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ABSTRACT 

The need to synthesise metal nanoparticles has emerged in recent years due 

to their wide range of applications in various biological activities. This 

study reports a facile and rapid synthesis of biogenic lanthanum 

nanoparticles using Polygonum minus leaf extract as reducing agent. The 

reduction of La+3 to elemental La rapidly occured and was completed within 

10 minutes at room temperature. Moreover, the size of nanoparticles is higly 

sensitive to leaf extract concentration and pH. The synthesized 

nanoparticles were characterized using Fourier transform infra-red (FT-IR), 

energy dispersive X-ray diffraction (EDX), field emission scanning electron 

microscopy (FE-SEM), powder X-ray diffraction (PXRD), and UV-Visible 

(Uv-Vis) spectroscopy. The FTIR analysis of the La2O3 NPs confirmed the 

presence of characteristic La-O band at 614 cm-1. The band of La2O3 NPs 

was observed in the range of 300-400 nm in Uv-Vis spectrum, which further 

affirmed its successful synthesis. The EDAX analysis confirmed the 

presence of La in the produced nanoparticles. FESEM showed them as 

elongated rod-like structure with a uniform particle size of about 343 nm, 

determined by image J software and confirming their rod-like morphology. 

The virtual broad band in the XRD pattern revealed the lack of a periodic 

crystal structure, implying that the produced nanoparticles were entirely 

amorphous. The TG-DTA results showed their thermal stability. Further, 

the nanoparticles were subjected to antioxidant activity using DPPH assay. 

The results revealed that La2O3 NPs exhibited 28.3% inhibition. The 

synthesized nanoparticles open new frontiers for various other biological 

applications.  
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1.INTRODUCTION

In recent decades, green synthesis of metal oxide nanoparticles has been

studied broadly due to their high surface to volume ratio. Among the other 

metal oxide nanoparticles, the oxides of rare-earth elements show various 

fascinating characteristics, including a high number of active sites, 

significant structural stability, as well as superior optical, magnetic, and 

chemical capabilities [1]. The lanthanoids-based nanoparticles garner a lot 

of attention due to their wide range of uses in biomedicine, chemical 

industry, and agriculture and material sciences [2]. In addition, lanthanoids 

can also be applied in X-ray tomography imaging, near infrared (NIR) 

imaging, single-photon emission computed tomography (SPECT), 

biosensing, and antioxidant therapy [3].  

Numerous methodologies and protocols are available for the synthesis 

of La2O3 NPs, including solvothermal, hydrothermal, chemical 

precipitation, and green synthesis. Among these, green synthesis provides 

environmentally friendly products by removing or reducing the harmful 

substances [4]. Green nanotechnology scholars have studied the synthesis 

of nanoparticles thoroughly using various microorganisms, such as algae, 

fungi, bacteria, and viruses [5]. Moreover, metal oxide nanoparticles 

produced using plant extracts have useful practical applications [6]. The 

several silver oxide NPs produced using tridax procumbens and cluster 

bean extracts are used as biosensors, revealing their high antimicrobial 

activity [7]. Furthermore, platinum oxide NPs obtained from the holy basil 

extract are used for catalytic activity [8]. Moreover, lanthanum 

nanoparticles produced using multingia calabura leaves extract are used for 

antibacterial activity against Staphylococcus aureus and Escherichia coli. 

These nanoparticles exhibit good anticoagulant, thrombolytic, and 

hemolytic activities with antioxidant inhibition of 70.06% [6]. In addition, 

lanthanum oxide nanoparticles (La₂O₃ NPs) produced by Andrographis 

paniculata leaf extract show promising antibacterial activity against S. 

aureus and E. coli, as well as anti-inflammatory and anticancerous 

properties [9]. La₂O₃ NPs produced using Eucalyptus globulus leaf extracts 

are very useful to control various inflammations and diabetic diseases [10]. 

Similarly, green synthesis of La₂O₃ NPs with the help of different plant 

extracts (Physalis angulate, Datura metel, Muntingia calabura, 
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Andrographis paniculate, Vigna radiata, Trigonella and foenum-graecum) 

has remarkable applications in electronics, biomedicine, insulators, and 

biocatalysts [11].  

Based on the aforementioned studies, plant-mediated synthesis of La₂O₃ 

NPs has received very little consideration by scientific community, 

although there is a broad scope for La₂O₃ NPs using various plant extracts. 

