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ABSTRACT 

Various recent researches in bioinformatics demonstrated that 

clustering is a very efficient technique for sequence analysis. Spectral 

clustering is particularly efficient for highly divergent sequences1 and 

GMMs (Gaussian Mixture Models) are often able to cluster overlapping 

groups if given an adequately designed embedding. The current study used 

spectral embedding and Mixture Models for clustering potentially divergent 

biological sequences. The research approach resulted in a pipeline 

consisting of the following four steps. The first step consists of aligning the 

biological sequences. The pairwise affinity of the sequences is computed in 

the second step. Then the Laplacian Eigenmap embedding of the data is 

performed in the third step. Finally, the last step consists of a GMM-based 

clustering. Improving the quality of the generated clustering and the 

performance of this approach is directly related to the enhancement of each 

one of these four steps. The main contribution is proposing four GMM-

based algorithms for automatically selecting the optimal number of clusters 

and optimizing the clustering quality. A clustering quality assessment 

method, based on phylogenetic trees, is also proposed. Moreover, a 

performance study and analysis have been conducted while testing different 

clustering methods and GMM implementations. Experimental results 

demonstrated the superiority of using the BIC (Bayesian Information 

Criterion) for selecting the optimal GMM configuration. Significant 

processing speed improvements were also recorded for the implementation 

of the proposed algorithms. 

 
*Corresponding Author: johny.matar@ul.edu.lb  
1Having an intra-cluster similarity of 85% or lower [1]. 
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1. INTRODUCTION 

In the last two decades, the cost of sequencing a genome has decreased 

at a dramatic rate from 100 million dollars at the end of the 20th century to 

less than $1000 in the present times. This led to an explosion in the number 

of sequenced genomes and proteins. The large number of newly discovered 

biological sequences allowed the researchers in bioinformatics to study the 

relationships between the different sequenced species and to reconstruct 

their phylogenetic tree and ancestors. Many tools were developed to analyze 

the sequenced data. In particular, clustering packages were implemented to 

compare a set of sequences and regroup them into clusters according to their 

similarity. However, it is worth emphasizing that mutations can lead to 

similarities lower than 85% between sequences belonging to the same 

cluster [1]. 

The clustering of biological sequences is currently playing a paramount 

role in linking the huge number of newly discovered sequences to their 

variants and ancestors. However, current methods can only partially tackle 

this problem due to its scale and complexity. Several research works [2–4] 

have concluded that spectral clustering may represent an efficient tool for 

biological sequence clustering and, to our knowledge, only one of them has 

been publicly released [4]. In [4], the relevance of using GMMs (Gaussian 

Mixture Models) for unsupervised clustering of biological sequences was 

demonstrated through various numerical validation experiments. 

Contrarily, to most of the widely used clustering tools, GMM-based 

approaches require no user intervention and are well adapted to clustering 

divergent sequences as well. The targeted sequences could be mutations 

from a same gene (or genome), or even cross-species divergent but 

homologous sequences or fragments. 

The difficulty in studying newly discovered biological sequences lies 

primarily in their unknown degree of divergence when compared to each 

other or to other known sequences. Therefore, neither the accurate selection 

of the similarity threshold nor the selection of the clusters’ centroids is 

trivial for a traditional clustering tool. In such cases, traditional tools, 

requiring a user-defined similarity threshold, cannot be considered reliable. 
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On the other hand, GMM-based alternatives which do not require any a 

priori knowledge of an arbitrary similarity threshold, seem to be well 

adapted to efficiently tackle such problems. GMM showed good 

classification performances in several applications where clusters overlap, 

such as biological sequence clustering [4], age and gender recognition [5], 

real-time segmentation of HD video [6], and others. GMMs and other 

similarly finite mixture models [7] are usually calibrated using an 

Expectation Maximum (EM) algorithm [8–10] or one of its accelerations 

[11–13]. However, the use of EM-type algorithms requires expertise due to 

the well-known drawbacks [14, 15] and computational issues for large and 

high dimensional data [16]. Therefore, users should rely on packages that 

carefully address these subtle technical issues. 

The tool presented in [4] implements the following operations for 

clustering a set of biological sequences. These include, (i) sequences’ 

alignment, (ii) pairwise affinity computation of the sequences, (iii) 

Laplacian eigenmap embedding of the data, and (iv) GMM-based 

clustering. The quality of the generated clustering and the performance of 

this approach are often greatly impacted by the tool or the algorithm used 

at each stage. These tools or algorithms affect the alignment quality, the 

pairwise similarity computation between sequences, and the GMM 

performance. The current study investigates how the use of different 

techniques and their implementations at the clustering stage contribute to 

accelerating the clustering or improving its quality. Our contributions 

include suggesting a significantly faster substitute to the GMM that was 

used in [4], while proposing new GMM-based algorithms for enhancing the 

quality of the clustering. The experimented features, methods, and 

algorithms were integrated into a clustering package published on a public 

online repository2. 

