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ABSTRACT 

This investigation focuses on the perturbation analysis of optical solitons 

within a medium in accordance with the non-Kerr law. In the field of partial 

differential equations, generalized nonlinear Schrodinger equation 

(GNLSE) is an integrable nonlinear equation. In the non-Kerr law non-

linear medium, GNLSE is utilized for doing an analytical analysis of soliton 

perturbations as well as the soliton itself. In case of non-Kerr law instance, 

the application of quasi-stationarity results in a soliton that is very close to 

being approximated. Several edge scenarios of nonlinearity that vary from 

the Kerr law remain the primary focus of the current study. Although it was 

found that a disturbance of the nonlinear damping kind remains present, 

equations can be solved to find solutions. Consequently, GNLSE cannot be 

integrated because of the presence of higher-order dispersion. 

Keywords: GNLSE (generalized nonlinear Schrodinger equation), Ker 

Law, non-Ker Law, optical solitons, perturbation 

1. INTRODUCTION 

Optics uses ‘soliton’ to describe an optical field that remains unchanged 

during propagation due to nonlinear and linear influences. Several 

experiments have been conducted with optical fiber and light pulses. The 

remarkable stability of solitons allows for long-distance communication 

since solitons go farther without the use of amplifiers and boost the 

transmission capacity by a factor of two [1]. 

In 1973 [2], AT&T Bell labs employee Akira Hasegawa was the first to 

postulate that solitons may arise in optical fiber by a combination of 

anomalous dispersion and self-phase modulation. Robin Bullough [3] 

provided a mathematical demonstration of the reality of optical solitons in 

the same year. To improve the practical application of optical 

communications, the idea of a soliton-based transmitting system emerged. 
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Optical solitons refer to the propagation of soliton pulses. They produce 

an optical field that allows them to keep their form as they travel, partly due 

to a combination of nonlinear and linear phenomena in the medium [4]. The 

two varieties of optical solitons include spatial and temporal solitons. 

The diffraction phenomena during the transmission of solitonic waves 

over an optical fiber counteracts their linear effects. If the medium's 

refractive index can be altered by an electromagnetic field, a soliton pulse 

would be the method of choice [5]. Fiber acts like other fibers with the same 

grade index. During the spread of the soliton pulse, electromagnetic field 

maintains its restricted shape. 

The presence of spatial soliton can be understood by imagining a simple 

convex lens. As seen in Figure l, convex lenses can be employed to focus 

on the visual field. 

 

Figure 1. Convex Lens Focusing on Light Pulses 

The lens's focusing action causes the phase shift to be non-uniform. Fig. 

1 depicts the phase shift as a function of distance, written as ᵩ (x). Thus, 

phase shift is controlled by the product of the field's phase constant (𝑘𝑜n) 

and the wave's width L(x). 

Therefore, we may rewrite it as follows: 

ᵩ (x) = 𝑘0nL(x)         (1) 
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So, 

L(x) = breadth of the lens  𝑘0n = total phase constant 

Changing the lens's diameter to create such a phase shift is not 

appropriate for studying focusing phenomena. When lens width is held 

constant, the same focusing effect occurs when the index of refraction, that 

is, n(x) is altered in magnitude. Such is the operation of a fiber with a grade 

index. When these two forces cancel each other out, the propagating optical 

field remains unaffected. This primary principle underpins the existence of 

spatial solitons. Self-phase modulation (SPM) actually begins with the Kerr 

effect [6]. The index of refraction changes as a result of SPM. The strength 

of the soliton is essential. 

ᵩ(x) = 𝑘0nL(x)         (2) 

Here, 

n = 𝑛0 + 𝑛2 I(x). 

Therefore, 

ᵩ (x) = 𝑘0L(𝑛0+ 𝑛2I (x)). 

Figure 1 can be reproduced by generating phase behavior befitting the 

wave's shape. The field then demonstrates the effect of self-focusing. 

Consequently, we can deduce that n, that is, the refractive index, must be 

positive. If the opposite is true, then the effect would be the opposite. 

