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Computation of Tades of Some Families of Graphs 

Khurram Shabbir1, Ahmad Raza1, Liliana Guran2 

1Department of Mathematics, Government College University, Lahore, 

Pakistan 
2Babes-Bolyai University, Cluj-Napoca, Romania 

ABSTRACT 

This study presents novel and efficient techniques for computing the Total 

Absolute Difference Edge Irregularity Strength (TADES) of several well-

known graph families. Specifically, the focus remains on book graphs with 

pentagonal pages, the hairy cycle graph, and three-regular graphs. For these 

increasingly complex graph structures, innovative algorithmic methods are 

introduced that significantly reduce the computational complexity of 

determining TADES, thus contributing valuable insights and advancements 

to the study of graph theory. 

Keywords: TADES; Hairy cycle; Pentagonal Pages; Regular Graphs. 

1.INTRODUCTION  

Graph theory originated with Euler’s work on the seven bridges of 

Königsberg problem, establishing a mathematical foundation that has 

evolved significantly since then. Today, it encompasses various advanced 

topics, including network theory, algorithmic complexity, and even 

quantum graph theory, which explores the implications of quantum 

computing for graph structures. At its core, graph theory involves the study 

of graphs, which are mathematical structures consisting of vertices 

connected by edges. This abstraction allows for the representation of 

pairwise relationships among objects, making graphs applicable in 

numerous fields, including computer science. Graphs can model everything 

from social networks to transportation systems, providing a framework to 

analyze connectivity and interactions. 

This research work covers only finite, undirected graphs without 

numerous edges or loops. In [1], Chartrand et al. presented edge k-

labeling of a graph, where for u ≠ v and w(u) ≠w(v) for all vertices u, 

v ∈ V (G). The irregularity strength of a graph G is the lowest k for 

which G has an irregular assignment using the labels of the maximum k. 
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This form of labeling is referred to as erratic assignments. 

Baca et al. ([2]) first studied a graph’s edge complete irregularity 

strength, which is same as the total labeling irregularity strength. 

According to Jendrol and Ivanco [3], the following hypothesis applies to 

any tree T and graph G that constitute the highest degree K5. ∆(G) 

𝑡𝑒𝑠(𝑇) = 𝑚𝑎𝑥 {⌈
𝐸(𝐺)+ 2

3
⌉ , ⌈

∆(𝐺)+ 1

2
⌉}. 

The categorical product of 3-leaf and cycle by M. K. Siddiqui in [4], 

complete graphs and complete bipartite graphs in [5], and any tree have all 

been shown to satisfy Ivanc̆o and Jendrol’s hypothesis. 

Motivated by the overall strength of edge irregularity and the concept 

of graceful labeling, Ramalakshmi and Kathiresan [6] suggested a method 

of decreasing edge weights by maximizing the absolute difference between 

the graphs’ edge irregularity strength. The weight of an edge e = uv under 

a total labeling ℵ in a graph G is wt(e) = |ℵ(e) − ℵ(u) − ℵ(v)|. 

A graph G, labeled with ℵ. ℵ: V ∪ E → {1, 2, 3, ..., k     , represents an 

edge irregular complete 

absolute difference k-labeling of G. If there is wt(e) ≠ wt(f) for two 

different edges, then e = uv and f = u1v1 of G. The lowest k for which the 

total absolute difference of G is irregular at the edge tades (G) is k-labeling. 

Further, [6] provided proof for the following conclusions: 

1. Every tree T with m vertices and a maximum degree of ∆(G) 

tades(T ) = max{
𝑚

2
,
∆(𝐺)+ 1

2
}. 

2. tes(G) ≤ tades(G) for any graph G. 

Theorem 1.1. [6] Assume that the graph G = (V, E) has a vertex set V and 

edge set E. Both are non-empty. Consequently, 

|𝐸|

2
≤ tades(G) ≤ |E| + 1. 