The remainder of this article is organized as follows. In Section 2, the 

clustering of biological sequences is introduced and different clustering 

techniques are detailed. The sequences’ alignment, the affinity computation 

methods, and some existing GMM implementations are also presented in 

this section. In Section 3, four approaches to automatically choose the most 

relevant clustering based on given criteria are presented. The experimental 

protocol is detailed in Section 4. The results of the experiments are 

 
2 https://github.com/johnymatar/SpCLUST-V2/tree/master/src/code 
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presented and discussed in Section 5. Finally, Section 6 recapitulates the 

findings and Sub Section 6.1 presents some future prospects for the current 

project. 

2. STATE-OF-THE-ART 

2.1. Clustering Biological Sequences 

Several researches were conducted to efficiently cluster biological 

sequences. However, most of the proposed approaches are highly sensitive 

to user-defined parameters, that is the similarity or identity threshold. 

Moreover, they are designed to quickly cluster highly similar sequences. 

Indeed, the lowest possible similarity threshold is usually larger than 75% 

(for example, in tools, such as CD-HIT-EST) and most of the experiments 

conducted in the studies introducing these tools, only consider similarities 

larger than 85%. These tools are not able to accurately detect communities 

among potentially divergent sequences. To sum up, existing clustering 

packages can be broadly divided into two categories based on their 

objectives, which are as follows: 

• Packages and tools suitable for fast clustering of highly similar 

sequences but requiring a user-defined threshold. 

• Intervention-free tools that can even cluster potentially divergent 

sequences. 

The most popular algorithms and tools from both categories are 

presented in the next subsections.  

2.1.1. Fast Clustering of Highly Similar Sequences. High-speed 

clustering of highly similar sequences mostly relies on greedy, hierarchical, 

Dirichlet Process means (DP-means) [17], or mean shift [18] algorithms. It 

requires some user-defined parameters, such as a similarity or identity 

threshold and, optionally, the centroids of the clusters. The sequences are 

then grouped into clusters based on the provided parameters. Following this 

scheme, several tools are publicly available, such as CD-HIT [19], 

UCLUST [20], DNACLUST [21], HPC-CLUST [22], and DACE [23]. 

Most of these tools group the sequences around the clusters’ representatives 

or centroids based on a user-provided similarity threshold, but they differ in 

the way they choose these representatives. 

CD-HIT and DNACLUST order the sequences according to their 

length. Each sequence is either added to a previously created cluster, if its 
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similarity with a previously chosen centroid does not exceed the user-

provided threshold or it is considered as a new centroid for a new cluster. 

In contrast, UCLUST performs the classification without prior sorting of 

the input sequences, thus, the input order might impact the resulting 

clustering. 

In order to achieve better clustering speed, various approaches were 

adopted by the aforementioned tools. CD-HIT avoids the costly pairwise 

sequences’ alignment by using word counting for computing similarities. 

HPC-CLUST takes an already aligned set of sequences as input and it uses 

a distributed hierarchical algorithm that clusters subsets of the sequences 

and finally merges the closest clusters. DACE uses parallel computation to 

rapidly cluster large datasets. After an iterative partitioning of the input 

sequences into non-intersecting subsets, DACE uses the DP-means 

algorithm to cluster the sequences in parallel. 

The type of supported input sequences represents another distinction 

between the clustering tools. The CD-HIT package offers CD-HIT-EST for 

nucleotide sequences clustering and CD-HIT-PROTEIN for protein 

sequences clustering, while UCLUST and DACE can cluster both types of 

sequences. Conversely, DNACLUST and HPC-CLUST are not designed to 

handle protein sequences. 

2.1.2. Intervention-free Clustering of Potentially Divergent 

Sequences. The mutations in biological sequences occur in variable and 

unpredictable degrees which eventually turn the choice of the identity or 

similarity threshold into a challenging dilemma when clustering a set of 

sequences without a priori knowledge. Only a few recent studies tackled 

this problem and were successful in clustering potentially divergent 

sequences [4, 24]. Their solutions relied on mixture models and performed 

the clustering based on a probability distribution [25]. Contrary to the tools 

targeting highly similar sequences mentioned above, these packages do not 

need any user intervention, especially for the choice of the identity or 

similarity threshold. 

The authors in [24] proposed an original Python-based clustering 

package that uses an unsupervised learning approach, namely the Gaussian 

Mixture Model clustering applied after a Laplacian Eigenmap 

dimensionality reduction. It is noted that the Gaussian Mixture Model [26] 

is a probabilistic model for detecting sub-communities within a certain 
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community. The objective of this package is accurate clustering even for 

divergent sequences. The number of clusters is determined using statistical 

criteria, such as the Bayesian information criterion (BIC) [27]. The use of 

this statistical criterion leads to an autonomous process that does not rely on 

neither user-chosen clusters' centroids nor identity thresholds. This 

clustering package consists of four main stages. 

1. Sequence Alignment: This stage relies on the third-party module 

MUSCLE [28] to align the sequences. 

2. Similarity Matrix Calculation: An NxN square matrix, where N is the 

number of input sequences and each (i,j) element is the pairwise 

similarity index between sequences i and j. Similarity indices are 

derived from the pairwise distances between sequences that are 

computed with the EDNAFULL scoring matrix. 

3. Dimensionality Reduction: The Laplacian Eigenmap of a transformed 

version of the similarity matrix, known as the affinity matrix, is 

computed, leading to a size reduction of the matrix. 