Polygonum minus extract has been used for the synthesis of noble metal 

nanoparticles (e.g., Au, Ag), although its application to rare-earth 

compounds, such as La₂O₃ NPs, remains novel. In this regard, the 

preparation of La₂ O₃ NPs is a groundbreaking step toward making rare-

earth nanoparticles in an environmentally friendly way. This method makes 

use of the extract’s flavonoid, phenolic acid, and terpene content as dual-

purpose agents [12], allowing for the near-complete reduction of La2+ ions 

in 10 minutes at room temperature. This improves the efficiency of the 

synthesis by removing the need for energy-intensive procedures, such as 

high pressure or temperature. Additionally, by avoiding dangerous 

chemicals like NaBH₄ or organic solvents, reducing waste production, and 

producing biocompatible, low-cytotoxic NPs appropriate for biomedical 

applications—as demonstrated by smaller ecological footprints in similar 

green syntheses—it also supports environmental sustainability [13]. This 

approach not only lowers pollution and energy use but also conforms to eco-

friendly nanotechnology principles, creating opportunities for the 

economical, scalable manufacture of rare-earth NPs with a negligible 

environmental impact. Hence, the current study focuses on the synthesis of 

La₂O₃ NPs using P. minus leaf extract. The synthesized nanoparticles are 

further investigated for their antioxidant activities.  

2.METHODS

2.1. Materials 

All the chemicals employed in the research were of analytical grade and 

purchased through suppliers. Lanthanum (III) nitrate hexahydrate 

(La(NO3)3.6H2O) was obtained from Sigma-Aldrich. Whereas, fresh leaves 

of P. minus were purchased from a local market of Malaysia. 

2.2. Instrumentation 

The synthesized La2O3 NPs were characterized using various analytical 

tecniques including Uv- Vis spectroscopy, in the range of 400-800 nm, 

using Ultra-3000 series spectrophotometer. The amorphous structure of 
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La2O3 NPs was determined by XRD (D2 Phaser from BRUKER Germany 

model A26-X1-A2B0B2A0). While, the FTIR analysis of La2O3 NPs was 

carried out via Perkin Elmer Spectrometer 1600, in the region of 400-4000 

cm-1, by using standard KBr pellet technique. The presence of elemental 

lanthanum, as well as its morphology, was determined by using EDX 

coupled with FESEM (Thermo Scientific model Apreo 2s). The average 

particle size was determined with the help of image j software. Thermal 

activity (TGA) was determined in a nitrogen atmosphere with a heating rate 

of 10oC/min using TA instruments Q50 TGA analyzer. 

2.3. Preparation of Plant Extract Solution 

A total of 1.0 g of P. minus leaf powder dried in an oven at 35oC was 

boiled in 50 ml of de-ionized water for 15 minutes before filtration. The 

filtered extract was refrigerated at 4°C. This extract was employed as a 

reducing and stabilizing agent in the preparation of nanoparticles. 

2.4. Preparation of Lanthanum Salt Solution 

Approximately 1mm solution of lanthanum (III) nitrate hexahydrate (La 

(NO3)3.6H2O) was prepared by adding 0.01 g of lanthanum salt in 30 ml of 

de-ionized water. 

2.5. Synthesis of Lanthanum Oxide Nanoparticles 

A total of 9 ml leaf extract solution was added dropwise into the salt 

solution (30 ml; 1 mm). The mixture was stirred for 20 mins. The resulting 

solution was centrifuged at 16000 rpm for another 20 mins. The resultant 

pellets were re-dispersed into de-ionized water and methanol after the 

supernatants were discarded. To get rid of any impurities adsorbed on the 

surface of La₂O₃ NPs, the centrifugation procedure was repeated two to 

three times and the powder was dried in a hot air oven at 45ᴼC. 

2.6.Antioxidant Activity 

Antioxidants are chemicals, either natural or artificial, that stop or 

postpone cell damage brought on by oxidants. Any chemical that delays, 

stops, or eliminates oxidative damage in the target molecule is an 

antioxidant. The chemical must be active at low radical concentrations in 

order to be regarded as an antioxidant. Its amount must be sufficient to 

deactivate the target molecule. Further, it must react with oxygen or 

nitrogen free radicals and the final product of the reaction must be less toxic 

than the removed radical. Phenolic antioxidants frequently lose their 
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activity at high concentrations and act as prooxidants. Various antioxidants 

interact with diverse reactive species in a variety of ways at different sites, 

while defending certain biological targets [13, 14]. 