Utilizing this outcome, A. Lourdusamy and F.J. Beaula in [7], [8] 

calculated the TADES of graphs linked to snakes, wheels, lotuses inside 

circles, double fans, and path-related graphs. In this research, we examine 

the hairy cycle graph, book graph with n-pentagonal pages, and 3-regular 

graph’s TADES.  
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2. HAIRY CYCLE GRAPH 

In [9], we find that a hairy cycle graph is a cycle with three pendent 

edges attached, such as a bared cycle. In this section, we determine the hairy 

cycle graph’s TADES, denoted by Cp ⊙ 3k1. Its irregularity strength 

depends upon the value of n. For example, in Figure 1 we take the value of 

n as 7. Then, the TADES of C7 ⊙ 3k1 is 14. 

Figure 1. C7 ⊙ 3k1 

Theorem 2.1. For the comb graph Cp ⊙ 3k1,  

tades (Cp ⊙ 3k1) = 2p. 

Proof. Say that the graph’s vertex set equals 

V(G) ={ 𝜅𝑖 ,  𝜅𝑖
′, 𝜅𝑖

′′,  𝜅𝑖
′′′; 1 ≤ i ≤ p}, 

and edge is𝐸(𝐺) =

{
 

 
𝜅𝑖𝜅𝑖+1;  1 ≤  𝑖 ≤  𝑝 − 1          

𝜅𝑖 𝜅𝑖
′;    1 ≤  𝑖 ≤  𝑝                   

𝜅𝑖  𝜅𝑖
′′;   1 ≤  𝑖 ≤  𝑝                  

 𝜅𝑖  𝜅𝑖
′′′;  1 ≤  𝑖 ≤  𝑝 𝑎𝑛𝑑 𝜅𝑝𝜅1 

 

By Theorem 1.1, we have 
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tades (Cp ⊙ 3k1) ≥ 2p.                                                     (1) 

As we move forward with the opposite disparity, we create 

ℵ : V ∪ E →{1, 2, 3, ..., 2p} 

as follows ℵ(κ𝑙) = {
2(𝑙 − 1) + 1;  𝑖𝑓 1 ≤  𝑙 ≤ ⌊

𝑝

2
⌋        

2𝑙;             𝑖𝑓 ⌈
𝑝+1

2
⌉ ≤  𝑙 ≤ 𝑝          

 

ℵ(𝜅𝑙
′) = 2(l − 1) + 1 if 1 ≤ l ≤ p 

 

ℵ(𝜅𝑙
′′) = ℵ(𝜅𝑙

′′′) = 2l   if 1 ≤ l ≤ p. 

Now, edge labeling isℵ(𝜅𝑙) = {
1;    𝑖𝑓 1 ≤  𝑙 ≤ ⌊

𝑝

2
⌋              

2;     𝑖𝑓  ⌈
𝑝+1

2
⌉ ≤  𝑙 ≤ 𝑝    

 

ℵ(𝜅𝑝𝜅1) = {
2;  𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑝   
4;  𝑓𝑜𝑟 𝑜𝑑𝑑 𝑝     

 

ℵ( 𝜅𝑙 𝜅𝑙
′) = ℵ( 𝜅𝑙 𝜅𝑙

′′ ) = 2  if 1 ≤ l ≤ p. 

ℵ( 𝜅𝑙 𝜅𝑙
′′′ ) = 1 if  1 ≤ l ≤ p. 

Now, the weight of the edges is 

𝑤𝑡(κ𝑙κ𝑙+1) = {
|ℵ(𝜅𝑙 𝜅𝑙+1) − ℵ(𝜅𝑙) − ℵ(𝜅𝑙+1)|;   if 1 ≤  𝑙 ≤ ⌊

𝑝

2
⌋          

|ℵ(𝜅𝑙𝜅𝑙+1) − ℵ(𝜅𝑙) − ℵ(𝜅𝑙+1)|;   𝑖𝑓  ⌈
𝑝+1

2
⌉ ≤  𝑙 ≤ p

  

= {
4𝑙 − 1;        if 1 ≤  𝑙 ≤ ⌊

𝑝

2
⌋       

4𝑙;     𝑖𝑓  ⌈
𝑝 + 1

2
⌉ ≤  𝑙 ≤ p − 1

 

