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Mahmood1, and Sajid Hussain2∗ 

1Department of Mathematics, The Islamia University of Bahawalpur, Pakistan 
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ABSTRACT 
This study discusses hydromagnetic flow and the movement of a fluid 
with adhesive property through a channel that is semi-porous. For this 
purpose, the slip condition is taken at a bottom wall and its thermal effects 
are noted. Presumably, the channel has porous upper boundaries and non-
porous lower boundaries. The equation of fluid motion and a number of 
linear ordinary differential equations are combined. To find a simplified 
logical equation, Homotopy Analysis Method (HAM) is applied. For 
numerical computations of the problem, the shooting method is applied. 
The heat transfer effects in the flow, being complex, are simplified into 
graphic displays. Both methods are equally compared, as shown through 
graphs. 
Keywords: MHD flow, semi-porous channel, slip condition, thermal 
radiation 

1. INTRODUCTION 
In different research sectors, many schools of thought exist regarding 

the behavior of liquids traveling through semi-permeable flasks. This is 
useful in the medical field as it helps to purify blood in artificial kidneys 
[1] and oxygenate [2] blood in capillaries [3]. Kamışlı et al. [4] 
successfully found the channel flow of non-Newtonian fluids with wall 
suction or injection and solved the Navier-Stokes equation for flow in a 
semi-porous channel with steady, incompressible, and adhesive 
characteristics. Afterwards, the above research was furthered to 
incorporate both Newtonian and non-Newtonian fluids [5–13]. 

There are multiple approaches to MHD flow with respect to 
convection, for instance, in the study of plasma, medical sciences, and 
geophysics. Ziabakhsh and Domairry [14] presented the homotopy 
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analysis method (HAM) solution of the laminar viscous flow in a semi-
porous channel with a uniform magnetic field. They also attempted to 
solve the same problem, but with the help of HAM. Rundora and Makinde 
[15] studied the porous saturated medium flow of the fluid. Shekholeslami 
et al. [16] applied the optimal homotopy asymptotic approach to get the 
exact results of magnetic field effects on an adhesive motion through a 
semi-porous channel. Abbas et al. [17] discussed the results of the 
hydromagnetic flow of a second-grade fluid, which is chemically reactive, 
in a semi-permeable medium by using HAM.  

The current research helps to find answers to all the questions about 
the impact of thermal radiation on the hydromagnetic Newtonian flow of 
fluid through a semi-porous channel. The slip condition is used on the 
lower wall of the channel. Linear ordinary differential equation gives the 
movement of the fluid and the temperature. HAM [18–20] is used to find 
its solution. At the end, the convergence and comparison of new results 
with old ones using no slip condition are presented in detail.  

2. FLOW EQUATIONS 
Consider a channel having semi-porous boundaries filled with viscous, 

incompressible electricity conducting fluid, as shown in Figure 1. The 
fluid is injected into the channel from a wall at a distance h  from the *x -
axis, whereas external heat is applied to the wall lying along *x -axis. A 
uniform magnetic field with intensity 0B  is taken orthogonal to the flow. 
The small Reynolds number assumption is utilized to abandon the impacts 
of the induced magnetic field.  

 
Figure 1.  Geometry of the Problem 
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The equations of velocity and temperature are given below. 

[ ]( , ), ( , ),0 ,u x y v x y=V                  (1) 

( ), .T T x y=               (2) 

The flow equations are stated below. 

0u v
x y
∂ ∂

+ =
∂ ∂
 

 
,                (3) 

22 2
0

2 2
1 u Bu u p u uu v

x y x x y
σ

ν
ρ ρ

 ∂ ∂ ∂ ∂ ∂
+ = + + −  ∂ ∂ ∂ ∂ ∂ 

    
 
    

−  ,           (4) 

2 2

2 2
1v v p v vu v

x y y x y
ν

ρ
 ∂ ∂ ∂ ∂ ∂

+ = + +  ∂ ∂ ∂ ∂ ∂ 

    
 
    

− ,                 (5) 