4. Sequence Clustering: In this last stage, the Gaussian Mixture Model is 

applied to the results obtained in Step 3 to cluster the sequences. 

This model exhibited competitive results, especially in the case of 

highly divergent sequences. However, its speed significantly degraded 

when applied to large datasets. 

Since the similarity matrix calculation stage represents an intensive 

computation step of the order of O((N2-N)/2), the authors in [4] proposed an 

optimized hybrid C++/Python package where the second stage is 

implemented in C++ and computed in parallel to reduce its execution time. 

Based on the experimental results published in [4], the hybrid package 

delivers up to 126X speed-up when compared to the original package. 

Additionally, its capabilities were extended to cluster protein sequences by 

introducing two additional scoring matrices, namely BLOSUM62 and 

PAM250 [29]. 

Despite the advantageous intervention-free property of the latter 

algorithm and its performance improvement, it is still not expected to scale 

well for large datasets. This is due to the alignment required in its first stage. 

Conversely, further accuracy and speed improvements remain possible by 



Matar et al. 

65 
School of Sciences 

Volume 8 Issue 3, 2024 

enhancing each one of its stages. In the next three subsections, the possible 

improvements for each stage are discussed. 

2.2.  Sequences' Alignment and Similarity Computation 

One of the fundamental techniques for visualizing the dissimilarities 

and computing the distance between a pair of sequences is their alignment. 

This technique discloses the mutations, insertions, and deletions phenomena 

that differentiate the sequences. Therefore, many efficient algorithms were 

proposed for aligning the sequences and computing the pairwise distances, 

such as Needleman-Wunsch, Sankoff, and Sellers [30]. MUSCLE [28], 

MAFFT [31], DECIPHER [32], and CLUSTALX [33] are a few examples 

of alignment tools. The alignment speed and accuracy represent two major 

differentiating aspects between these tools that might influence the 

clustering quality. Therefore, it is crucial to investigate the effects of the 

alignment on the spectral clustering technique in order to enhance the 

quality of the produced clustering. 

2.3. Affinity Matrix Computation 

Following the alignment, the pairwise distance is computed using a 

string metric, such as the Needleman-Wunsch distance. Then, the similarity 

is inferred from the pairwise distance. For instance, in [21], the similarity is 

equal to: 

1 −
 distance 

 length of the shorter sequence 
 

The distance choice and the similarity definition vary from package to 

package, which might produce different clusterings, even when considering 

the same similarity threshold. 

In [24] and [4], the affinity matrix was computed as a Random Walk 

Normalized Laplacian and it proved to be relevant for the clustering of 

biological sequences. However, other interesting matrices have been 

proposed for spectral clustering [34–37], such as the Non-normalized 

Laplacian, Modularity [35], and the Bethe Hessian (Deformed Laplacian) 

[38]. These matrices are defined as follows: 

• Non-normalized Laplacian: 

𝐿 = 𝐷 − 𝐴 
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where 𝐴 is the adjacency matrix between the sequences and 𝐷 is its 

diagonal matrix of degrees. 

• Random Walk Normalized Laplacian: 

𝐿𝑟𝑤 = 𝐷−1𝐿 

where 𝐷 is the degrees matrix of the adjacency matrix and 𝐿 is the Non-

normalized Laplacian matrix. The Laplacian matrix is symmetric and 

positive semidefinite. 

• Modularity: 

𝑀 =
1

𝐾
(𝐴 −

1

𝐾
𝑘𝑘𝑇) 

where 𝐴 is the adjacency matrix, 𝑘 is the degrees vector of 𝐴, and 𝐾 is 

the total degree of 𝐴. High values for this quality function reveal the 

possible existence of strong communities. 

• Bethe Hessian: 

𝐻𝑟 = (𝑟2 − 1)𝐼 + 𝐷 − 𝑟𝐴 

where 𝐼 is the identity matrix, 𝐷 is the degrees matrix of the adjacency 

matrix 𝐴, and the constant 𝑟 is the square root of the average degree of the 

graph, as suggested in [36]. 

2.4. The GMM Implementations 

The last stage of this spectral clustering tool uses the GMM. Various 

implementations of this mixture model are publicly available, such as the 

GaussianMixture() [39] and spectral_embedding() [40] functions from 

Python's scikit-learn library [41]. Moreover, there are also free and 

standalone3 C++ implementations of the GMM, such as the paperrune [42] 

and our implementation4[43]. The GMMs implemented with a lower-level 

programming language (C++ vs Python) are expected to compute faster and 

enhance the speed and the scalability of this heavy-computational approach. 

Most of the implementations of GMM take an 𝑚 × 𝑛 features matrix5 

as input, where 𝑚 is the number of features and 𝑛 is the number of samples. 

 
3which uses standard libraries and does not require any additional software to work. 
4whose methods are inspired from Python’s GaussianMixture(). 
5Formed by the most significant Eigenvectors computed from the affinity matrix. 
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Conversely, spectral_embedding() [40] merges the dimensionality 

reduction and the sequence clustering phases and takes an 𝑛 × 𝑛 pairwise 

similarity matrix as input, where 𝑛 is the number of samples. The 

(normalized or not) Laplacian matrix computation is embedded in the 

spectral_embedding() function. The number of resulting clusters can be 

specified in the parameter described as dimension of the projection 

subspace. By default, this parameter is set to 8. 