𝑤𝑡(κ𝑝κ1) = {
|ℵ(κ𝑝𝜅1) − ℵ(κ𝑝) − ℵ(𝜅1)|;  𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 p

|ℵ(κ𝑝 𝜅1) − ℵ(κ𝑝) − ℵ(𝜅1)|;  𝑓𝑜𝑟 𝑜𝑑𝑑 p
 

= {
2p − 1; 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 p 
2𝑝 − 3; 𝑓𝑜𝑟 𝑜𝑑𝑑 p  
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𝑤𝑡(κ𝑙κ𝑙
′) = {

4𝑙 − 4;        𝑖𝑓 1 ≤  𝑙 ≤ ⌊
𝑝

2
⌋             

4𝑙 − 3;     𝑖𝑓 ⌈
𝑝 + 1

2
⌉ ≤  𝑙 ≤ p − 1

 

𝑤𝑡(κ𝑙κ𝑙
′′) = {

4𝑙 − 3;        𝑖𝑓 1 ≤  𝑙 ≤ ⌊
𝑝

2
⌋              

4𝑙 − 2;     𝑖𝑓 ⌈
𝑝 + 1

2
⌉ ≤  𝑙 ≤ p − 1

 

𝑤𝑡(κ𝑙κ𝑙
′′′) = {

4𝑙 − 2;        𝑖𝑓 1 ≤  𝑙 ≤ ⌊
𝑝

2
⌋              

4𝑙 − 1;     𝑖𝑓 ⌈
𝑝 + 1

2
⌉ ≤  𝑙 ≤ p − 1

 

Clearly, from Figure (2) we have   

tades (Cp ⊙ 3k1) ≤ 2p      (2) 

From (1) and (2), we have tades (Cp ⊙ 3k1) = 2p. 

3. BOOK GRAPH 

 
Figure 2. Book Graph 

This section calculates the strength of edge irregularity for a book 

graph with n-pentagonal pages as the total absolute difference. A book 

graph is made up of two fixed vertices connected to each page in the book, 
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} 

see [10]. 

For example, in Figure 2 we compute the TADES of the book graph 

if the value of n is 5. 

Theorem 3.1. For a book with q-pentagonal pages represented by a graph 

G,  

tades (G) =⌈
4𝑞+1

2
⌉. 

Proof. Let us consider the graph (G) whose vertex set and edge set are 

V(G) = {υ, w, υi, vi, wi: 1 ≤ i ≤ q} 

E(G) ={υv}, {υυi, υiwi, viwi, vvi : 1 ≤ i ≤ q} 

By Theorem 1.1, we have 

tades (G) ≥ ⌈
4𝑞+1

2
⌉                             (3) 

As we move forward with the opposite disparity, we create 

ð ∶  V ∪  E → {1,2,3, … , ⌈
𝑞 − 1

2
⌉} 

as follows: 

ð(𝜐) = ð(𝑣) =  1; 

ð(𝜐𝑖) =  ð(𝑣𝑖) =  2𝑖;  𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑞  

  ð(𝑤𝑖)=⌈
4𝑞+1

2
⌉;  𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑞 

and 

ð(vu)=2; 

ð(υui) = ð(υiwi) = 1;  for 1 ≤ i ≤ q; 

ð(vvi) = ð(viwi) = 2;  for 1 ≤ i ≤ q. 

 We will determine how much weight each edge is 

wt(υv) = |ð(υv) − ð(υ) − ð(v)| 

= 0 

wt(υui) = |ð(υui) − ð(υ) − ð(υi)| 
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= 2i 

wt(vvi) = |ð(vvi) − ð(v) − ð(vi)| 

= 2i − 1 

wt(υiwi) = |ð(υiwi) − ð(υi) − ð(wi)| 

= 2(q + i) 

wt(viwi) = |ð(viwi) − ð(vi) − ð(wi)| 

= 2(q + i) − 1. 

From the above calculation, we conclude that 

tades (G) ≤ ⌈
4𝑞+1

2
⌉. (4) 

Every edge weight is unique, therefore, we can derive the following 

from (3) and (4). 

tades (G) =⌈
4𝑞+1

2
⌉. 

4.3-REGULAR GRAPH 

 
Figure 3. P (5, 2) 

In this instance, a 3-regular graph is one in which each vertex has degree 

3. In Figure 3 we compute the TADES of 3-regular graph if the value of n 
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is 5. The TADES of this type of graph purely depends upon the value of n. 