22 2

2 2
r

p
qT T T T uc u v k

x y y yx y
ρ µ

     ∂∂ ∂ ∂ ∂ ∂
+ = + +     ∂ ∂ ∂ ∂∂ ∂    


 

    
− .           (6) 

Here, u  and v  denote horizontal and vertical parts of the velocity and 
pc  , T , µ , ν , , , , , rp ,  k and qρ ν σ% L  are the specific heat points at constant 

pressure, temperature of the fluid, dynamic viscosity, kinematic viscosity, 
density, pressure, velocity gradient, electrical conductivity, thermal 
conductivity, and radiative heat flux,  respectively. 
The following equations give the boundary of the problem. 

0 0, 0, T T 0

0, , T Th

uu u l v at y
y

u v q at y h

∂ = + = = = ∂ 
= = − = = 


   



  

            (7) 

In the above equation, l  represents slip constant, whereas 0l =  
indicates the absence of the slip condition. 
The Rosseland approximation for radiative heat flux is used. 

4

*
4
3r

Tq
k y
σ ∗

∗
∂

= −
∂

                (8) 

Here, *σ is Stefan-Boltzman constant and *k  denotes the absorption 
coefficient. Since variation in temperature inside the flow is quite slight, 
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so we can use the Taylor series of order 4 about T∞  to get the expansion of  
4T , where T∞  is a linear function of T.  

We get  
4 3 44 3T T T T∞ ∞≡ −                (9) 

Using eqs. (8) & (9), eq. (6) becomes 

( )
22 2

3
2 21 16 / 3 .

p p

T T k T T uu v T kk
x y c c yx y

µσ
ρ ρ∞

   ∂ ∂ ∂ ∂ ∂
+ = + + +    ∂ ∂ ∂∂ ∂   

  
   

                   (10) 

 Consider  316 / 3T kk Nrσ ∞ =%% , where Nr is a radiation parameter. So, eq. (7) 
becomes 

( )
22 2

2 21 .
p p

T T k T T uu v Nr
x y c c yx y

µ
ρ ρ

   ∂ ∂ ∂ ∂ ∂
+ = + + +    ∂ ∂ ∂∂ ∂   


 

   
         (11) 

To calculate ,U  the mean velocity, the following equation is applied 

0
.

h
xU h u dy L q⋅ = ⋅ = ⋅∫                            (12) 

Using the dimensionless transforms, 

0
2

0 0
, , , , , .

.y
x h

T Tx y u v px y u v p
L h U q T Tq

θ
ρ

−
= = = = = =

−
                          (13) 

Using eqs. (12) and (13), the dimensionless equations for continuity and 
momentum, eqs. (3)-(5) and energy eq. (11) yield 

0u v
x y
∂ ∂

+ =
∂ ∂

,              (14) 

2 2 2
2 2

2 2
eR

ypu u u u Mu v u
x y x hq x y

νε ε
∂  ∂ ∂ ∂ ∂

+ = − + + −  ∂ ∂ ∂ ∂ ∂ 
,         (15) 

2 2
2

2 2
ypv v v vu v

x y y hq x y
ν ε

∂  ∂ ∂ ∂ ∂
+ = − + +  ∂ ∂ ∂ ∂ ∂ 

 ,          (16) 

2 2 2
2

e 2 2Pr R (1 ) .r
uu v E N

x y y x y
θ θ θ θε

      ∂ ∂ ∂ ∂ ∂ + − = + +       ∂ ∂ ∂ ∂ ∂       
         (17) 
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In the above equation, ε  is the dimensionless number and is given by 

x

h
L

ε = , where h  is the distance and xL  is very small (length  of the slider 

in x direction), M represents the Hartmann number given by 0M B h σ
µ

= , 

rP  denotes the Prandtl number given by  Pr pc kµ= ,  Ek  is the Eckert 
number given by ( )2

0 0h pE U T T c= − , and Re is the Reynolds number given 
by eR hq ν= . 

Using similarity transformation independent of aspect ratio ε  
introduced by Berman,  

( ) ( ) ( )
0

0
;    .