The above-mentioned libraries do not exactly apply the same algorithms 

and, therefore, they do not give identical results. Moreover, these 

implementations do not offer the same features. For instance, some of them 

include the computation of some information criteria that reflect the quality 

of GMM [44], such as the Log-Likelihood implemented in [42], or the 

Bayesian Information Criterion (BIC) implemented in [43] and [39]. The 

BIC is defined as follows: 

𝐵𝐼𝐶 = ln⁡(𝑛)𝑘 − 2ln⁡(𝐿) 

where 𝑛 is the data size, 𝑘 is the number of features for the model, and 

𝐿 is its likelihood. The spectral_embedding() function does not provide any 

method to compute statistical indices of quality. These statistical indexes 

can be exploited to improve the produced clustering. 

These libraries could also take a seed as input that affects the initial 

random distribution and might possibly affect the resulting clustering. If not 

provided, this seed is randomly generated. Since, the C++ pseudorandom 

number generator, which is used to generate the random seeds in the GMM 

implementations, is not cross-platform consistent6 , therefore a custom 

pseudorandom generator was introduced in [43] in order to preserve the 

consistency of the results. It is based on Microsoft's Rand formula: 

(𝑎 ∗ seed + 𝑐)%𝑚 where 𝑎 = 214013, 𝑐 = 2531011, and 𝑚 = 231 

If no seed is provided by the user, the seed is equal by default to 0. In 

the next section, the main contributions of this work are presented. 

3. APPROACHES AND METHODS 

3.1. Four Approaches to Fine-tuning the GMM 

 
6The rand() function is not unified in C++ and, when used under different operating 

systems, it might generate different output numbers for a same input seed. 
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Given the promising advantages of the spectral clustering in the 

aforementioned tools [4, 24], the study’s approach is to exploit the 

parameters of the state-of-the-art GMM implementations, to fine-tune the 

produced clusterings and improve their quality. Four approaches to 

automatically select the most relevant clustering based on given criteria are 

presented in this section. The first algorithm consists of maximizing the 

GMM likelihood. This is achieved by performing several iterations as 

illustrated in Figure 1.  

 
Figure 1. Choosing the Best Clustering Based on Maximum Likelihood 

The given number of clusters is modified at each iteration and it ranges 

between 1 and the number of sequences. The second approach is similar to 

the previous one. It simply substitutes the maximum likelihood with the 

lowest BIC. It is worth noting that additional implementations using the 

AIC (Akaike Information Criterion) and ICL (Integrated Complete 

Likelihood) were omitted because they resulted in the same output when 

compared to the implementation using BIC. 

The third approach consists of executing the previous algorithm for a 

user-defined number of times, with a different random seed at each iteration. 

It is important to recall that the random seed impacts the initial random 

distribution of the centroids, leading to a potentially different clustering for 

each seed. The clustering that scores the maximum number of occurrences 

is selected. The counting procedure for the occurrences of each clustering 
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distinguishes between the same clustering with different labeling and 

different clustering. Figure 2 illustrates this method.  

 
Figure 2. Choosing the Best Clustering Based on the Occurrence Frequency 

The computation time of this approach, compared to the previous one, 

is proportional to the chosen number of iterations. Moreover, this algorithm 

requires a larger amount of memory, since it saves the labels vector for the 

resulting clustering at each iteration. Therefore, it requires a substantial 

amount of memory if the input dataset and the chosen number of iterations 

are both large. 

The fourth algorithm shares some aspects of similarity with the third 

one. It successively clusters the sequences using different seeds, but just 

keeps in memory the designated best clustering (for example, the one that 

scores the best BIC). Moreover, in order to reduce the execution time of this 

algorithm, an additional parameter, called noImp, is defined to count the 

number of iterations made without detecting any improvement and stop the 

iterative process before reaching the chosen number of iterations (nb 

iterations). For example, the iterative process is terminated if no BIC 

improvement is detected after a user-defined maxNoImp number of 

consecutive iterations (noImp=maxNoImp).  
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Figure 3. Choosing the Best Clustering Based on the Best Reached BIC 

Figure 3 illustrates this algorithm that requires less computation time 

than the previous one in the case where the execution stopping condition is 

fulfilled prior to reaching the chosen number of iterations. The detailed 

inputs and parameters, for the implementations that were used in these four 

algorithms, can be found in Tables 4 and 5 in Appendix. To evaluate the 

four methods on real datasets, where a clustering ground truth is unknown, 

an additional method for selecting a reference clustering is proposed in the 

next subsection. 

3.2. Generating a Reference Clustering 

When the properties of a certain set of sequences are unknown, 

establishing the evolutionary relationship between these sequences is a 

challenging step. This relationship can be represented by a phylogenetic tree 

that helps in individually assessing each clustering of the dataset. Since it is 

possible in each clustering to identify valid subclusters, it is not fair to assess 

all the clusterings by using a single unified reference per dataset. Therefore, 

a custom algorithm is defined for assigning a reference for each produced 

clustering. Primarily, this algorithm aims to define a reference clustering, 

that is based on an existing clustering and in which a certain acceptable 

cluster is supposed to fully cover a sub-branch in the phylogenetic tree. The 

algorithm receives as inputs, a certain clustering along with  the 
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phylogenetic tree of the clustered sequences. It produces a reference 

clustering based on the input. This algorithm consists of the following steps. 

