p12 p3 q3)/(128 )-(p12 p3 q2)/(32 )+(p14 q2)/128-(3p14 q3)/256+(5p14 q4)/1536-(p12 p2)/128-(p14)/1536-(p22 q2)/16-(p2 p12 q3)/32+(p2 p12 q2)/16|

we use the Lemma 1.3 we have

|a2 a4-a32 |=|(p1 q2 (4-p12 )(1-|x|2 )z)/64-(p12 (4-p22 ) x2 q2)/128+(3p12 q3 x(4-p12 ))/256-(x2 q2 (4-p12 )2)/64+(5p14 q4)/1536-(p14 q2)/64+(p14 q2)/32-(p14 q4)/64-(p14 q4)/256|. (2.14)

Denotes |x|=t∈[0,1],p1=e∈[0,2] then using tri-angle inequality we have

|a2 a4-a32 |≤(q2 (4-e2 ))/32+(e2 (4-e2 ) t2 q2)/128+(3e2 q3 t(4-e2 ))/256+(t2 q2 (4-e2 )2)/64+((5e4 q4)/1536-(e4 q2)/64+(e4 q2)/32-(e4 q4)/64-(e4 q4)/256), (2.15)

which implies that

F(e,t)=(q2 (4-e2 ))/32+(e2 (4-e2 ) t2 q2)/128+(3e2 q3 t(4-e2 ))/256+(t2 q2 (4-e2 )2)/64+((5e4 q4)/1536-(e4 q2)/64+(e4 q2)/32-(e4 q4)/64-(e4 q4)/256). (2.16)

Thus, we get

∂F/∂t=(3(4-e2 ) e2 q2)/256+((4-e2 ) e2 q2)/64+((4-e2 )2 q2 t)/32+((4-e2 ) e2 q2 t)/64≥0,

which gives that F(e, t) is increasing for any then t in [0,1], this show that F (e, t) has a maxi value at t = 1.

Max F(e.,t)=F(e.,t)=(q2 (4-e.2 ))/32+(e.2 (4-e.2 ) t2 q2)/128+(3e.2 q3 t(4-e.2 ))/256+(t2 q2 (4-e.2 )2)/64+((5e.4 q4)/1536-(e.4 q2)/64+(e.4 q2)/32-(e.4 q4)/64-(e.4 q4)/256). (2.17)

Let us define

M(c)=(q2 (4-e2 ))/32+(e2 (4-e2 ) t2 q2)/128+(3e2 q3 t(4-e2 ))/256+(t2 q2 (4-e2 )2)/64+((5e4 q4)/1536-(e4 q2)/64+(e4 q2)/32-(e4 q4)/64-(e4 q4)/256) (2.18)

We have

M' (e)=(5e3 q2)/128-((-5e2+4)eq2)/128-(eq2 )e/16-(25e3 q4)/384,

M' (e) vanishes at e = 0. A simple compilation yield that M ′′(e) < 0, which mean that the functions M (e) has max values at e = 0. We get

|a2 a4-a32 |≤M(0)=(3q2)/8, (3.19)

which are the required results.

Theorem 3.5: Iff∈Ss* (eqz ) then |H3 (1)=

1/(2304(q2-6q-12)2 )(q3 (15q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q4-

180q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q3+

30q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12)) q4+

10q4 √(-2q3+8q2+48q+64)+60q5+

180q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q2-

360q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12)) q4-

40√(-2q3+8q2+48q+64) q3-288q4+

2160q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q+

360q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12)) q2-

240√(-2q3+8q2+48q+64) q2-4464q3+

2160q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2+

4320q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))q-

80√(-2q3+8q2+48q+64) q+13824q2+

4320q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))+702008q+62208))

1/2 (1/4 q-1/8 q2-1/8 q3+1/24 q4 )q.