Mathematical explanations exist for the waveguide of propagating optical 

solitons. Its existence proves that it can be followed by waves of other 

frequencies. If the medium is linear, then waves of varying frequency 

cannot interact with one another. Temporal solitons allow for the 

transmission of light pulses with no distortion to their original shape when 

the electric field is spatially limited [7]. Since dispersion can counteract 

nonlinear effects, there would be no change to their shape. Optical fiber 

transmission bit rate is severely constrained by GVD. On the other hand, 

soliton impulses are generated by GVD. The bandwidths of these are not 

zero. The propagation medium of solitons depends on their frequencies. 

Group delay dispersion (GDD) parameter D characterizes the impact itself. 

It's what is used to figure out the pulse's precise width [8]. 

Δ𝜏 ≈ DLΔλ 

Here,  
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L = fiber length 

Therefore,  

Δλ = bandwidth in terms of wavelength 

Modern communication systems are designed to counteract the 

dispersal effect by coordinating with other fibers that have the same GDD 

parameter D' but different signs in different regions of the fiber. Thus, 

solitons continually enlarge and contract as they move. Temporal solitons 

totally do away with these issues. 

The optical Kerr phenomena can be explained by a propagating electric 

field in a medium. Power in the x-y plane is regulated by the waveguide 

structure of fiber optics. When the e-field moves in a z direction with a 

phase constant of β0, it can be written as follows: 

Ē (r, t)= 𝐴𝑚a(t, z)f(x,y)ei(β
0

z-ω
0

t)  (3) 

𝐴𝑚= Max. Amplitude of the e-field  (4) 

in the time domain, a (t, z) = the wave's envelope. Amplitude depends on z 

because impulse can change shape during propagation. 

An electric field with a specific profile induces a soliton. It must be 

scaled to a power related to impulse length. In this study, equations are 

perturbed slightly to induce such impulses. Then, numerical methods are 

used to solve them. The stability of one-dimensional solitons was 

confirmed. These were 1+1 dimensional solitons or (1+1) since such 

solitons are limited to only one axis (x or t), instead of two and spread in 

the opposite direction, here z = [9]. A solitonic pulse is produced by 

adjusting the power or shape. It then modifies itself to reach the typical sech 

shape at the right power. Unfortunately, obtaining it requires enduring a 

power outage which complicates matters. It generates a second, travelling 

solitonic field that overlaps with the necessary field. The stability of one-

dimensional solitons is excellent. If N is large enough, a first-order optical 

soliton can be manufactured; otherwise, we'll have to settle for a higher-

order one. The high-power peaks that result could be harmful to the fiber. 

Limiting the field along the y-axis with a dielectric slab and along the x-

axis with the soliton cause a (1+1) D spatial soliton to be generated. 

Unstable solitons exist in two and a half spatial dimensions and in one 

additional dimension. This shows that even a slight change in the medium's 

condition might cause the soliton pulse to diffract or collapse, causing 
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damage. By using saturated, non-limiting material, where the Kerr relation 

n (I) = n + n2I is applicable unless it reaches the maximum value, it is 

possible to construct stable (2+1) D spatial solitons. This indicates that 

steady solitonic pulses can be generated in a three-dimensional environment 

[10].  

This change to John Kerr's experimental setup makes the magnetic 

optical phenomenon seemingly hard to understand. Consider two types of 

bodily levels, simultaneously. These levels are designed to be played in 

pairs, so they must be paired later. 

a) Quantum mechanics describes how a magnetic material reacts when 

exposed to an electromagnetic field from the outside.  

b) Classical optics describes how a beam of light travels through space 

after being reflected. 

The nexus between these actions and frequency-dependent organization 

of optical conductivity б(ω) onto permittivity ϵ (ω) is as follows: 

ƒ: б (ω) → ϵ(ω)  (5) 

Important considerations in the fields of quantum mechanics and 

classical optics are required. Moreover, John Kerr indicators are the only 

ones that have been observed in different experimental examinations. 

 Optical solitons have been a focus of a significant number of studies. 

