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Novel/Old Generalized Multiplicative Zagreb  Indices of Some Special 

Graphs 

Usman Ali* 

Department of Mathematics, Lahore Garrison University, Pakistan 

ABSTRACT 

Topological descriptor is a fixed real number directly attached with the 

molecular graph to predict the physical and chemical properties of the 

chemical compound. Gutman and Trinajsti c  elaborated the first Zagreb 

index (ZI) which was based on degree in 1972. Ali and Trinajsti c defined 

a connection number (CN) based topological descriptor in 2018. They 

found that the CN-based Zagreb indices have a greater chemical capability 

for thirteen physicochemical properties of octane isomers.For 

 ,0, −R  the generalized ZI and the generalized first Zagreb

connection index (ZCI) of a graph Q  is 

])(d(m)+)([d(l)=)(
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,
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 ldmdQZ
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 and 
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, where )(mdQ  and )(mQ  are the 

degree and CN of the vertex m in Q . In this paper, the generalized first, 

second, third, and fourth multiplicative ZCIs are defined. Some exact 

solutions are also developed for the generalized multiplicative ZI and the 

above-mentioned generalized multiplicative versions of some special 

graphs, which are flower, sunflower, wheel, helm, and gear. The results 
3

,

2

, ,(  MCMC and )4

,MC  are the generalized forms of the results 



21 ,( MZCMZC  and )3

MZC  where, 1,=,  respectively. 

Keywords: connection number, degree, generalized multiplicative Zagreb 

indices, special graphs 

1. INTRODUCTION

Recently, graph theory has provided some useful tools for the study of 

different structures. These tools are known by the name of topological 

indices (TIs) and used mostly in pharmaceutical industry, medicinal fields, 

and the study of crystalline and nano materials, see [1-3]. Additionally, TIs 
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are used in quantitative-structure-activity relationships (QSARs) and 

quantitative-structure-property relationships (QSPRs). These relations 

have been joined to molecular-structures with their biological-structures 

[4, 5]. Mathematically, TIs can be defined as (M),=  where   is       a 

real-valued function, M  is a molecular-structure, and   is a real value 

which depends on M . 

Multiplicative Zagreb indices (ZIs) have outstanding importance in 

varius research fields. They play a significant role in analytical 

chemistry, toxicology, medicine, physical chemistry, pharmaceutical 

research, material sciences, environmental chemistry, and engineering. 

They can be joinedwith several properties of chemical compounds [6]. 

Todeshine et al. [7] and Eliasi et al. [8] separately developed 

multiplicative ZIs. In 2011, Gutman [9] used multiplicative ZIs to 

compute results of different tree graphs. Xu and Hua [10] used these 

multiplicative versions with the name of multiplicative sum ZI to find 

different results of trees, as well as unicyclic and bicyclic graphs. Xu 

and Das [11] also used multiplicative sum ZI to find different results of 

trees, as well as unicyclic and bicyclic graphs, by using another method 

shorter than  [8]. Multiplicative ZIs and multiplicative sum ZIs are 

being rapidly used in the forthcoming research. For more information, 

see [12–18]. 

In 2011, Azari [19] defined the generalized ZI to compute nanotubes 

and nanotori networks. He also defined graphical products, such as 

Cartesian product, sum, lexicographic product, union, corona product, 

disjunction, strong product, and symmetric difference with the help of 

generalized ZI [20]. Farahani and Kanna [21] computed generalized ZI 

for V-phenylenic nanotori  and nanotubes. Sarkar et al. [22] studied 

the generalized ZI of several allotropes of carbon, such as carbon 

graphite, crystal cubic structure of carbon, and graphene. Sarkar et al. [23] 

used the generalized ZI findings to compute different results of regular 

dendrimers. Sarkar et al. [24] used this generalized ZI with another 

name, that is,  ),( ba -Zagreb index to compute several derived networks. 