1. From the given clustering, the elements of the phylogenetic tree are 

assigned labels as illustrated in Figure 4. The labels indicate to which 

cluster each sequence belongs in the given clustering. For example, in 

Figure 4, the clustering produced four clusters where clusters 1 to 4 are 

represented by the labels *, #, -, and + respectively. 

2. The depth of the phylogenetic tree (TD) is computed and a counter is 

initialized to 𝑇𝐷 − 1. At each iteration, it is decremented by 1 till it 

reaches 0. 

3. On each iteration, for each inner node that has a depth equal to the 

counter, the following cases are possible. 

a) If all the first-level descendants of the node are leaves, a cluster 

consisting of such leaves is formed. The newly formed cluster is 

labeled according to the dominant label, the label that occurs the 

most among the cluster elements. If no dominant label was found, 

that is two labels have the same high number of occurrences, the 

undefined label is attributed to the cluster. 

b) If the first-level descendants of the node include a leaf and at least 

one already formed cluster, the leaf is added to the cluster that is the 

closest to it. The cluster is relabeled according to the dominant label 

between its elements. 

c) If the first-level descendants of the node form at least two clusters, 

the sub-tree under this node is processed as follows:  

I. any couple of adjacent clusters having the same label are 

merged,  

II. if a cluster is labeled as "undefined", it is merged with an 

adjacent cluster and the resulting cluster is relabeled according 

to the new dominant label between its elements,  

III. if two adjacent clusters have different labels, they are not 

modified, and  

IV. each small cluster left (having less than 4 elements), if any, is 

merged with its surrounding larger clusters, in case these 

surrounding clusters have the same label. 
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4. After the final iteration, if there are still clusters with undefined labels, 

they are assigned new labels. If two or more clusters have the same 

label, they are also assigned new labels. 

Figures 4 and 5 illustrate how a reference clustering is generated 

according to the algorithm described above. In the first sub-figure of Figure 

4, the elements of the phylogenetic tree are assigned labels (∗, #, − or +), 

that indicate to which cluster each sequence belongs in the given clustering. 

The depth of each node in the tree is also displayed. In this example, the 

depth of the tree (TD) is equal to 6. After this initialization step, the iterative 

process starts with the inner nodes at depth = TD − 1. The second subfigure 

of Figure 4 illustrates the first iteration of the algorithm. In this example, 

there is only one inner node with a depth = 5. It contains two 

leaves/sequences (Elt 11 and Elt 12). Both sequences belong to the third 

cluster. Therefore, a cluster containing both sequences is formed and 

labeled as "Cluster 3" in the reference clustering. This new cluster is 

represented by a red rectangle in Figure 4 whereas Figure 5 illustrates the 

remaining iterations.  

 

Figure 4. Initial State and First Iteration 
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Figure 5. Clusters Identification and Final State 

At the second iteration with inner nodes of depth = 4, three new clusters 

are created. The first one consists of Elt 1 and Elt 2 and is labeled as "Cluster 

1" because both of its sequences belong to the first cluster. The second 

cluster is created in the same way as the previous one. The third new cluster 

consists of Elt 14 and Elt 15 which belong to different clusters and thus, 

there is no dominant label in this cluster. For this reason, the third identified 

cluster is labeled as "Undefined". It can also be noticed that Elt 3 was added 

to "Cluster 3" and the label of this cluster is preserved since the dominant 

label among its elements did not change. Figure 5 displays the next three 

iterations and then the iterative process stops at the root node (depth = 0). 
In this scenario, the resulting reference clustering consists of three clusters. 

The first two are homogeneous but the third one contains sequences 

belonging to three different clusters in the given clustering. However, six of 

its nine sequences belong to the same cluster and thus, their dominant label 

is assigned to this cluster. 
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4. EXPERIMENTAL PROTOCOL 

4.1. Datasets 

Three real biological sequence datasets have been considered to 

evaluate the proposed approaches in the spectral clustering pipeline. They 

are as follows: 

• A first set of 78 complete genome sequences, belonging to HIV-1 type 

B virus samples identified in Cyprus and downloaded from the Los 

Alamos National Laboratory's website7. 

• A second set of 100 genomic sequences, belonging to the NADH 

dehydrogenase 3 (ND3) mitochondrial gene, from a collection of 

Platyhelminthes and Nematoda species. 

• A third set of 24 different nucleoprotein (NP) sequences, belonging to 

the strain A/H1N1 of the Influenza virus and downloaded from NCBI's 

Influenza Virus database8. 

Table 1 shows a brief description of the first three datasets which 

contain each a single type of sequences. The statistics on the sequences were 

retrieved from the output of MUSCLE [28]. The pairwise similarity, 

between the sequences of each dataset, was computed using MatGAT [45] 

which calculates the similarity after using the Myers and Miller global 

alignment algorithm [46]. 