2.6.1. Preparation of Samples for Antioxidant Activity. For 

antioxidant activity, three different types of stock solutions were prepared 

including La2O3 NPs and DPPH solutions, as well as ascorbic acid solution. 

The free radical scavenging activity of La2O3 NPs and conventional 

ascorbic acid was tested using the stable radical DPPH (0.004g/100ml 

methanol) solution. Approximately 5mg/ml of La2O3 NPs and a similar 

amount of ascorbic acid at various concentrations (10, 20, 30, 50, 100, and 

200 mg/ml) were vortexed violently with 3 ml freshly produced DPPH 

solution. The solution was then incubated at room temperature in the dark 

for 30 minutes. A Uv-Vis spectrophotometer at 517 nm was used to measure 

absorption. DPPH was used as control, while methanol was used as blank 

solution [14]. 

Scavenging% = Hc-Hs/Hc× 100 

Here, Hc is the absorbance of control (DPPH) and Hs is the absorbance of 

La
2
O

3
 NPs / ascorbic acid. 

3.RESULTS AND DISCUSSION

3.1. Uv-Visible Analysis 

The size, shape, and morphology of La2O3 NPs are greatly influenced 

by a number of factors, including pH, temperature, reaction time, and 

concentration. Their synthesis and stability between 200-800 nm were 

evaluated using a Shimadzu spectrophotometer [15].  

3.1.1 Time Dependent Studies. Figure 1 displays the absorption 

spectra of La₂O₃ NPs synthesized using 1 mm lanthanum salt solution and 

9 ml P. minus leaf extract, measured at various time intervals. A stable 

absorption peak at 300-400 nm indicates successful NP synthesis, with no 

significant change in intensity over two weeks, confirming the long-term 

stability of the La₂O₃ NPs [16]. 
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Figure 1. UV-Vis Absorption Spectra of La₂O₃ NPs Over Time 

3.1.2. Concentration Dependent Studies. The effects of the 

concentrations of leaf extract and salt solution [17] are depicted in Figures 

2a and 2b, respectively. Figure 2a shows the effects of 9, 18, and 27 ml leaf 

extract concentrations on (1 mm) salt solution. As the amount of leaf extract 

increased, a gradual decrease was observed in the peak of La2O3 NPs, as 

evident by the Uv-Vis spectra of the resulting particles. It was found that 

adding 9 ml of leaf extract to the reaction mixture was successful in 

producing La2O3 NPs. Uv-Vis spectra showed that the sharpness of the 

absorption peak is dependent on the leaf extract concentration, thus the peak 

was sharper at 9 ml. However, with the increase in leaf extract red shift was 

recorded, indicating an increase in particle size [16].  

Furthermore, Figure 2b shows the effects of 1, 2, and 3 mm salt 

solutions respectively on 9 ml of leaf extract in the synthesis of La2O3 NPs. 

It was noticed that all the selected concentrations were effective in the 

synthesis of La2O3 NPs and a clear band was observed at 308 nm [17]. 

Hence, it was proved that the concentration of leaf extract can affect 

synthesis La2O3 NPs production, as compared to the concentration of salt 

solution. 
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Figure 2a. UV-Vis Spectra Showing the Effects of Leaf Extract 

Concentration on La₂O₃ NP Synthesis 
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Figure 2b. UV-Vis Spectra Showing the Effects of Lanthanum Salt 

Concentration on La₂O₃ NP Synthesis 
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3.1.3. Temperature Dependent Studies. The size and morphology of 

La2O3 NPs were greatly affected by the reaction temperature. Figure 3 

depicts the absorption spectra of La2O3 NPs produced at varied 

temperatures, ranging from room temperature to 80°C. Notably, the 

absorption peak and wavelength did not change with an increase in 

temperature. It was fascinating to see that synthesized La2O3 NPs remained 

extremely stable, even at a high temperature [16]. 
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Figure 3. UV-Vis Spectra of La₂O₃ NPs at Different Temperatures (RT to 

80°C) 