Mirajkar et al. [25] computed the generalized ZI of capra operation of 

cycle Cv on v-vertces. Wang et al. [26] used both generalized and 

generalization ZIs to compute several results of silicon-carbon graphs. 
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Degree- based TIs have been classified into degree and connection 

number (CN) [27]. Degree and CN indicate the number of vertices whose 

distance from vertex m  must be 1 and 2 ,  respectively. These indices have 

a powerful role in the study of chemical compounds and biological 

experiments [28, 29]. The first degree- based TI came into existence from 

the study of  -electron energy. This TI was revolutionized by Gutman 

and Trinajsti c  [30] with the name of ZI. They also shortly worked on 

another TI named as CN TI which is the number of those vertices 

whose distance from a particular vertex is 2. As such, TIs are based 

on CN [31]. Currently, these CN-based ZIs are used to investigate the 

physicochemical properties of chemical compounds, such as their 

stability, boiling point, strain energy, acentric factor, and entropy more 

than classical ZIs, see [32–34]. Ye et al. [35] computed ZCIs for 

nanotubes. Wang et al. [36] computed ZCIs of k -dimensional Benes 

networks. Hussain et al. [37] computed ZCIs of subdivided graph on 

 . For more details related to CN-based ZIs or leap ZIs, the reader 

may see [38–47]. 

In this paper, the generalized first, second, third, and fourth 

multiplicative ZCIs are defined. Exact solutions for the old and novel 

generalized multiplicative ZIs of some special graphs including wheel, 

gear, helm, flower, and sunflower are also developed. The rest of the 

paper is structured as follows: Section II gives the basic definitions of 

the degree- and CN-based  ZIs, Section III provides the definitions of 

several special graphs and their main results which are related to 

generalized multiplicative ZIs and generalized multiplicative ZCIs, 

while section IV presents the conclusion.  

2. NOTATIONS AND PRELIMINARIES 

Let Q  be a connected and simple graph. s=)(QE  and vQV =)(  

are the size and order of graph Q , respectively. The degree 

))(( mdQ  of vertex m  is the number of incident edges. If we sum the 

degrees of all the vertices adjacent to m , it is known as degree sum of a 

vertex. Mathematically, it is written as 
 )(Nl Q

).(=)(
m

Q ldmDS  If we multiply 

the degrees of all the vertices adjacent to m , it is known as degree  

product  of  a  vertex.  Mathematically, it is written as
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
 )(Nl Q

).(=)(
m

Q ldmDP  If )(mN  is the  -neighborhood of a vetex m , 

then  )(d=)( mmN   (number of  -neighbors of a vertex m ). If we 

put 2,=  it yields (m)=)(2 md  (CN of a vertex m ). Furthermore,

v

m

mdQ


V(Q)m

Q_
)(d

=)(  and 
v

m

mQ


V(Q)m

Q_
)(

=)(



  are the average degree and 

average CN of order v . The computed value of  )(
_

mdQ
 and )(

_

mQ  are 
v

s2
 

and 
v

sM 21 − , respectively. For more terminologies and notions [48]. 

Definition 2.1 [42]. Let Q  be a connected graph and }.0{, − R  The 

 -distance reneralized Zagreb index ))(( , QZ
  is 
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where 1 . If we put 1= , we get the generalized ZI as follows: 

].)(d)(d+)()([d=)(
E(Q)lm

,
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 lmmdlQZ 



  

Azari and Iranmanesh [19] (2011) defined this degree-based 

generalized version. If we replace sum by product, we obtain the 

generalized multiplicative ZI as follows: 

].)(d(m)+)([d(l)=)(
E(Q)lm

,


 ldmdQMZ 



 

If we put 2= , we get generalized ZCIs based on connection 

number )d=( 2  as follows: 

Definition 2.2 [42]. Let Q  be a connected graph and }.0{, − R  The 

generalized first, second, third, and fourth ZCIs are as follows: 
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If we change sum into product, we get generalized multiplicative ZCIs 

as follows.  

Definition 2.3. Let Q  be a connected graph and }.0{, − R  The 

generalized first, second, third, and fourth multiplicative ZCIs are as 

follows: 

,])()(+)()([=)(
)(

, 
 QElm

lmmlQMC 
 

 

,])()(+)()([=)(
)(

2

, 
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.])()()()([=)(
)(

4
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
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mmdlldQMC 
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3. DEFINITIONS AND MAIN RESULTS 

This section presents the definitons of some special graphs, such as 

wheel, gear, helm, flower, and sunflower graphs, respectively. Also, main 

results for the generalized multiplicative ZI and generalized 

multiplicative ZCIs are presented. 

3.1. Wheel Graph 
vW  

The wheel graph 
vW  is defined by joining 

1K  and 
vC , where 

1K  and 

vC  are the complete and cyclic graphs of orders 1 and v , respectively. 