The fact that solitons cannot be integrated is crucial. Particularly, this can 

be observed via perturbation parameters. The problem grows more severe 

for nonlinearities that violate the Kerr law. The nonlinearity of the power-

law also needs to be taken into account. NLSE is the guiding equation for 

power-law nonlinearity [11]. We investigate this equation with a 

Hamiltonian perturbation. 

Nonlinear Schrodinger equation (NLSE) for solitonic pulse propagation 

in fibre optics is written in dimensionless form as [12]: 

iqt + aqxx +b|q|2mq = iαqx - iγqxxx +iλ(|q|2mq)x +iv(|q|2m) xq (6) 

where, 

‘a’ denotes the coefficients of GVD factors, 

q denotes the dependent variable used for the profile of the wave, 
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b denotes the nonlinearity coefficient, and 

x and t are independent variables representing space and time accordingly. 

Optical solitons were first predicted theoretically by Hasegawa [2]. 

These solitons are represented by locally shaped waves. They are one of the 

leading candidates for information transmission and processing. They may 

be capable of carrying out the ultra-high speed optical communication [13]. 

The generation of solitons depends on a fine-tuned equilibrium between 

nonlinearity-induced self-phase modulation (SPM) and linear group 

velocity dispersion (GVD). NLSE is used to characterize the behavior of 

solitons in motion. NLSE is fully integrable and remains the most 

appropriate model for a perfect Kerr medium [14]. 

However, solitonic pulse degrades due to the loss in fibre optics caused 

by the limited attenuation coefficient of communication grade optical fibre. 

This necessitates the use of optical amplifiers. In extremely high 

(frequency) bit rate transmission, the nonlinearity of Kerr law cannot depict 

the dynamics of solitons. Higher-order nonlinearities may become 

significant at average intensities in some media. Nonlinearities caused by a 

non-Kerr law medium become active under these conditions [5]. Changes 

occur in the physical characteristics of optical soliton communication. 

When studying ultra-high communication in a medium with coefficients, 

higher order nonlinearities must be accounted for [15]. Therefore, we must 

act in the following ways: 

a) Add a new term to NLSE. 

b) Since NLSE is not integrable in this setting, perturbation techniques are 

required. 

2. MATHEMATICAL ANALYSIS AND DISCUSSION 

Using the non-linearity of the non-Kerr law, we can write down the non-

linear Schrodinger equation (NLSE) in a dimensionless form as [16]: 

iqt + 
1

2
 qxx + F(|q|2)q = 0   (7) 

where t is time without dimensions and x is fibre optics' dimensionless 

distance. The aforementioned PDE is non-integrable nonlinear (NLPDE). 

Algebraically speaking, F in eq. (5.1) is a function of real-value.   

F(|q|2)q ϵ U∞ 
m,n=1 C

k ((-n,n) X (-m,m); R2 ) (8) 
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With the addition of the perturbation term, NLSE [17] becomes 

iqt + 
1

2
 qxx + F(|q|2)q = iϵR[q,q] (9) 

The spatial differential operator is denoted by the parameter ‘R’. The 

perturbation parameter is a measure of the spectrum's relative breadth. The 

latter word is derived from the concept of quasi-monochromaticity [18]. 

Finally, perturbation effects on the adiabatic dynamics of the soliton 

parameter are given below. 

𝑑𝐸

𝑑𝑡
=  𝜖 ∫ (𝑞∗𝑅 + 𝑞𝑅∗)𝑑𝑥

∞

−∞
    (10) 

𝑑𝑀

𝑑𝑡
 = i 𝜖 ∫ (

∞

−∞
𝑞𝑥

∗R - 𝑞𝑥𝑅∗)dx 

𝑑𝜅

𝑑𝑡
=  

𝜖        𝐵

𝐼0,2,0,0,0,0,0,0𝐴2 [i ∫ (
∞

−∞
𝑞𝑥

∗R − 𝑞𝑥𝑅∗)𝑑𝑥+𝜅 ∫ (𝑞∗𝑅 + 𝑞𝑅∗)𝑑𝑥
∞

−∞
] 

𝑑

𝑑𝑡
= 𝜅 +  

𝜖        𝐵

𝐴2𝐼0,2,0,0,0,0,0,0
∫ (𝑞∗𝑅 + 𝑞𝑅∗)𝑑𝑥

∞

−∞

 

Nonlinearity's four (04) most essential corner cases are now considered. 