3.1.4. pH Dependent Studies. The pH is another important factor 

which affects the size, shape, and morphology of the synthesized La2O3 

NPs. The electrical charges of biomolecules can alter as pH changes, which 

may have an impact on their reducing ability, capping ability, and growth 

[18]. The impact of both acidic and basic pH on the absorption spectra of 

the synthesized La2O3 NPs is depicted in Figures 4a and 4b. Figure 4a 

reveals that when the pH dropped, a clear band of nanoparticles was seen 

even at the lowest pH. Whereas, Figure 4b shows that a rise in pH caused 

the absorption peak to shift towards a longer wavelength (from 308 to 450 

nm), indicating that the size of the La2O3 NPs produced increased while 

their production decreased, suggesting the existence of larger particles with 

a polydispersed distribution. This may partially be due to the reaction of 
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sodium hydroxide and the impact of acidic phenolic groups on flavonoids 

in the extract. Such an increase in particle size, coupled with an increase in 

the pH value, has been reported previously [19–21]. Therefore, the 

production of La2O3 NPs is more favored by an acidic pH as compared to a 

basic pH. 
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Figure 4a.  UV-Vis Spectra of La₂O₃ NPs at Various Acidic pH Levels 
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Figure 4b. UV-Vis Spectra of La₂O₃ NPs at Various Basic pH Levels 
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3.2. EDX Analysis 

The purity and weight percentage of the produced nanoparticles was 

confirmed by using the energy dispersive X-ray spectrometer. Figure 5 

shows a representative EDX spectrum. Several peaks of La can be 

distinguished in addition to the signals for O and P. The observed O and La 

peaks are related to La2O3 NPs. The presence of P was extract-derived and 

no toxic elements were detected, as reported earlier [22, 23]. 

 
Figure 5. EDX Spectrum of La₂O₃ NPs 

3.3. Powder X-ray Diffraction Analysis 

P-XRD is used to determine amorphous nature and phase purity. The 

virtual broadband in the XRD pattern reveals the lack of periodic crystal 

structure in the amorphous sample, implying that the produced sample is 

entirely amorphous, as shown in Figure 6. It can be deduced that the 

synthesized La2O3 NPs exhibited a typical amorphous phase, as reported in 

the literature, while the crystallite size was not applicable for this study due 

to the lack of sharp crystalline peaks [24, 25]. This amorphous character, 

also observed in other biosynthesized metal oxide nanoparticles [25], may 

contribute to their enhanced surface reactivity. This is advantageous for 

antioxidant activity, as amorphous structures often provide more active sites 

for radical scavenging, as compared to their crystalline counterparts [6]. 

to the signals for O and P. The observed O and La peaks are related to La2O3 NPs. The presence 

of P was extract-derived and no toxic elements were detected, as reported earlier [22, 23]. 

 

Figure 6. EDX Spectrum of La₂O₃ NPs 
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These results underscore the potential of P. minus-mediated La₂O₃ NPs for 

biomedical applications, particularly in antioxidant therapies. 
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Figure 6.  Powder XRD Pattern of La₂O₃ NPs 

3.4. FE-SEM Studies 

"The size and surface morphology of La2O3 NPs were observed using 

FE-SEM. The images of La2O3 NPs are given in Figure 7a. It is clear that 

these nanoparticles are elongated and rod-like in their shape. They have a 

uniform particle size of about 343 nm, determined by image J software and 

shown in histogram (Figure 7b), confirming a rod-like morphology and 

polydispersity. Polymeric nanoparticles are particles measuring between 1-

1000 nm in size. They showed a significant potential for targeted drug 

delivery during the treatment of various medical conditions. Moreover, they 

can also be used for a variety of antibacterial, antifungal, and cytotoxic 

purposes [26-29]. 
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Figure 7a. FE-SEM Images of La₂O₃ NPs 
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Figure 7b. Particle Size Distribution Histogram of La₂O₃ NPs 