Table 1. Statistical Description of the Real Datasets 

Datasets 
Seqs 

Count 

Max 

Length 

Avg 

Length 

Min 

Similarity % 

Max 

Similarity % 

Avg 

Similarity % 

HIV 78 8272 8167 86 99.4 89.6 

NADH 100 369 341 46.2 99.7 62.8 

Influenza 24 498 498 97.4 99.8 98.8 

Since a clustering ground truth is not available for these three datasets, 

a phylogenetic tree, showing the evolutionary relationship among the 

sequences of each set, is used for producing individual reference clusterings 

later, based on the proposed method in Section 3. Indeed, there are many 

tools that, given an aligned set of sequences, can build the phylogenetic tree 

 
7https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html 
8https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi 
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of these sequences. In this work, the tree for each set of data was built 

according to the following procedure. 

• MUSCLE [28] computed the sequences' alignment. 

• PhyML 3.0 [47] generated the phylogenetic tree. The automatic model 

selection, based on the likelihood criteria, was selected. This selection, 

provided by SMS [48], was set to use the BIC (Bayesian Information 

Criterion). 

• The resulting phylogenetic tree was visualized using PRESTO 

(Phylogenetic tReE viSualisaTiOn9). 

All these assembled datasets are publically hosted on an online 

repository10. 

4.2. Experiments 

The current research’s applied set of experiments aims to compare the 

GMM implementations presented in Section 2 and the GMM-based 

algorithms proposed in Section 3. The three first datasets were used for this 

set of experiments. In this evaluation, after the alignment stage using 

MUSCLE, the similarity matrices and the Eigenmaps are calculated using 

the same algorithms used in SpCLUST. The clustering is then computed 

using one of the following methods. 

• The GaussianMixture() function, from the scikit-learn library that is 

embedded in SpCLUST. 

• The algorithm introduced in Figure 1, which uses the paperrune’s C++ 

GMM implementation and labeled "MaxLikelihood". 

• The spectral_embedding() function using the Normalized Laplacian 

matrix also from the scikit-learn library. 

• Each one of the three remaining proposed algorithms, that were 

proposed and detailed in Section 3, and that use the C++ GMM 

implementation proposed by this research. The method described in 

Figure 1, where the maximum likelihood is replaced by the best BIC, is 

labeled "Fast". The one illustrated in Figure 2 is called "MostFreq" and 

it executes 500 iterations. Finally, the last algorithm outlined in Figure 

 
9http://www.atgc-montpellier.fr/presto/ 
10https://github.com/johnymatar/SpCLUST-V2/tree/master/src/datasets 
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3 is named "BestBIC". It executes a maximum of 100 iterations but 

stops earlier if no improvement is detected after 70 consecutive 

iterations. 

As discussed earlier, the computation of the Laplacian Eigenmap is 

embedded in the spectral_embedding() function. Conversely, for the 

GaussianMixture() function, the Eigenmap is computed using functions 

from the NumPy linear algebra library. For the remaining C++ 

implementations of the GMM, an implementation11 of Jacobi's Eigen 

solving algorithm is used. The used datasets will be also clustered using 

UCLUST and CD-HIT, which are the best competitors to SpCLUST. Since 

the spectral_embedding() function does not include any method that 

facilitates the choice of the adequate number of clusters, this number will 

be set similarly to the number of clusters produced by SpCLUST. 

5. EXPERIMENTAL RESULTS 

On the basis of study’s set of experiments, the presented GMM 

implementations in Section 2 and the proposed algorithms detailed in 

Section 3 are evaluated. The datasets are also clustered using UCLUST and 

CD-HIT for comparison. In order to cover a wide range of similarities, the 

identity thresholds chosen for UCLUST and CD-HIT ranged between 0.5 

and 0.99, with an incrementation step of 0.1 in the [0.5,0.8[ interval and an 

incrementation step of 0.01 in the [0.8,0.99[ interval. For any identity 

threshold lower than 0.8, CD-HIT failed to cluster the data. For the sake of 

comparison, only the produced clusterings having a number of clusters 

close to the ones from SpCLUST were considered. 

To evaluate the quality of each clustering, the degree of similarity 

between the clustering and the reference must be computed using a relevant 

metric. Many clustering quality metrics are available in the literature [49, 

50]. In this work, the Adjusted Rand Index (ARI) was selected to compute 

the degree of similarity because it only requires the labels and it is able to 

compare clusterings with different number of clusters. This index computes 

a similarity measure between two clusterings by considering all pairs of 

samples and counting pairs that are assigned in the same or different 

clusters. It ranges from 0 for two completely different clusterings to 1 for 

two identical ones. 

 
11https://github.com/edwardlfh/testv2/tree/master/jacobi 



Matar et al. 

77 
School of Sciences 

Volume 8 Issue 3, 2024 

Table 2 displays, for each dataset and each clustering returned from the 

considered methods, the number of clusters in both generated and reference 

clusterings and the ARI between them. Note that ARI is omitted in the 

following three special cases. 

1. When a clustering consists of only one cluster. 

2. When the number of clusters, formed of singletons, is greater than half 

of the number of sequences (most of the sequences are clustered as one 

sequence per cluster). 

3. When the labels of adjacent leaves on the phylogenetic tree are very 

heterogeneous and the resulting clustering does not reflect any correct 

grouping on the tree. 