V yuv V y u u U y x
U y

∗ ∂
= − = = +

∂
 (18) 

The continuity of eq. (14) is identically satisfied. Substituting eq. (18) 

in eq. (16), one can see that the quantity p
y
∂
∂

 does not involve the 

longitudinal variable x . It is also observed that 2 2/p x∂ ∂  does not depend 
upon x . A separation of variable yields the following equations, 

( )
2 22/ 2 2

2
1 1

Re Re
M p pV VV V V

x xx
ε ε∂ ∂′′ ′′′ ′− − + = =

∂∂
,  (19) 

21 [ ],
Re

UV VU U M U′ ′ ′′− = −    (20) 

where the symbols of primes represent the number of derivatives. 

Differentiating the above eq. 19 with respect to y , we get 

[ ] 2Re .ivV V V VV M V′ ′′ ′′′ ′′= − +    (21) 

The respective conditions are 

1 ,     0,        at    0,
0,     1,    0    at                     1.

U U V V V y
U V V y

β β′ ′ ′′= + = = = 
′= = = = 

 (22) 

Here is the slip parameter given by /l hβ = . 

By combining eqs (17) and (18), we get 
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( ) ( )
2 2

2
0 2 2Pr .R ( ) 1e

dVu U y x V y Nr
dy x y x y

θ θ θ θε
     ∂ ∂ ∂ ∂

+ − = + +     ∂ ∂ ∂ ∂    
  

[ ]2
0.Pr .E u U xV′ ′′+ +  (23)  

The optimal solution of eq. (22) is represented as follows:” 
2

0 1 2( ) . ( ) . ( ) .......y x y x yθ θ θ θ= + + +   (24) 

The respective boundaries are   

0

0 n 1

0,            at y = 0,
=1, = 0, at y =1

nθ
θ θ

≥

≥

= 



.  (25) 

Using eq. (18) into eqs. (15) and (16), we get  
2

/ / ' / / 2 / / / / / /
0 0 0 0

1( ) ( ) ( ) ( )
Re Re

p Mu U xV V V u U xV u U xV u U xV
x

ε ∂
+ − + = + + − +

∂
 (26) 

2 /
1

1 1 ( )
2

p V V K x
Re

= − − + .   (27) 

Suppose in this problem p is independent of the longitudinal 
variable x , therefore, we consider  

2 /
0

1 1( ) ( )
2

) ,( V y V y K
Re

p p y = − +=    0K =  constant. 

In this case, eq. (26) becomes 
2

/ / / /1 0.
Re Re

MUV VU U U− − + =   (28) 

3. SOLUTION TECHNIQUE 
Homotopy anslysis method (HAM) is applied to solve this problem. It 

is better than many other analytical techniques because it involves series 
expansion and does not depend upon large or small parameters. Further, it 
provides an easy way to get the best result of the problem.    

To get the output of the problem, HAM is used, as pointed out by Liao 
[20]. The initial guess for the given problem includes  
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( ) ( ) 3 2
0

2 1 3 6 ,
1 4 1 4 1 4

V y y y y
β β
β β β

− +
= + +

+ + +
 (29) 

( )0
1 ,
1

yU y
β

−
=

+
 (30) 

( )0 .y yθ =  (31) 

 The following are auxiliary linear operators, 

( )
4

1 4 ,d VL V
dy

=  

 (32) 

( )
2

2 2 ,d UL U
dy

=  (33) 

( )
2

3 2 ,dL
dy
θθ =  (34) 

which satisfy the following properties, 

( )3 2
1 1 2 3 4 0,L c y c y c y c+ + + =  (35) 

( )2 5 6 0,L c y c+ =  (36) 

( )3 7 8 0,L c y c+ =  (37) 

where 1 2 8, ,.......,c c c  are constants to determine. The equations of zeroth 
order deformation are given below. 