Thus, 1+v  and 2 v  are the order ))(( vWV  and ))(( vWE  of wheel graph, 

respectively. Apex is the vertex corresponding to 1K  and rim is the set of 

the vertices  corresponding to vC . Figure 1 depicts the graphical 

representation of wheel graph. 
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Figure 1. Wheel Graph 
vW  

Table 1. Partition of Vertices for 
vW  

Degree/CN Apex )( 0m  Rim )( im  

vWd  v  3 

vW  0 3−v  

Theorem 3.1. Let 
vW  be a wheel graph with order 1+v . The generalized 

multiplicative ZI and the generalized first, second, third, and fourth 

multiplicative ZCIs of 
vW are as follows: 

1. ,)3+3(32=)( )v+(r

,

v

v rrWMZ 
   

2. 0,=)(, vWMC   

3. ,)3-()3(2=)( 2v2

,

vv

v vvWMC 


 

4. ,)3-()9(2=)( 2v3

,

vv

v vWMC 


 

5. 0.=)(4

, vWMC 
 

Proof: 1 Since 
vW  is a wheel graph of order 1+v , where .4v  Also, 

0m  is 

the apex vertex and  vmmm ,,, 21   is the set of rim vertices for 
vW . Then, 

by definition, 
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=)(, vWMZ  
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   )()(+)()( ldmdmdld
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= 
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  )()(+)()( 1+1+ iWiWiWiW mdmdmdmd
vvvv

. 

By using Table 1, we get 

vv ]3+3[v=    v]33+3[3   

)v+(v32=     vv )3+3(v  . 

2. )(, vWMC  = 
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   )()(+)()( 1+1+ iWiWiWiW mmdmmd
vvvv

 

rr ]03+)3([r=  −    
rrr ])3(3+)3([3  −−   

vv vv  2v )3()3(2= − . 

4. )(3

, vWMC 
= 

 )( vWElm

    )()(+)()( mdmlld
vvvv WWWW

 

= 
 )(0 vi WEmm

    )()(+)()( 00 iWiWWW mmdmmd
vvvv

    
 )(1+ vii WEmm

   

   )()(+)()( 1+1+ iWiWiWiW mmdmmd
vvvv
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vv ])3(3+0[v=  −    
vvv ])3(3+)3([3  −−   

vv v  2v )3()9(2= − . 

5. )(4

, vWMC 
= 

 )( vWElm

    )()()()( mdmlld
vvvv WWWW   

= 
 )(0 vi WEmm

    )()()()( 00 iWiWWW mmdmmd
vvvv

     
 )(1+ vii WEmm

   

   )()()()( 1+1+ iWiWiWiW mmdmmd
vvvv

  

vv ])3(30[v=  −    
vvv ])3(3)3([3  −−   

0= . 

3.2. Gear Graph
 vG  

The gear graph 
vG  

is obtained from the wheel graph by including a new 

vertex between each pair of the adjacent vertices of rim. Thus,  1+2v and 

v3  are the order ( ))( vGV  and size ( ))( vGE  of gear graph, respectively. 

Also, the bipartite wheel graph is called gear graph. Figure 2 depicts the 

graphical representation of gear graph. 

 
Figure 2. Gear Graph 

vG  
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Table 2. Partition of Vertices for 
vG  

Degree/CN Apex )( 0m  Rim )( im  Rim )( il  

vGd  v  3 2 

vG  v  1−v  3 

Theorem 3.2. Let 
vG  be a gear graph with order 1+2v . The generalized 

multiplicative ZI and the generalized first, second, third, and fourth 

multiplicative ZCIs of 
vG  are as follows: 

1. ,)32+23[]3+3[v=)( 2

,

vv

v vGMZ 
   

2.  vv vvGMC 
 1)-(v+)1(v=)(, −      v

vv
2

)1(3+3)1(  −− , 

3.  r2

, 3+)1(v=)( 
 vvGMC v −      v

v
2

)1(2+33  − , 

4.  vv vvGMC 
 )1(3+v=)(3

, −     v
v

2
32+)1(3  − , 

5. v

v rrGMC 


3)v+()v2+(3v24

, )1(32=)( − . 