The clusterings, matching the first special case, will be discussed later 

according to the properties of the involved dataset. Conversely, those 

matching the second case are not significant because the sequences 

belonging to the same dataset are a priori known to be related. 

Table 2. External Clustering Validation Using the Adjusted Rand Index 

 

HIV NADH Influenza 

Nb. Clusters 
ARI 

Nb. Clusters 
ARI 

Nb. Clusters 
ARI 

ref. gen. ref. gen. ref. gen. 

SpCLUST 4 5 0.777 5 4 0.957 4 5 0.932 

Paperrune's GMM - MaxLikelihood 6 6 0.236 11 8 0.838 3 3 0.847 

sklearn.manifold.spectral_embedding () 7 3 0.119 7 4 0.694 4 3 0.653 

Fast 3 3 0.801 4 2 0.804 - 1 - 

MostFreq 2 2 0.941 4 2 0.841 - 1 - 

BestBIC 3 3 0.828 4 3 0.839 2 2 1 

UCLUST (id 0.5 ) - 78 - 5 6 0.374 - 1 - 

UCLUST (id 0.88 ) - 78 - - 83 - - 1 - 

UCLUST (id 0.89 − 0.94 ) - 78 - - 86 − 95 - 2 2 1 

UCLUST (id 0.95 − 0.96 ) - 78 - - 97 - 3 3 1 

CD-HIT (id 0.91) - 66 - - 90  - 1 - 

CD-HIT (id 0.92) - 69 - - 92 - 1 2 - 

CD-HIT (id 0.93-94) - 71 − 72 - - 94-95 - 2 2 1 

CD-HIT (id 0.95 − 0.97 ) - 73 − 75 - - 97 − 98 - 3 3 1 

The MostFreq algorithm scored the best ARI in the case of clustering 

the HIV set of sequences. The BestBIC version obtained the second rank, 

followed by the Fast algorithm. As expected, when the number of clusters 

in the reference clustering and the generated clustering match, the latter 

obtains a good score. On the other hand, failing to produce the same number 
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of clusters as the reference clustering, might penalize the score of the 

generated clustering.  

For example, SpCLUST produced one more cluster than the reference 

clustering, and spectral_embedding() produced three clusters less than the 

reference because in the reference clustering non-adjacent clusters on the 

tree were not merged. Finally, UCLUST and CD-HIT both failed to cluster 

this set, although its sequences show a minimum similarity of 86% (cf. 

Table 1). Indeed, CD-HIT produced 5 clusters when the similarity 

parameter was set to 0.8, but these clusters do not reflect any meaningful 

grouping and scored the lowest ARI. 

SpCLUST scored the highest ARI values for the NADH dataset, 

followed by our GMM implementation with the MostFreq and BestBIC 

approaches respectively. The MostFreq and Fast approaches produced two 

highly similar clusterings as indicated by their close ARI scores and the 

same number of clusters. The MaxLikelihood approach detected the largest 

number of accurate clusters, while MostFreq produced the most accurate 

clustering among our GMM implementations. As for the HIV set, UCLUST 

and CD-HIT both failed to cluster this divergent dataset. Although, 

UCLUST returned a reasonable number of 6 clusters when the identity 

parameter was set to 0.5, this clustering earned a very low ARI when 

compared to the other approaches. 

The "Fast" method is similar to the one used in SpCLUST, except for 

the K-Means implementation and the random number generator, which 

leads to small differences in the results. For the NADH dataset, the seed 

used in SpCLUST resulted in a better ARI score than BestBIC even though 

the opposite was expected. This case might occur if the seed of the Fast 

algorithm is not part of the ones considered in the BestBIC. This situation 

can be corrected by increasing the set of possible seeds in the BestBIC 

approach (just 100 different seeds are considered by default). Indeed, three 

additional experiments using the BestBIC algorithm and involving seeds 

from outside the scope of the initial experiment, scored an ARI of 0.957 

similarly to SpCLUST. 

In the Influenza nucleoprotein dataset where the sequences are highly 

similar, BestBIC scored a perfect ARI similarly to UCLUST and CD-HIT. 

UCLUST and CDHIT produced equally accurate clusterings, consisting of 

3 clusters when the range of identity thresholds was set to 0.95 or higher. 
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However, the BestBIC approach produced a more balanced clustering 

consisting of 2 clusters, which is similar to the one produced by UCLUST 

and CD-HIT for a range of thresholds lower than 0.95. Fast and MostFreq, 

for their parts, produced only a single cluster. This result is not absurd 

because the sequences in this dataset are considered very similar for a tool 

that targets clustering potentially divergent datasets. Applying UCLUST 

and CD-HIT on this dataset, with identities inferior to 0.88 and 0.91 

respectively, a single cluster was also produced. 

As shown in the previous experiments, traditional tools failed to cluster 

divergent sequences, while GMM-based approaches have been successful. 

For instance, even though CD-HIT produced a reasonable number of 

clusters for the HIV dataset (5 with an identity threshold of 0.8 ), each 

cluster seems to contain random sequences with no logical grouping and 

thus, a reference clustering could not be deduced to calculate the ARI. 

Conversely, despite the fact that UCLUST and CD-HIT succeeded in 

clustering very similar sequences, similar to that of the Influenza 

nucleoprotein set, BestBIC also produced a good quality clustering. 