( ) ( ) ( ) ( ) ( )1 0 11 ; ; , ; ,Vq L V y q V y q N V y q U y q− − =        (38) 

( ) ( ) ( ) ( ) ( )2 0 21 ; ; , ; ,Uq L U y q U y q N V y q U y q− − =        (39) 

( ) ( ) ( ) ( ) ( ) ( )3 0 31 ; ; , ; , ; ,q L y q y q N V y q U y q y qθθ θ θ− − =        (40) 

with boundary conditions, 

( ) ( ) ( ) ( ) ( )0; 0, 0; 0; , 1; 1, 1; 0,V q V q V q V q V qβ′ ′′ ′= = = =  (41) 
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(0; ) 1 (0; ), (1; ) 0,U q U q U qβ ′= + =  (42) 

(0; ) 0, (1; ) 1,q qθ θ= =  (43) 

 where , andV U θ    are auxiliary parameters whose values are not 
zero and q represents an embedding parameter with  0 ≤  q ≤  1. 
Whereas, 1 2 3, andN N N are nonlinear operators. 

( ) ( ) ( )

( ) ( ) ( ) ( )

4 2
2

1 4 2

2 3

2 3

,  , 
,  , ( ,  )

,  ,  ,  
,  ,

V y q V y q
N V y q U y q M

y y

V y q V y q V y q
Re V y q

y y y

∂ ∂
= −   ∂ ∂

 ∂ ∂ ∂
− − 

∂ ∂ ∂ 

 (44) 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2 2

,  
,  , ( ,  ) , 

,  ,  
,  ,  .

U y q
N V y q U y q M U y q

y
V y q U y q

Re U y q V y q
y y

∂
= −   ∂

∂ ∂ 
− − ∂ ∂ 

 (45) 

( ) ( ) ( ) ( )

( ) ( )

2

3 2

2
0

,  ,  1,  , ( ,  ), ( ,  ) ,  
Pr

, ,  
.

y q y qNrN V y q U y p y q ReV y q
y y

U y q U y q
EU

y y

θ θ
θ

∂ ∂+ = +     ∂ ∂ 
∂ ∂

+
∂ ∂

(46) 

For 0q = and 1q = , the solutions of deformation equations of order 
zero are given below.  

0( ,  0) ( ), ( ,  1) ( ),V y V y V y V y= =  (47) 

0( ,  0) ( ), ( , 1) ( ),U y U y U y U y= =  (48) 

0( ,  0) ( ), ( ,  1) ( ).y y y yθ θ θ θ= =  (49) 

Applying Taylor's series to expand  
( ) ( ) ( ),  , ,  and ,  V y q U y q y qθ about q, we have 
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( ) ( )0
1

,  ( ) ,m
m

m
V y q V y V y q

∞

−

= +∑  (50) 

( ) ( )0
1

,  ( ) ,m
m

m
U y q U y U y q

∞

−

= +∑  (51) 

( ) ( )0
1

,  ( ) ,m
m

m
y q y y qθ θ θ

∞

−

= +∑  (52) 

where 

( ) ( )( ),  1 ,
!

m

m m

V y q
V y

m q
∂

=
∂

 (53) 

( ) ( )( ),  1 ,
!

m

m m

U y q
U y

m q
∂

=
∂

 (54) 

( ) ( )( ),  1 .
!

m

m m

y q
y

m q
θ

θ
∂

=
∂

 (55) 

It is observed that the convergence of the considered problem 
equations (38)-(40) is based on the auxiliary parameters , andV U θ   , 
where , andV U θ   are chosen in a manner that these three series become 
convergent at 1.q =  Then, eqs (47)-(49) give the following results. 

We get 

0
1

( ) ( ) ( ),m
m

V y V y V y
∞

−

= +∑  (56) 

0
1

( ) ( ) ( ),m
m

U y U y U y
∞

−

= +∑  (57) 

0
1

( ) ( ) ( ).m
m

y y yθ θ θ
∞

−

= +∑  (58) 

We differentiate m-times equations (38)-(40) with respect to q and put 
0q = . Multiplying by 1/ !m , we get the new equations of mth ordered 

given below. 
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( ) ( )1 1( ) ,V
m m m V mL V y V y R yχ −− =     (59) 