We now detail the dynamics of the soliton's adiabatic parameters. 

 The fact that solitons in fiber optics experience a nonlinear response 

motivates the study of Kerr's law of nonlinearity. These responses are 

extremely lacking. The non-harmonicity of bonded electrons, however, has 

far-reaching effects that manifest in a variety of ways over long distances. 

Therefore, the induced polarization's Fourier amplitude is also nonlinear in 

the e-field which also involves electric field amplitude of higher-order-

factors. Kerr's law states that F(s) here must equal s. This results in a change 

in NLSE to 

iqt + 
1

2
 qxx + (|q|2)q = 0  (11) 

IST (inverse transformation technique) can be used to integrate this fully. 

The soliton's shape is, therefore, demonstrated to be 

q(x,t) = 
𝐴

cos ℎ[𝐵(𝑥−�̅�(𝑡))]
𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝑎0)  

where, 

k = -v 

and 
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ω = 
𝐵2 − 𝜅2

2
 

A = B 

There is a plethora of motion integrals involved in the Kerr law 

argument. Accordingly, the first three integrals of motion similar to NLSE 

are as follows: 

E = ∫ |𝑞|2𝑑𝑥
∞

−∞
 = 2A  (12) 

M = 
ί

2
 ∫ (𝑞𝑞𝑥

∗  − 𝑞∗𝑞𝑥)𝑑𝑥 =  −2𝑘𝐴
∞

−∞
 

H = 
1

2
 ∫ (|𝑞𝑥|2 − |𝑞|4)𝑑𝑥 =   

2

3
 𝐴(3𝜅2 𝐴2)

∞

−∞
. 

NLSE, according to the Kerr law, is presented below in the presence of 

perturbational factors [19], 

iqt + 
1

2
 qxx + |q|2q = iϵR (13) 

This leads us to the following expression for the dynamics of the 

soliton’s adiabatic parameters under the non-linear Kerr law: 

𝑑𝐴

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
=

𝜖

2
 ∫ (𝑞∗𝑅 + 𝑞𝑅∗)𝑑𝑥

∞

−∞
 

𝑑𝜅

𝑑𝑡
=

𝜖

2𝐴
[i ∫ (

∞

−∞
q*xR - qx R*) dx - κ∫ ((𝑞∗𝑅 + 𝑞𝑅∗)𝑑𝑥

∞

−∞
] 

Therefore, the perturbed NLSE with nonlinearity in Kerr law is 

specified by the perturbational factors specified by eq. (5.24). 

iqt + 
1

2
 qxx + |q|2q = =i∈[δ|𝑞|2𝑚𝑞 + 𝑎𝑞𝑥 + 𝛽𝑞𝑥𝑥 −  𝛾𝑞𝑥𝑥𝑥 + 𝜆(|𝑞|2𝑞)𝑥 +

  𝜃(|𝑞𝑥|2)𝑥 𝑞 + 

θ|𝑞𝑥|2𝑞 − 𝑖 𝜉 (𝑞2𝑞𝑥
∗)x -iƞ𝑞2

x𝑞∗- 𝑖 𝜉(𝑞2)𝑥𝑥 – iμ(|𝑞𝑥|2)𝑥𝑞 – iχ𝑞𝑥𝑥𝑥𝑥 – 

iѱ𝑞𝑥𝑥𝑥𝑥𝑥𝑥 + (σ1𝑞 +  σ2𝑞𝑥) ∫ |𝑞|2𝑑𝑠
∞

−∞
. 