3.5. FTIR Analysis 

The FTIR analysis was carried out to identify the possible functional 

groups of biomolecules present in the P. minus leaf. These biomolecules are 
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responsible for the reduction of La (NO3)3.6H2O to elemental lanthanum 

and stabilization of the formed La2O3 NPs. FTIR spectra of the P. minus leaf 

powder and the synthesized La2O3NPs, using 9 ml of P. minus extract at pH 

5, is shown below in Figure 8a. The FTIR spectrum of leaf powder showed 

characteristic bands for O-H stretching vibrations at 3428 cm-1 (polyols), 

stretching vibrations of C=O at 1638cm-1 (unsaturated carbonyl group), and 

stretching vibrations of C-O at 1068 cm-1 (polyols) [30, 31]. The 

asymmetric stretching vibrations of C-H at 2924 cm-1, as well as the 

stretching vibrations of CHO at 1625 cm-1, confirmed the presence of 

phenolic compounds including flavonoids (quercetin and myricetin) in the 

P. minus leaf aqueous extract, as reported earlier [32]. 

 Absorption sharp band clearly observed at 614 cm–1 is attributable to 

La-O stretching vibration, as depicted in Figure 8b, confirming the 

successful synthesis of La2O3 NPs [33, 34].  This observation suggests the 

likely involvement of the flavonoids of the P. minus leaf extract in the bio 

reduction process of La +3 to La (0), stabilizing the La2O3 NPs [35]. The 

presence of these bioactive molecules on the surface of nanoparticles likely 

enhanced their biocompatibility and contributed to their moderate 

antioxidant activity (28% DPPH scavenging at 200 μg/ml), since phenolic 

compounds are known to donate electrons to neutralize free radicals, a 

mechanism supported by research on plant-mediated nanoparticle synthesis 

[17].  
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Figure 8a. FTIR Spectra of P. minus Leaf Powder and Synthesized La2O3 

NPs 
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Figure 8b. FTIR Spectra Showing La-O Band in La₂O₃ NPs 

3.6. Thermal Gravimetric Analysis 

Thermal studies were performed to investigate lanthanum nanoparticles, 

where thermogravimetric analysis was executed within the temperature 

range of ambient to 900ᴼC. Thermal stability is regarded as a remarkable 

property of La2O3 NPs. Thermal curves of the compounds are given below 

in Figure 9. La2O3 NPs decomposed thermally in 3 main steps. Firstly, the 

weight loss of 10% in the temperature range 70-191ᴼC, with the DTA 

temperature of 75ᴼC, is attributable to the loss of crystal water. Secondly, a 

further decay through the combustion of organic moieties with a weight loss 

of 53% was observed at the temperature range of 191-380ᴼC, with the DTA 

temperature of 388ᴼC. Finally, decomposition occurred with the residual 

mass of 46% at the DTA temperature of 815ᴼC. This thermal stability, as 

reported in similar studies [33], indicates that the organic capping agents 

from P. minus enhance the nanoparticles’ structural integrity, which is 

crucial for their application in biological environments where thermal and 

chemical stability are required. 
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Figure 9. TGA/DTA Curves of La₂O₃ NPs 

3.7. Antioxidant Activities 

DPPH radical scavenging assay 2,2-diphenyl-1-picrylhydrazyl is a 

stable free synthetic radical at room temperature. Further, by accepting an 

electron or hydrogen radical, it becomes a stable molecule. In the DPPH 

assay, antioxidants reduced the DPPH radical to the non-radical form. 

Hence, absorption was reduced and the color of the DPPH solution changed 

from purple to yellow. This is known as scavenging and it can be done only 

by an antioxidant. In the current study, when the sample was subjected to 

DPPH, 28% of scavenging occurred. The DPPH scavenging of the La2O3 

NPs confirmed its antioxidant nature. Lanthanum nanoparticles showed 

antioxidant activity but less than standard ascorbic acid, as observed in 

Figures 10a and b. 
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Figure 10a. DPPH Scavenging Activity of La₂O₃ NPs 
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Figure 10b. DPPH Scavenging Activity of Ascorbic Acid 
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The percentage of free radical scavenging activity of various samples at 

different concentrations ranging from 10 to 200 µg/ml for standard ascorbic 

acid is shown below in Figure 11 [36].  

 La₂O₃ NPs, synthesized by P. minus, exhibited a DPPH scavenging 

activity of 28% at 200 μg/ml, demonstrating moderate antioxidant potential. 