Proof:H.3 (1)=a.3 (a.2 a.4-a.23)-a.4 (a1 a4-a.2 a.3)+a.5 (a.3-a^(2.)2) ,a1=1 ,a1=1 (2.20)

By applying triangle inequality, we get

Now, substituting the Eq. (2.8),(2.11),(2.13),(2.19) in (2.20) we get

|H3 (1)|≤1/(2304(q2-6q-12)2 )(q3 (15q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q4-

180q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q3+

30q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12)) q4+

10q4 √(-2q3+8q2+48q+64)+60q5+

180q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q2-

360q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12)) q4-

40√(-2q3+8q2+48q+64) q3-288q4+

2160q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2 q+

360q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12)) q2-

240√(-2q3+8q2+48q+64) q2-4464q3+

2160q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))2+

4320q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))q-

80√(-2q3+8q2+48q+64) q+13824q2+

4320q(-2(-4+√(-2q3 )+8q2+48q+64)/(q2-6q-12))+702008q+62208))+

1/2 (1/4 q-1/8 q2-1/8 q3+1/24 q4 )q

which are the required results.

4. DISCUSSION

The coefficients of the univalent functions attracted the attention of researchers working in the field of Geometric Functions Theory. On the other hand, Quantum Calculus and Quantum theory have been applied to the concepts of Geometric Functions Theory to advance the known classes and results. The Fekete-Szego problem are a well-known coefficient problem in this field which has a variety of application in other sciences. The well-known application of the Fekete problem is the Hankel determinant. The Hankel determinant of order two have been investigated by various researchers in this field but the 3rd order Hankel determinant for starlike functions with respect to symmetric points have attained the attention of researcher nowadays. To fill this research gap we have worked on the 3rd order Hankel determinant for our new class of starlike functions with respect to symmetric points subordination q-exponential function. Where the concepts of quantum calculus and q-derivative operator have been applied. The current study determinednbsp; that on taking nbsp;for the result proved in this research article, similar results were obtained that were already proved in [47].

4.1. Conclusion

The class of starlike functions with respect to symmetric points and the q-extension of these class has been investigated. Conclusively, a new class of starlike functions with respect to symmetric points associated with q-exponential function by using the subordination technique is defined and studied in this research. Some remarkable results, including coefficient inequalities, the Fekete Szegouml; problem, and the third-order Hankel determinant have been investigated. It was indicated that the new class along with the associated main theorems are the advancement of the results and classes, which has already been studied by the researcher working in the field of Geometry Functions Theory (GFT).