Adiabatic parameter dynamics of solitons are as follows: 

𝑑𝐸

𝑑𝑡
=  

2𝜖

15
 [15δ𝐴2𝑚+1

𝛤 (
1

2
) 𝛤 (𝑚+1)

𝛤 (𝑚+
3

2
)

 – 10 𝛽A(𝐴2 + 3𝜅2) – 4𝜌𝐴3(𝐴2 + 5𝜅2)+ 

10A2 (3σ1 − σ2𝐴) 
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𝑑𝑀

𝑑𝑡
=  

2𝜖𝑘

15
 [15δ𝐴2𝑚+1

𝛤 (
1

2
) 𝛤 (𝑚+1)

𝛤 (𝑚+
3

2
)

 – 10 𝛽(𝐴2 + 3𝜅2) – 4𝜌𝐴2(𝐴2 + 5𝑘2)+ 

10A2 (3σ1 −  σ2𝐴) 

𝑑𝐴

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
=  

𝜖

15
 [15δ𝐴2𝑚+1

𝛤 (
1

2
) 𝛤 (𝑚+1)

𝛤 (𝑚+
3

2
)

 – 10 𝛽A(𝐴2 + 3𝜅2) – 4𝜌𝐴3(𝐴2 +

5𝜅2)+ 10A2 (3σ1 −  σ2𝐴) 

𝑑𝜅

𝑑𝑡
= −

𝜖𝐴2

15
 [10κ (2 𝛽 − σ2)+8μ𝐴2] 

Kerr law soliton speed dispersion is as under. 

Power-law nonlinearity is observed in many different media and 

semiconductors are no exception [20]. Nonlinear plasma also fixes the issue 

of weak turbulence by revealing the nonlinearity law. Specifically, in this 

case F(s) = s-P. In this way, NLSE is 

iqt + 
1

2
 qxx + |q|2pq = 0  (14) 

To avoid soliton pulse collapse and self-focusing singularity having 0 

<p<2, the solitonic solution to eq. (14) is as follows: 

q(x,t) = 
𝐴

𝑐𝑜𝑠ℎ
2
𝑃[𝐵(𝑥−�̅�(𝑡))]

𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝑎0)  

where, 

k = - 𝑣  

ω = 
𝐵2

2𝑝2 ₋ 
𝑘2

2
 

B = Ap (
2𝑝2

1+𝑝
)1/2 

The three motion integrals in this case are as follows: 

E = ∫ |𝑞|2𝑑𝑥
∞

−∞
 

E=A2-p  (
1+𝑝

2𝑝2
)

1

2 
Γ (

1

2
) Γ (

1

p
)

Γ(
1

p
+

1

2
)

 

E = 𝐵
(2−𝑝)

𝑝 (
1+𝑝

2𝑝2 )
1

𝑝 
Γ (

1

2
) Γ (

1

p
)

Γ(
1

p
+

1

2
)
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M = 
ί

2
 ∫ (𝑞∗𝑞𝑥 −  𝑞𝑞𝑥

∗)𝑑𝑥
∞

−∞
 

M =κA2-p (
1+𝑝

2𝑝2
)

1

2 
Γ (

1

2
) Γ (

1

p
)

Γ(
1

p
+

1

2
)

 

M= 2k𝐵
(2−𝑝)

𝑝    
Γ (

1

2
) Γ (

1

p
)

Γ(
1

p
+

1

2
)

 

and  

H =  ∫ [
1

2
|𝑞𝑥|2 −  

1

𝑝+1
 |𝑞|2𝑝+2]𝑑𝑥

∞

−∞
 

H= 
𝐵

2
𝑝

2𝑝2  (
1+𝑝

2𝑝2 )
1

𝑝  [
(𝐵2+ 𝑘2𝑝2)𝛤  

1

2
  𝛤  

1

𝑝

𝐵                      𝛤 (
1

𝑝
+ 

1

2
)

− 2𝐵 
𝛤 (

1

2
)  𝛤 (

𝑝+1

𝑝
)

𝛤 (
𝑝+1

𝑝
+ 

1

2
)

] 

H= 
𝐴2

2𝑝2[{ 𝐴𝑝(
2𝑝2

1+𝑝
)

2

𝑝 +  
𝜅2 𝑝2

𝐴𝑝 (
1+𝑝

2𝑝2 )
1

2} × 
𝛤(

1

2
 )𝛤( 

1

𝑝
)