This performance is comparably moderate as compared to other 

nanoparticles synthesized by different plant extracts, as reported in the 

literature. For instance, among plant-mediated lanthanum NPs, those 

synthesized using Muntingia calabura-derived lanthanum NPs showed a 

scavenging activity of 70.06% at 5 mg/ml. Similarly, silver nanoparticles 

synthesized from Petiveria alliacea L. leaf extract displayed antioxidant 

activity ranging from 61.39% to 70.69% at 5 mg/ml [6].  

Scavenging activity depends on the quality and quantity of the 

antioxidant (nanoparticles). As stated above, La₂O₃ NPs showed moderate 

quality as compared to other nanoparticles mentioned above. The 

antioxidant activity of lanthanum nanoparticles may be attributed to 

bioactive chemicals, primarily polyphenols, that are coated on them. 

According to early reports, lanthanum nanoparticles made from plant 

extracts have antioxidant properties and their antioxidant nature grows as 

their concentration rises. Hence, if the concentration of La₂O₃ NPs 

increases, its antioxidant activity may gradually increase as well [6]. 

 
Figure 11. DPPH Scavenging Percentages for La₂O₃ NPs and Ascorbic 

Acid 
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The study revealed that at the concentration of 200μg/ml, La₂O₃ NPs 

showed greater antioxidant activity by scavenging 28% DPPH but less than 

ascorbic acid, that is, 97%. Percentage scavenging of DPPH revealed the 

potency of the sample towards its antioxidant activity.  

Table 1 shows the DPPH scavenging ability of lanthanum nanoparticles and 

ascorbic acid at varied concentrations.  

Table 1.  DPPH Scavenging Percentages at Various Concentrations 

Samples Methanol DPPH Absorbance 
% Scavenging 

of DPPH 

Ascorbic acid (10 

μg/ml) 
990 μl 3 ml 1.66 14.3% 

Ascorbic acid (20 

μg/ml) 
980 μl 3 ml 1.31 32.3% 

Ascorbic acid (50 

μg/ml) 
950 μl 3 ml 0.09 95.3% 

Ascorbic acid (100 

μg/ml) 
900 μl 3 ml 0.06 95.2% 

Ascorbic acid (200 

μg/ml) 
800 μl 3 ml 0.05 97.4% 

NPs (10 μg/ml) 990 μl 3 ml 1.644 15% 

NPs (20 μg/ml) 980 μl 3 ml 1.537 20.6% 

NPs (50 μg/ml) 950 μl 3 ml 1.494 22.8% 

NPs (100 μg/ml) 900 μl 3 ml 1.422 26.5% 

NPs (200 μg/ml) 800 μl 3 ml 1.388 28.3% 

3.8. Conclusion 

This research established a simple and easy technique of synthesizing 

polymeric La2O3 NPs from the aqueous extract of P. minus. The effect of 

temperature, reaction time, concentration, and pH on La2O3 NPs were 

analyzed by Uv-Vis spectroscopy. A clear band of La-O nanoparticles at 

308 nm was observed. The peaks in the FTIR spectra indicated the potential 

role of different functional groups of plant metabolites as capping and 

stabilizing agents, while nanoparticles showed the characteristic band of La-

O at 614 cm
-1

. The size of the synthesized nanoparticles was 343 nm, as 

determined by image J software. EDAX analysis confirmed the presence of 

lanthanum along with oxides and phosphorus. While, XRD pattern 

confirmed the amorphous nature of lanthanum nanoparticles. Further, TG-

DTA analysis was performed to investigate the thermal properties of La2O3 
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NPs. The synthesized La2O3 NPs were found to exhibit moderate 

antioxidant activity. It can be concluded that further in vitro and in vivo 

explorations can fully assess the biomedical applicability of these 

synthesized polymeric nanoparticles, particularly in areas such as imaging, 

sensing, therapy, and antimicrobial activities, as demonstrated in 

biocompatibility assessments and potential applications of lanthanide 

nanomaterials. 

3.9. Future Direction 

Future research should concentrate on thorough in vitro studies to assess 

the biocompatibility, cytotoxicity, and potential biomedical applications of 

polymeric lanthanum oxide nanoparticles (La2O3 NPs) synthesized using P. 

minus leaf extract, including targeted drug delivery and antimicrobial 

activity. Investigating different plant extracts with rich phytochemical 

profiles, such as Ocimum sanctum or Azadirachta indica, may improve the 

manufacturing process, as well as the stability and bioactivity of 

nanoparticles. 
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