REFERENCES

  1. Thomas DK, Tuneski N, Vasudevarao A. Univalent Functions a Primer. vol. 69. Walter de Gruyter GmbH amp; Co KG; 2018.
  2. Răducanu D, Zaprawa P. Second Hankel determinant for close-to-convex functions. Comptes Rendus Math. 2017;355(10):1063ndash;1071. http://doi:10.1016/j.crma.2017.09.006
  3. Obradović M, Tuneski N. Hankel determinants of second and third order for the class 𝓢 of univalent functions. Math Slovaca. 2021;71(3):649ndash;654. http://doi:10.1515/ms-2021-0010
  4. Ehrenborg R. The Hankel determinant of exponential polynomials. Amer Math Monthly. 2000;107(6):557–560. http://doi:10.1080/00029890.2000.12005236
  5. Singh G, Singh G. Coefficient bounds for a generalized subclass of bounded turning functions associated with Sigmoid function (in press). Int J Nonlinear Anal Appl. 2023. http://dx.doi.org/10.22075/ijnaa.2023.29574.4195
  6. Choi JH, Kim YC, Sugawa T. A general approach to the Fekete-Szegö problem. J Math Soc Japan. 2007;59(3):707–727. http://doi:10.2969/jmsj/05930707
  7. Lee SK, Ali RM, Ravichandran V, Supramaniam S. The Fekete-Szego coefficient functional for transforms of analytic functions. Bulletin Iran Math Soc. 2011;35(2):119–142.
  8. Ali RM, Ravichandran V, Seenivasagan N. Coefficient bounds for p-valent functions. Appl Math Comput. 2007;187(1):35–46. http://doi:10.1016/j.amc.2006.08.100
  9. Cho NE, Owa S. On the Fekete-Szegö problem for strongly-quasi convex functions. Amkang J Math. 2003;34(1):21–28.
  10. Cho NE, Owa S. On the Fekete-Szegö problem for strongly-logarithmic quasi-convex functions. Southeast Asian Bull Math. 2004;28(3):1–11.
  11. Orhan H, Cotîrlă LI. Fekete-Szegö inequalities for some certain subclass of analytic functions defined with ruscheweyh derivative operator. Axioms. 2022;11(10):e560. http://doi:10.3390/axioms11100560
  12. Murugusundaramoorthy G, Kavitha S, Rosy T. On the Fekete Szegő problem for some subclasses of analytic functions defined by convolution. Proc Pakistan Acad Sci. 2007;44(4):249–254.
  13. Shanmugam TN, Ramachandran C, Ravichandran V. Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points. Bull Korean Math Soc. 2006;43(3):589–598.
  14. Krishna DV, Ramreddy T. Coefficient inequality for certain subclasses of analytic functions. New Zealand J Math. 2012;42:217–228.
  15. Shrigan MG. An upper bound to the second Hankel determinant for a new class of univalent functions. Asian-Euro J Math. 2022;16(5):e2350092. http://doi:10.1142/S1793557123500924
  16. Janteng A, Halim SA, Maslina D. Coefficient inequality for a function whose derivative has a positive real part. J Inequal Pure Appl Math. 2006;7(2):1–5.
  17. Janteng A, Halim SA, Maslina D. Hankel determinant for starlike and convex functions. Int J Math Anal. 2007;1(13-16):619–625.
  18. Bansal D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl Math Lett. 2013;26(1):103–107. http://doi:10.1016/j.aml.2012.04.002
  19. Lee SK, Ravichandran V, Supramaniam S. Bounds for the second Hankel determinant of certain univalent functions. J Inequal Appl. 2013;2013:e281. http://doi:10.1186/1029-242X-2013-281
  20. Liu MS, Xu JF, Yang M. Upper bound of second Hankel determinant for certain subclasses of analytic functions. Abstr Appl Anal. 2014;2014:e603180. http://doi:10.1155/2014/603180
  21. Raina RK, Sokol J. On coefficient estimates for a certain class of starlike functions. Hacet J Math Stat. 2015;44(6):1427–1433.
  22. Laxmi KR, Sharma RB. Second Hankel determinants for some subclasses of biunivalent functions associated with pseudostarlike functions. J Complex Anal. 2017;2017:e6476391. http://doi:10.1155/2017/6476391
  23. Zaprawa P. On Hankel determinant H2(3) for univalent functions. Results Math. 2018;73(3):e89. http://doi:10.1007/s00025-018-0854-1
  24. Munkhammar J, Mattsson L, Rydén J. Polynomial probability distribution estimation using the method of moments. PLOS ONE. 2017;12(4):e0174573. http://doi:10.1371/journal.pone.0174573
  25. Lashin AMY, Algethami BM, Badghaish AO. Convolution Properties of Certain Classes of Analytic Functions Defined by Jackson q-Derivative. Mathematics. 2021;10(1):e105. http://doi:10.3390/math10010105
  26. Khan B, Srivastava HM, Tahir M, Darus M, Ahmad QZ, Khan N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021;6:1024–1039. http://doi:10.3934/math.2021061