Proof: 1. Since 
vG  is a gear graph of order 1+2v . Also, 

0m  is the apex 

vertex;  vmmm ,,, 21   and  vlll ,,, 21   are the sets of rim vertices for 

vG . Then, by definition, 

=)(, vGMZ  
 )( vGElm

   )()(+)()( ldmdmdld
vvvv GGGG

 

= 
 )(0 vi GEmm

   )()(+)()( 00 mdmdmdmd
vvvv GiGiGG   

 )( vii GElm

 

  )()(+)()( iGiGiGiG mdldldmd
vvvv

. 

By using Table 2, we get 

vv ]3+3[v=    v2]32+2[3  . 

2. )(, vGMC  = 
 )( vGElm

    )()(+)()( lmml
vvvv GGGG
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= 
 )(0 vi GEmm

    )()(+)()( 00 mmmm
vvvv GiGiGG

    
 )( vii GElm

   

   )()(+)()( iGiGiGiG mllm
vvvv

 

 rvv  1)-(v+)1(v= −      v
vv

2
)1(3+3)1(  −− .  

3. )(2

, vGMC 
= 

 )( vGElm

    )()(+)()( lmdmld
vvvv GGGG

 

= 
 )(0 vi GEmm

    )()(+)()( 00 mmdmmd
vvvv GiGiGG

    
 )( vii GElm

   

   )()(+)()( iGiGiGiG mldlmd
vvvv

 

 v3+)1(v=  vv−      v
v

2
)1(2+33  − . 

4. )(3

, vGMC 
= 

 )( vGElm

    )()(+)()( mdmlld
vvvv GGGG

 

= 
 )(0 vi GEmm

    )()(+)()( 00 iGiGGG mmdmmd
vvvv

    
 )( vii GElm

   

   )()(+)()( iGiGiGiG lldmmd
vvvv

 

 vvv  )1(3+v= −     v
v

2
32+)1(3  − . 

 5. )(4

, vGMC 
= 

 )( vGElm

    )()()()( mdmlld
vvvv GGGG   

= 
 )(0 vi GEmm

    )()()()( 00 iGiGGG mmdmmd
vvvv

     
 )( vii GElm

   

   )()()()( iGiGiGiG lldmmd
vvvv

  

vvv ])1(3[v=  −    
vv 2]32)1([3  −   

vrr  3)v+()v2+(3v2 )1(32= − . 

3.3. Helm Graph
 vH  

The helm graph 
vH is obtained from the wheel graph by joining a 

pendant edge to every vertex of the rim. Thus,  1+2v and v3  are the order 
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( ))( vHV  and size ( ))( vHE  of helm graph, respectively. Figure 3 depicts 

the graphical representation of helm graph. 

Theorem 3.3. Let
vH  be a helm graph with order 1+2v . The generalized 

multiplicative ZI and the generalized first, second, third, and fourth 

multiplicative ZCIs of 
vH  are as follows: 

1. ,]4+4[r)4+(442=)( v)v+(v

,

v

v rHMZ 
   

2.    vr

v vvvvvvHMC 

 )1(3+3)1(1)-(v+)1()1(2=)( )v+(v

, −−−−  , 

 
Figure 3. Helm Graph 

vH  

Table 3. Partition of Vertices for 
vH  

Degree/CN Apex )( 0m  Rim )( im  Rim )( il  

vHd  v  4 1 

vH  v  1−v  3 

3.    vvv

v vvvvHMC 
 1)-(v+344+)1()1(2=)( )v2+(12

, −−  , 

4.    vvv

v vvvvHMC 
 3+)1(4)1(4+)1(2=)( +)v2+(13

, −−− , 
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5. v

v vrHMC 


4)v+(v4v4

, )1(43=)( − . 

Proof: 1. Since 
vH  is a helm graph of order 1+2v . Also, 

0m  is the apex 

vertex;  vmmm ,,, 21   and  vlll ,,, 21   are the sets of rim and pendant 

vertices for 
vH , respectively. Then, by definition, 

=)(, vHMZ  
 )( vHElm

   )()(+)()( ldmdmdld
vvvv HHHH

 

= 
 )(0 vi HEmm

   )()(+)()( 00 mdmdmdmd
vvvv HiHiHH   

 )( vii HElm

 

  )()(+)()( iHiHiHiH mdldldmd
vvvv

    
 )(1+ vii HEmm

   

  )()(+)()( 1+1+ iHiHiHiH mdmdmdmd
vvvv

.
 