Therefore, GMM approaches can be considered in most cases regardless of 

the dataset's degree of similarity. 

In terms of current research, the GMM implementation with the 

BestBIC algorithm obtained the highest average Adjusted Rand Index for 

the clustering of the three considered datasets, equal to 0.889. It was 

followed by SpCLUST (using GaussianMixture() from Python's scikit-

learn library) and paperrune's GMM implementation with the 

MaxLikelihood algorithm that scored an average ARI equal to 0.888 and 

0.640 respectively. Therefore, on average, the BestBIC approach 

outperforms the other evaluated tools, in terms of clustering quality, on the 

chosen datasets. It also competes with the traditional tools when applied on 

highly similar sequences. For all these reasons, this algorithm was adopted 

in the next sets of experiments. 

After evaluating the quality of the produced clusterings with the three 

new approaches, a performance comparison between them and SpCLUST 

was conducted. The tests were applied to the datasets introduced in this 

article and the dataset of 1049 sequences used in [4] to profile SpCLUST. 

This experiment was run three times over a machine equipped with an i7-

6700 3.4GHz processor. Table 3 shows the best recorded execution times 
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(among the three runs) for clustering the four datasets with the four GMM 

implementations, which include the computation time of the Eigenmap.  

Table 3. Clustering Time Using the Different GMM Implementations and 

Algorithms 

 GaussianMixture () Fast MostFreq BestBIC 

HIV 2,025 ms < 1 ms 4,039 ms 1,005 ms 
NADH 5,046 ms 1 ms 6,063 ms 1,010 ms 

Influenza 1,008 ms < 1 ms 1,013 ms 3 ms 
1049 Sequences 2,280,816 ms 53,531 ms 82,837 ms 60,612 ms 

The Fast approach achieved up to 42x speedup when compared to the 

GaussianMixture() function from Python's scikit-learn library, on the large 

dataset of 1049 sequences. MostFreq and BestBIC also recorded impressive 

speedups with this dataset when compared to the GaussianMixture() 

function. Moreover, the Fast approach achieved higher speed-ups when 

applied on the three smaller datasets, while the the GaussianMixture() 

function performed closely to the most complex approach, that is the 

MostFreq. Therefore, it can be concluded that the proposed algorithms 

using our C++ GMM implementation outperform scikit-learn's GMM 

implementation. 

6. CONCLUSION 

The current research has proposed four GMM-based algorithms, for 

enhancing the accuracy and the performance of the intervention-free 

spectral clustering technique for both highly similar and divergent 

biological sequences. The implementation of these algorithms presents 

major performance enhancements when compared to SpCLUST. It relies on 

new C++ implementations of the Gaussian Mixture Model (GMM). The use 

of these GMM implementations greatly enhances the performance of this 

technique when compared with the previously used Python GMM 

implementation. A performance comparison for the clustering phase, 

between SpCLUST and the implementation of the new algorithms, shows a 

speed-up ranging from 27x to 42x.  

A comparative study, between the proposed algorithms, SpCLUST [4], 

UCLUST [20], and CD-HIT [19], was conducted over three different 

datasets of real genomic and protein sequences. In contrast with most of the 

state-of-the-art tools, the spectral clustering technique aims for an 

intervention-free and a reasonably fast clustering of datasets, regardless of 
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their level of similarity. Although this technique is not yet expected to 

compete with traditional tools speed-wise and scalability-wise, the 

experiments revealed that the proposed algorithms produce competitive 

clusterings for both highly similar and highly divergent datasets. The 

validation of the obtained results was based on a novel algorithm for 

selecting the reference clustering and on a carefully selected external 

clustering validation index, that is the Adjusted Rand Index. 

6.1.  Future Directions  

Possible future extensions to this work include exploiting more 

clustering techniques in the biological sequences clustering field, including 

deep learning ones. Further performance improvement is possible by 

implementing a parallel computation algorithm for the Eigenmap 

calculation and the GMM. Finally, defining a novel algorithm for 

calculating the pairwise similarities without the need for aligned sequences, 

can further enhance the speed and the scalability of the spectral clustering 

approach. 
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APPENDIX 

Models parameters 

Table 4. Detailed parameters used for Paperrune's GMM implementation. 

Number of mixture 

components 
Chosen iteratively based on the Maximized 

Likelihood 

Number of features 
The number of the chosen Eigenvectors based 

on the elbow method 
Covariance type Full 
Maximum number of EM 

iterations 
1000 

Table 5. Detailed Parameters used for our GMM Implementation 

Number of mixture 

components 
Chosen iteratively based on the best BIC 

Number of features 
The number of the chosen Eigenvectors 

based on the elbow method 
Covariance type Full 
Convergence threshold 0.01 
Covariance diagonal 

regularization 
0.001 

Maximum number of EM 

iterations 
1000 

Method for initializing the 

system 
K-Means*,** 

Random seed (Fast) 320 
Random seed (MostFreq 

and BestBIC) 
In between 1 and the number of chosen 

runs 
* The same initialization parameters were used for the K-Means method 

and the GMM, including the random seed. 

** The random numbers generator is customized to avoid any results 

inconsistencies under different operating systems. 
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