  27. Babalola KO. On Hankel determinant for some classes of univalent functions. Inequal Theory Appl. 2007;6:1–7.
  28. Krishna DV, Venkateswarlu B, RamReddy T. Third Hankel determinant for starlike and convex functions concerning symmetric points. Ann Univ Mariae Curie-Sklodowska Sect. 2016;70(1):37–45.
  29. Patil SM, Khairnar SM. Third Hankel determinant for starlike function with respect to symmetric points. Int J Pure Appl Math Sci. 2017;10(1):7–15.
  30. Prajapat JK, Bansal D, Maharana S. Bounds on third Hankel determinant for certain classes of analytic functions. Stud Univ Babes-Bolyai Math. 2017;62(2):183–195. http://doi:10.24193/subbmath.2017.2.05
  31. Altinkaya S, Yalcin S. Third Hankel determinant for Bazilevic functions. Adv Math. 2016;5(2):91–96.
  32. Cho NE, Kowalczyk B, Kwon OS, Lecko A, Sim YJ. Some coefficient inequalities related to the Hankel determinant for strong starlike functions of order alpha. J Math Inequal. 2017;11(2):429–439.
  33. Lecko A, Sim YJ, Smiarowska B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal Oper Theory. 2018;12(4):819–827. http://doi:10.1007/s11785-018-0819-0
  34. Kowalczyk B, Lecko A, Sim YJ. The sharp bound for the Hankel determinant of the third kind for convex functions. Bull Aust Math Soc. 2018;97(3):435–445.
  35. Mohammed Pauzi MN, Darus M, Saibah Siregar. Second and third Hankel determinant for a class defined by generalized polylogarithm functions. Transylvanian J Math Mech. 2018;10(1):31–41.
  36. Mendiratta R, Nagpal S, Ravichandran V. On a subclass of strongly starlike functions associated with exponential function. Bull Malays Math Sci Soc. 2015;38(1):365–386. http://doi:10.1007/s40840-014-0026-8
  37. Zhang HY, Tang H, Niu XM. Third Order Hankel determinant for a certain class of analytic functions related with exponential function. Symmetry. 2018;10(10):e501. http://doi:10.3390/sym10100501
  38. Khan MG, Ahmad B, Murugusundaramoorthy G, et al. Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function. J Math Comput Sci. 2022;25:29–36.
  39. Senguttuvan A, Mohankumar D, Ganapathy RR, Karthikeyan KR. Coefficient inequalities of a comprehensive subclass of analytic functions with respect to symmetric points. Malaysian J Math Sci. 2022;16(3):437–450. http://doi:10.47836/mjms.16.3.03
  40. Mahmood S, Srivastava HM, Malik SN. Some subclasses of uniformly univalent functions with respect to symmetric points. Symmetry. 2019;11(2):e287. http://doi:10.3390/sym11020287
  41. Shi L, Shutaywi M, Alreshidi N, Arif M, Ghufran SM. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fractional. 2022;6(4):e223. http://doi:10.3390/fractalfract6040223
  42. Verma N, Kumar SS. On sharp third Hankel determinant for certain starlike functions. arXiv. 2022:earXiv:2211.14527. http://doi:10.48550/arXiv.2211.14527
  43. Viswanadh GKS, Rath B, Kumar KS, Krishna DV. The sharp bound for the third hankel determinant of the inverse of functions associated with lemniscate of bernoulli. Asian-Euro J Math. 2023;16(07):e2350126. http://doi:10.1142/S1793557123501267
  44. Omer SO, Aamir M, Bilal M, Ullah K, Qadir A. Study of second-order Hankel determinant for starlike functions with respect to symmetric points. VFAST Transac Math. 2023;11(1):52–66.
  45. Joshi K, Kumar SS. Third Hankel determinant for a class of starlike functions associated with exponential function. ArXiv. 2022;earXiv:2206.13707. http://doi:10.48550/arXiv.2206.13707
  46. Breaz D, Cătaş A, Cotîrlă LI. On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function. Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matemat. 2022;30(1):75–89. http://doi:10.2478/auom-2022-0005
  47. Ganesh K, Sharma RB, Laxmi KR. Third Hankel determinant for a class of functions with respect to symmetric points associated with exponential function. WSEAS Trans Math. 2020;19:e13. http://doi:10.37394/23206.2020.19.1
  48. Libera RJ, Zlotkiewicz EJ. Coefficient bounds for the inverse of a function with derivative in. Proc Amer Math Soc. 1983;87(2):251–257.
  49. Wang ZG, Arif M, Liu ZH, et al. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J Appl Anal Comput. 2023;13:860–873. http://doi.org/10.11948/20220180
  50. Pommerenke Ch. Univalent functions. J Math Soc Japan. 1975;49:759–780.
  51. Ravichandran V, Polatoglu Y, Bolcal M, Sen A. Certain subclasses of starlike and convex functions of complex order. Hacet J Math Stat. 2005;34:9–15.