( ) ( )2 1( ) ,U
m m m U mL U y U y R yχ −− =     (60) 

( ) ( )3 1( ) ,m m m mL y y R yθ
θθ χ θ −− =     (61) 

( ) ( )m m(0) (1) (1) 0, V 0 = V 0 ,m m mV V V β′ ′ ′′= = =  (62) 

( ) m m1 0, U (0)= U (0),mU β ′=  (63) 

( ) m1 0, (0)=1,mθ θ=  (64) 

where 
1 1

2
1 1 1 1

0 0
( ) ,

m m
V IV
m m m n m n n m n

n n
R y V M V Re V V V V

= −
′ ′′ ′′′

− − − − − −
= −

 = − − −  
∑ ∑  (65) 

1 1
2

1 1 1 1
0 0

( ) ,
m m

U
m m m n m n n m n

n n
R y U M U Re U V V U

= −
′′ ′ ′
− − − − − −

= −

 = − − −  
∑ ∑  (66) 

1 1
2

1 1 0 1
0 0

1( ) ,
Pr

 
m m

m m n m n n m n
n n

NrR y Re V Eu U Uθ θ θ
= −

′′ ′ ′ ′
− − − − −

= −

+   = + +      
∑ ∑  (67) 

and 

0, 1,
1, 1.m

m
m

χ
≤

=  >
 (68) 

We take ( ) ( ) ( ), andV x U x xθ∗ ∗ ∗ as the particular solutions of a set of 
equations from eq. (59)  to eq. (61). The general solutions are represented 
by 

( ) ( ) 2 3
1 2 3 4 ,mV y V y c c y c y c y∗= + + + +  (69) 

( ) ( ) 5 6 ,mU y U y c y c∗= + +  (70) 

( ) ( ) 7 8 ,m y y c y cθ θ ∗= + +  (71) 
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where the integral constants 1 2 8, ,.......,c c c  are calculated for boundary 
conditions (62)-(64) as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

0 0

2

3 2 42
0 0

m m m
m m

y=1 y=0 y=0
2

1 2 1 0 ,
%

% 2 , 0 ,

V y V y % V y
-3V 1 +2- -2 - +3V 0

y y y
c = ,

1+4

m m
m m

y y

m m
m

y y

V y V y
c c V V

y y

V y V y
c c c V

y y

β β

β β

β

β

∗ ∗

= =

∗

= =

∗ ∗




∂ ∂ = − + − + − + ∂ ∂

∂ ∂ = − + + = − ∂ ∂ 


∂ ∂ ∂ 
∂ ∂ ∂

∗ 

å å

å å

å å å

(72) 

( ) ( ) ( ) ( ) ( )m
5 6 6 m m

y=0

U y11 , c = -U 0 + - U 1 ,
1+ ymc U c β β
β

∗ ∗ ∗
 ∂
 = − −
 ∂ 

å

 (73) 

( ) ( )7 8 8 m1 , c =- 0 .mc cθ θ∗ ∗= − −  (74) 

The solution of equations (59)-(61) can be found easily by using the 
software MATHEMATICA” for m = 1,2,3,.... 

 
Figure 2.  - curves of ( ) ( )0 , 0V U′′ ′  and ( )0θ ′ at 10th order of approximate 
for β = 0.2, Pr = 0.5, E = 0.5, M = 1.5, Nr = 0.5, and Re = 1 
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4. HAM CRITERIA  
 The best approximation of the considered problem is based on 

, andV U θ   . The h curves are up to the order 10th in Figure 2. Moreover, 
it is observed that these are in the acceptable ranges of V , U  and θ , 
which are 1.7 0.2,V− ≤ ≤ − 1.1 0.2U− ≤ ≤ − , and 1 0.1θ− ≤ ≤ − . 

5. DISCUSSION 
Based on the analysis, this section is devoted to discuss the solutions 

of dimensionless velocity and temperature fields. HAM and other 
numerical techniques have been utilized to find the solution of the 
problem under consideration. Graphs are drawn for the comparison of 
these solutions.  