𝛤 (
1

𝑝
+ 

1

2
)

− 2𝐴𝑝 (
2𝑝2

1+𝑝
)

1

2 
𝛤 (

1

2
)  𝛤 (

𝑝+1

𝑝
)

𝛤 (
𝑝+1

𝑝
+

1

2
)

 

NLSE with power-law nonlinearity showing the presence of 

perturbational factors as [21] is as follows: 

iqt + 
1

2
 qxx + |q|2pq = iϵR[q,q*] (15) 

In the presence of perturbing factors, the dynamics of the adiabatic 

parameters are as follows: 

𝑑𝐴

𝑑𝑡
= 

∈

2−𝑝
𝐴𝑝−1(

2𝑝2

1+𝑝
)

(𝑝−1)

2𝑝  × 
𝛤 (

1

𝑝
+ 

1

2
)

𝛤 (
1

2
) 𝛤( 

1

𝑝
)
 ∫ (𝑞∗𝑅 + 𝑞𝑅∗)𝑑𝑥

∞

−∞
 

𝑑𝐵

𝑑𝑡
= ϵ 

𝑝

2−𝑝
𝐵(2𝑝−2)𝑝 (

2𝑝2

1+𝑝
)

1

𝑝 × 
𝛤 (

1

𝑝
+ 

1

2
)

𝛤 (
1

2
) 𝛤( 

1

𝑝
)
 ∫ (𝑞∗𝑅 + 𝑞𝑅∗)𝑑𝑥

∞

−∞
, 

𝑑𝜅

𝑑𝑡
 = ∈ 𝐵

(𝑝−2)

𝑝 (
2𝑝2

1+𝑝
)

1

𝑝
𝛤 (

1

𝑝
+ 

1

2
)

𝛤 (
1

2
) 𝛤( 

1

𝑝
)
 × 𝑖 ∫ (

∞

−∞
q*xR + qx𝑅∗)dx - κ∫ (

∞

−∞
q*R + qR*) 

dx.  

The power-law nonlinear case of NLSE with perturbational factors is 

written as under: 

iqt + 
1

2
 qxx + |q|2pq 
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=i∈[δ|𝑞|2𝑚𝑞 + 𝑎𝑞𝑥 + 𝛽ß𝑞𝑥𝑥 −  𝛾𝑞𝑥𝑥𝑥 + 𝜆(|𝑞|2𝑞)𝑥 +   𝜃(|𝑞|2)𝑥 𝑞 +
𝜌(|𝑞𝑥|2𝑞) − 𝑖 𝜉 (𝑞2𝑞𝑥

∗)x -iƞ𝑞2
x𝑞∗- 𝑖 𝜉(𝑞2)𝑥𝑥 – iμ(|𝑞|2)𝑥𝑞 – iχ𝑞𝑥𝑥𝑥 – 

iѱ𝑞𝑥𝑥𝑥𝑥𝑥𝑥 + (σ1𝑞 +  σ2𝑞𝑥) ∫ |𝑞|2𝑑𝑥]
∞

−∞
. 

It is also possible to compute the power-law soliton's adiabatic 

parameter dynamics subject to perturbation. It was found that the 

generalized nonlinear Schrodinger equation (GNLSE) is not integrable due 

to higher order dispersional factors. 

2.1. Conclusion 

The findings can be utilized to explore the dynamics of pulse evolution 

in ultrahigh bit rate transmission in order to investigate this issue for a wide 

range of beginning pulse conditions. These findings are significant because 

they demonstrate that optical solitons can be accurately characterized by the 

behavior of a particular sort, even when perturbational elements are present. 

This is a phenomenon that has been observed in the past.  

The purpose of these hypothetical projections is to provide a practical 

illustration of power-law based long distance, fiber optic communication at 

a rate of 40 gigabits per second over oceanic and continental distances. 

Consequently, the possibility that this innovation can be utilized in the field 

of communication technology may have a significant influence on the 

intensification of information. 
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