By using Table 3, we get 

= vvv ]4+4[    v]41+1[4     
v]44+4[4 

  

.]4+4[v)4+(442= v)v+(v vv   

2. )(, vHMC  = 
 )( vHElm

    )()(+)()( lmml
vvvv HHHH

 

= 
 )(0 vi HEmm

    )()(+)()( 00 mmmm
rrrr HiHiHH

    
 )( rii HElm

   

   )()(+)()( iHiHiHiH mllm
rrrr

    
 )(1+ rii HEmm

   

   )()(+)()( 1+1+ iHiHiHiH mmmm
vvvv  

 vvvv  1)-(v+)1(v)1(2= )v+(v −−     vvv  )1(3+3)1( −− .  

3. )(2

, vHMC 
= 

 )( vHElm

    )()(+)()( lmdmld
vvvv HHHH

 

= 
 )(0 vi HEmm

    )()(+)()( 00 mmdmmd
vvvv HiHiHH

    
 )( vii HElm

   

   )()(+)()( iHiHiHiH mldlmd
vvvv

    
 )(1+ vii HEmm
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   )()(+)()( 1+1+ iHiHiHiH mmdmmd
vvvv  

   vvv vvvv  1)-(v+344+)1()1(2= )v2+(1 −− . 

4. )(3

, vHMC 
= 

 )( vHElm

    )()(+)()( mmdlld
vvvv HHHH

 

= 
 )(0 vi HEmm

    )()(+)()( 00 iHiHHH mmdmmd
vvvv

    
 )( rii HElm

   

   )()(+)()( iHiHiHiH lldmmd
rrrr

    
 )(1+ rii HEmm

   

   )()(+)()( 1+1+ iHiHiHiH mmdmmd
rrrr  

   rrr rrrr  3+)1(4)1(4+)1(2= +)r2+(1 −−− . 

 5. )(4

, rHMC 
= 

 )( rHElm

    )()()()( mdmlld
rrrr HHHH   

= 
 )(0 ri HEmm

    )()()()( 00 iHiHHH mmdmmd
rrrr

     
 )( rii HElm

   

   )()()()( iHiHiHiH lldmmd
rrrr

     
 )(1+ rii HEmm

   

   )()()()( 1+1+ iHiHiHiH mmdmmd
rrrr


 

rrr  4)r+(r4r )1(43= − . 

3.4. Flower Graph
 rFl  

The flower graph 
rFl  

is obtained from the helm graph by joining each 

pendant  vertex to the apex of helm graph. Thus,  1+2r and r4  are the order 

( ))( rFlV  and size ( ))( rFlE  of flower graph, respectively. Figure 4 depicts 

the graphical representation of flower graph. 

Table 4. Partition of Vertices for 
vF  

Degree/CN Apex )( 0m  Rim )( im  Extreme )( il  

vFld  v2  4 2 

vFl  0 42 −v  22 −v  
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Figure 4. Flower Graph 

rFl  

Theorem 3.4. Let
vFl  be a flower graph with order 1+2v . The generalized 

multiplicative ZI and the generalized first, second, third, and fourth 

multiplicative ZCIs of 
vFl  are as follows: 

1. ,]2+2[r)2+(22=)( v)v5+5+(1

,

v

v rFlMZ 
   

2.  vv vvvFlMC 
 )2(1)-(v+1)-(v)2()2(2=)( )v+()v2+2+(1

, −−− , 

3.    vr

v vvvFlMC 
 2)-(v+)1(22)-(v)1(2=)( 22)v4+5+(12

, −−  , 

4.  vvv

v vrrFlMC 
 1)-(v+)2(2)2()1(2=)( 2)v4+6+(13

, −−− , 

5. 0=)(4

, vFlMC 
. 

Proof: 1. Since 
vFl  is a flower graph of order 1+2v . Also, 

0m  is the apex 

vertex;  vmmm ,,, 21   and  vlll ,,, 21   are the sets of rim and 

extreme vertices for 
vFl , respectively. Then, by definition, 

=)(, vFlMZ  
 )( vFlElm

   )()(+)()( ldmdmdld
vvvv FlFlFlH

 

= 
 )(0 vi FlEmm

   )()(+)()( 00 mdmdmdmd
vvvv FliFliFlFl   

 )(0 vi FlElm
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  )()(+)()( 00 mdldldmd
vvvv FliFliFlFl

    
 )( vii FlElm

   

  )()(+)()( iFliFliFliFl mdldldmd
vvvv  

   
 )(1+ vii FlEmm

     )()(+)()( 1+1+ iFliFliFliFl mdmdmdmd
vvvv

.
 