Figure 3 is drawn to show the detailed comparison for two different 
values of slip parameter β for velocity field U(y) and for the chosen points 
of the magnetic parameter M and slip parameter β, putting Re = 1. The 
figure describes that magnetic field behaves like a retarding force for 
velocity. In contrast, Figure 4 shows that by means of both solution 
techniques the magnetic field reduces the normal velocity. Whereas, the 
reverse situation is observed for discrete values of the slip parameter .β   

 
Figure 3. Analysis of numerical solution (filled square) and ham solution 
(solid and dashed lines) for ( )U y  and for distinct points of magnetic 
parameter M and slip parameter β when Re = 1. 
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Figure 4. Analysis of numerical solution (filled square) and HAM 
solution (solid and dashed lines) for ( )V y  and for discrete points of 
magnetic parameter M and slip parameter β when Re = 1. 

 
Figure 5. Analysis of numerical solution (filled square) and HAM 
solution (solid and dashed lines) for ( )V y′  and for distinct points of 
magnetic parameter M and slip parameter β when Re = 1. 
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The accuracy of HAM and numerical solution is depicted in Figure 5 
for ( )V y′ , for different values of the magnetic parameter M, and for the 
two fixed values of β. It is evident from this figure that for β = 0 and for 
the modest values of M, the viscosity influences the induction drag and 

( )V y′ is nearly parabolic for M = 0. For higher values of M, the viscosity 
remains uncritical and its influence is bound to a thin boundary layer near 
the wall. For β = 0.2 and by increasing the value of M, the maximum 
velocity point is moved over to the solid wall and its value is increased. 

Figures 6-8 show insight into the impacts of different emerging 
parameters on the temperature field for β = 0 and β = 0.2. The temperature 
of fluid shows the decreasing behavior for the increasing values of β.  

 
Figure 6. Analysis of numerical solution (filled square) and HAM 
solution (solid and dashed lines) for ( )yθ  and for various points of slip 
parameter β and magnetic parameter M when Re = 5, Nr = 0.1, Pr = 1, and 
E = 1. 

Figure 6 demonstrates the comparison of the two solution techniques 
for the temperature field. A decrease is noticed in the value of temperature 
for greater values of M. Figure 7 shows the accuracy of and comparison 
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between the two solution methods regarding the various values of 
temperature and the Prandtl number, when the other factors are kept 
constant. It can be seen that the increase in the temperature of the fluid 
causes an increase in the value of the Prandtl number. Figure 8 highlights 
that the behavior of two solutions regarding the temperature distribution 
for distinct values of the radiation parameter Nr is aggravated. Notably, 
the value of the temperature of the fluid reduces as the value of Nr 
increases. This is due to the fact that * 3 *16 3Nr T kkσ ∞=  indicates the 
relative contribution of thermal conduction to thermal radiation. As the 
value of Nr increases, the effects of thermal conduction become more 
significant than thermal radiation. So, a decrease in thermal radiation due 
to an increase in the value of Nr corresponds to depleting the thermal 
diffusion of the fluid regime and decreasing the thermal energy. Hence, 
the temperature of the fluid decreases.  

 
Figure 7. Analysis of numerical solution (filled square) and HAM 
solution (solid and dashed lines) for ( )yθ  and for various points of slip 
parameter β and Prandtl number Pr when Re = 1, M = 1.5, Nr = 0.1, and E 
= 1. 
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Figure 8. Analysis of numerical solution (filled square) and HAM 
solution (solid and dashed lines) for ( )yθ  and for different points of slip 
parameter β and radiation parameter Nr when Re=1, M = 1.5, Pr = 1, and 
E = 0.5. 

5.1. Conclusion 
A comparative study of numerical and analytical solutions is presented 

through graphs. The comparisons of analytical and numerical solutions are 
found to be in excellent agreement. The study shows that due to an 
increase in the values of M and β, a decrease is observed in ( ) ( ),U y V y  and 
( )yθ , whereas an increase is noticed for ( )V y′ . An increase in temperature 

is noted for large values of Pr and β but the situation no longer remains the 
same in the case of Nr.  
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