By using Table 4, we get 

vv ])2(4+4[(2v)=    vv ])2(2+2[(2v)     

  ]44 +44[]42+2[4 v v .]2+2[v)2+(22= v)v5+5+(1 vv 
 

2. )(, vFlMC  = 
 )( vFlElm

    )()(+)()( lmml
vvvv FlFlFlFl

 

= 
 )(0 vi FlEmm

    )()(+)()( 00 mmmm
vvvv FliFliFlFl

    
 )(0 vi FlElm

   

   )()(+)()( 00 mllm
vvvv FliFliFlFl

    
 )( vii FlElm

   

   )()(+)()( iFliFliFliFl mllm
vvvv  

   
 )(1+ vii FlEmm

      )()(+)()( 1+1+ iFliFliFliFl mmmm
vvvv  

 vv  04)-(2v+)42(0= −     vv  02)-(2v+)22(0 −     

 vvv    4)-(2v2)-(2v+)22()42(  −−     

 vvv    4)-(2v4)-(2v+)42()42(  −−  

= − )v+()v2+2+1( )2(2  v  vvv    2)-(v1)-(v+)1()2(  −−  

3. )(2

, vFlMC 
= 

 )( vFlElm

    )()(+)()( lmdmld
vvvv FlFlFlFl

 

= 
 )(0 vi FlEmm

    )()(+)()( 00 mmdmmd
vvvv FliFliFlFl

    
 )(0 vi FlElm

   

   )()(+)()( 00 mldlmd
vvvv FliFliFlFl

    
 )( vii FlElm
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   )()(+)()( iFliFliFliFl mldlmd
vvvv  

   
 )(1+ vii FlEmm

   

   )()(+)()( 1+1+ iFliFliFliFl mmdmmd
vvvv  

 vv  04+)42((2v)= −     vvv  02+)22()2( −     

 vv    4)-(2v2+)22(4  −     vv    4)-(2v4+)42(4  −  

= )v4+5+1(2   vvr  22 2)-(v)1( −    vv  2)-(v+)1(2 − . 

4. )(3

, vFlMC 
= 

 )( vFlElm

    )()(+)()( mmdlld
vvvv FlFlFlFl

 

= 
 )(0 vi FlEmm

    )()(+)()( 00 iFliFlFlFl mmdmmd
vvvv

    
 )(0 vi FlElm

   

   )()(+)()( 00 iFliFlFlFl lldmmd
vvvv

    
 )( vii FlElm

   

   )()(+)()( iFliFliFliFl lldmmd
vvvv  

   
 )(1+ vii FlEmm

   

   )()(+)()( 1+1+ iFliFliFliFl mmdmmd
vvvv  

 vv  )42(4+0(2v)= −     vvv  )22(2+0)2( −     

 vv    2)-(2v2+)42(4  −     vv    4)-(2v4+)42(4  −
 

 vvv vvv  1)-(v+)2(2)2()1(2= 2)v4+6+(1 −−− . 

 5. )(4

, vFlMC 
= 

 )( vFlElm

    )()()()( mdmlld
vvvv FlFlFlFl   

= 
 )(0 vi FlEmm

    )()()()( 00 iFliFlFlFl mmdmmd
vvvv

     
 )(0 vi FlElm

   

   )()()()( 00 iFliFlFlFl lldmmd
vvvv

    
 )( vii FlElm

   )()()()( iFliFliFliFl lldmmd
vvvv


  

   
 )(1+ vii FlEmm

      )()()()( 1+1+ iFliFliFliFl mmdmmd
vvvv


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 vv  )42(40(2v)= −     vvv  )22(20)2( −     

 vv    2)-(2v2)42(4  −     vv    4)-(2v4)42(4  −
 

.0=  

3.5. Sunflower Graph
 vSf  

The sunflower graph 
vSf  

is obtained from the flower graph by growing 

v  pendant  edges to the apex of flower graph. Thus,  1+3v and v5  are the 

order ( ))( vSfV  and size ( ))( vSfE  of sunflower graph, respectively. Figure 

5 depicts the graphical representation of sunflower graph. 

 

Figure 5. Sunflower Graph 
vSf  

Table 5. Partition of Vertices for 
vSf  

Degree/CN Apex )( 0m  Rim )( im  Extreme )( il  Pendant )( ip  

vSfd  v3  4 2 1 

Sfv  0 43 −v  23 −v  13 −v  
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Theorem 3.5. Let
vSf  be a flower graph with order 1+3v . The generalized 

multiplicative ZI and the generalized first, second, third, and fourth 

multiplicative ZCIs of 
vSf  are as follows: 

1.  vv

v vvSfMZ 

 )3(4+4)3(](3v)+[(3v))2+(22=)( v)v3+3+(1

,   

vvv ])3(2+2)3[(  , 

2.  vv vvvSfMC 
 )43(2)-(3v+2)-(3v)43()43(2=)( )v+(v

, −−−  , 

3.    vvvv

v vvrrSfMC 

 4)-(3v+)23(24)-2)(3v-(3v)13()43()6(2=)( 3r2

, −−−  , 

4.    vv

v vvvvSfMC 

 2)-(3v+)43(2)43)(23)(13(2=)( 2)v6+(13

, −−−− , 

5. 0=)(4

, vSfMC 
. 

Proof: 1 Since 
vSf  is a sunflower graph of order 1+3v . Also, 

0m  is the apex 

vertex;  vmmm ,,, 21  ,  vlll ,,, 21  , and  vppp ,,, 21   are the sets 

of rim and extreme and pendant vertices for 
vSf , respectively. Then, by 

definition, 

=)(, vSfMZ  
 )( vSfElm

   )()(+)()( ldmdmdld
vvvv SfSfSfSf

 

= 
 )(0 vi SfEmm

   )()(+)()( 00 mdmdmdmd
vvvv SfiSfiSfSf   

 )(0 vi SfElm

  

  )()(+)()( 00 mdldldmd
vvvv SfiSfiSfSf

    
 )(0 vi SfEpm

   

  )()(+)()( 00 mdpdpdmd
vvvv SfiSfiSfSf  

   
 )( vii SfElm

     )()(+)()( iSfiSfiSfiSf mdldldmd
vvvv  

  


 )(1+ vii SfEmm

     )()(+)()( 1+1+ iSfiSfiSfiSf mdmdmdmd
vvvv

. 

By using Table 5, we get 

vv ])3(4+4[(3v)=    vv ])3(2+2[(3v)     
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  ]42 +24[])3(1+1[(3v) v vv  
v]44+44[   

 vv vv  )3(4+4)3(](3v)+[(3v))2+(22= v)v3+3+(1 
vvv ])3(2+2)3[(  . 

2. =)(, vSfMC  
 )( vSfElm

    )()(+)()( lmml
vvvv SfSfSfSf

 

= 
 )(0 vi SfEmm

    )()(+)()( 00 mmmm
vvvv SfiSfiSfSf   

 )(0 vi SfElm

  

   )()(+)()( 00 mllm
vvvv SfiSfiSfSf

    
 )(0 vi SfEpm

   

   )()(+)()( 00 mppm
vvvv SfiSfiSfSf  

   
 )( vii SfElm

      )()(+)()( iSfiSfiSfiSf mllm
vvvv  

  


 )(1+ vii SfEmm

      )()(+)()( 1+1+ iSfiSfiSfiSf mmmm
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4. CONCLUSION 

Topological indices (TIs) are the mathematical coding of molecular 

graphs that predict the physicochemical, toxicological, biological, and 

structural properties of chemical compounds that are directly linked with 

these graphs. The Zagreb connection indices (ZCIs) are among the TIs of 

molecular graphs that depend upon the connection number (CN). These 

CN-based TIs are well used in the study of quantitative structures activity 

relationships (QSARs) and quantitative structures property relationships 

(QSPRs). These days, CN-based multiplicative Zagreb indices are the best 

tools available for the study of QSARs and QSPRs. In this paper, the 

generalized first, second, third, and fourth multiplicative ZCIs were defined. 

Also, some exact solutions of the novel/old generalized multiplicative 

Zagreb indices for some special graphs, namely flower, sunflower, wheel, 

helm, and gear graphs were computed. 
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