Theorem 4.1. For a graph, say a P (q, 2) graph,  

tades(P(q,2)) =⌈
3𝑞

2
⌉. 

Proof. Let P (q, 2) be a graph, the set of nodes and the edge set of the graph 

are 

𝑉(𝑃(𝑞, 2)) = {𝑣𝑧 , 𝑣𝑧
′: 1 ≤ 𝑧 ≤ 𝑞} 

𝐸(𝑃(𝑞, 2)) = {𝑣𝑧𝑣𝑧+1: 1 ≤ 𝑧 ≤ 𝑞 − 1} ∪ {𝑣𝑧𝑣𝑧
′: 1 ≤ 𝑧 ≤ 𝑞}

∪ {𝑣𝑛𝑣1, 𝑣⌈𝑞
2
⌉
𝑣1
′} ∪ {𝑣𝑧

′𝑣
⌈
𝑞
2
⌉+𝑧
, 𝑣
⌈
𝑞
2
⌉+𝑧
𝑣𝑧+1

′: 1 ≤ 𝑧

≤ ⌈
𝑞

2
⌉ − 1}. 

By Theorem 1.1, we have 

tades (P(q,2)) ≥ ⌈
3𝑞

2
⌉. (5) 

We move forward with the opposite disparity and we create Y: V ∪ E 

{1, 2, 3,…, ⌈
3𝑞

2
⌉}, as follows: 

𝑌(𝑣𝑧) = 𝑧;    1 ≤ 𝑧 ≤ 𝑞 

𝑌(𝑣𝑧
′) = {

𝑞 + 𝑧;   𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈
𝑞

2
⌉                   

𝑞 + 𝑧 − ⌈
𝑞

2
⌉ ;   𝑓𝑜𝑟  ⌈

𝑞

2
⌉ + 1 ≤  𝑧 ≤ q

 

𝑌(𝑣𝑧𝑣𝑧+1) = 𝑧 + 2;      1 ≤ 𝑧 ≤ 𝑞 − 1 

𝑌(𝑣𝑞𝑣1) = 2 

𝑌(𝑣𝑧𝑣𝑧
′) =

{
 

 𝑧 + 1;   𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈
𝑞

2
⌉                                    

2 + (𝑧 − (⌈
𝑞

2
⌉ + 1)) ;    𝑓𝑜𝑟  ⌈

𝑞

2
⌉ + 1 ≤  𝑧 ≤ 𝑞

 

𝑌 (𝑣𝑧
′𝑣′

⌈
𝑞
2
⌉+𝑧
) = 1;     1 ≤  𝑧 ≤ ⌈

𝑞

2
⌉ − 1 

     𝑌 (𝑣′
⌈
𝑞
2
⌉+𝑧
𝑣′𝑧+1) = 1;     1 ≤  𝑧 ≤ ⌈

𝑞

2
⌉ − 1 
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𝑌 (𝑣′
⌈
𝑞

2
⌉
𝑣′1) = ⌈

𝑞

2
⌉ + 1. 

We now determine how much weight each edge is  

𝑤𝑡(𝑣𝑧𝑣𝑧+1) = |𝑌(𝑣𝑧𝑣𝑧+1) − 𝑌(𝑣𝑧) − 𝑌(𝑣𝑧+1)| 

= |z + 2 − (z) − (z + 1)| 

= z – 1 

𝑤𝑡(𝑣𝑞𝑣1) = |𝑌(𝑣𝑞𝑣1) − 𝑌(𝑣𝑞) − 𝑌(𝑣1)| 

= |2 − q − 1| 

= 𝑞 − 1; 

𝑤𝑡(𝑣𝑧𝑣𝑧
′) = {

|𝑌(𝑣𝑧𝑣𝑧
′) − 𝑌(𝑣𝑧) − 𝑌(𝑣𝑧

′)|;  𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈
𝑞

2
⌉          

|𝑌(𝑣𝑧𝑣𝑧
′) − 𝑌(𝑣𝑧) − 𝑌(𝑣𝑧

′)|;  𝑓𝑜𝑟  ⌈
𝑞

2
⌉ + 1 ≤  𝑧 ≤ q

 

= {
|𝑧 + 1 − (𝑧) − (𝑞 + 𝑧)|;  𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈

𝑞

2
⌉                                                                 

|2 + 𝑧 − (2 + (𝑧 − (⌈
𝑞

2
⌉ + 1) − (𝑧) − (𝑞 + 𝑧 − ⌈

𝑞

2
⌉)|;  𝑓𝑜𝑟  ⌈

𝑞

2
⌉ + 1 ≤  𝑧 ≤ q 

 

= 𝑞 + 𝑧 − 1;        𝑓𝑜𝑟 1 ≤ 𝑧 ≤ 𝑞; 

𝑤𝑡 (𝑣𝑧
′𝑣′

⌈
𝑞
2
⌉+𝑧
) = |𝑌 (𝑣𝑧

′𝑣′
⌈
𝑞
2
⌉+𝑧
) − 𝑌(𝑣𝑧

′) − 𝑌 (𝑣′
⌈
𝑞
2
⌉+𝑧
)| ;   𝑓𝑜𝑟 1 ≤  𝑧 

≤ ⌈
𝑞

2
⌉ − 1 

= |1 − (𝑞 + 𝑧) − (𝑞 + ⌈
𝑞

2
⌉ + 𝑧 − ⌈

𝑞

2
⌉)| ;  𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈

𝑞

2
⌉ − 1 

= 2(𝑞 + 𝑧) − 1;   𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈
𝑞

2
⌉ − 1;                  

𝑤𝑡 (𝑣′
⌈
𝑞
2
⌉+𝑧
𝑣′𝑧+1)

= |𝑌 (𝑣′
⌈
𝑞
2
⌉+𝑧
𝑣′𝑧+1) − 𝑌 (𝑣

′
⌈
𝑞
2
⌉+𝑧
) − 𝑌(𝑣′𝑧+1)| ;   𝑓𝑜𝑟 1 

≤  𝑧 ≤ ⌈
𝑞

2
⌉ − 1 
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= |1 − (𝑞 + ⌈
𝑞

2
⌉ + 𝑧 − ⌈

𝑞

2
⌉) − (𝑞 + 𝑧 + 1)| ;   𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈

𝑞

2
⌉ − 1 

= 2(𝑞 + 𝑧);   𝑓𝑜𝑟 1 ≤  𝑧 ≤ ⌈
𝑞

2
⌉ − 1; 

𝑤𝑡 (𝑣′
⌈
𝑞
2
⌉
𝑣′1) = |𝑌 (𝑣

′
⌈
𝑞
2
⌉
𝑣′1) − 𝑌 (𝑣

′
⌈
𝑞
2
⌉
) − 𝑌(𝑣′1)| 

= |(⌈
𝑞

2
⌉ + 1) − (𝑞 + ⌈

𝑞

2
⌉) − (𝑞 + 1)| = 2𝑞. 

Clearly, from the calculation, we conclude that 

tades(P(q,2)) ≤ ⌈
3𝑞

2
⌉. (6) 

Every edge weight is unique; therefore, we can derive the following 

from (5) and (6) 

tades(P(q,2)) = ⌈
3𝑞

2
⌉. 

5. CONCLUSION 

In this paper, we examined the computation of Total Absolute 

Difference Edge Irregularity Strength (TADES) for several graph families 

in detail. The results on the TADES of the book graph, 3-regular graph, and 

hairy cycle graph have implications for improving network architecture, 

optimizing image processing, and performing data analysis in several 

application domains. 

In the 3-regular graph P(n,2), the total edge irregularity strength (TES) 

is n+1 (see [11]), while the total absolute difference edge irregularity 

strength (TADES) is 3n/2. This comparison indicates that the irregularity 

strength of the 3-regular graph increases, even though the edge weights 

decrease. Similarly, the TADES of a graph exceeds the TES of the same 

graph but the edge weights decrease.  

As technology continues to advance, the applications of graph theory in 

computer science are expected to expand, influencing areas such as artificial 

intelligence, smart cities, and autonomous systems. The ongoing research 

in this field highlights the dynamic interplay between mathematical theory 

and practical applications, driving innovation and connectivity in the digital 

landscape. 

To summarize, the connection between mathematical graphs and 
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computer science is profound and multifaceted, impacting algorithm design, 

network analysis, database management, and beyond (see [1], [12], [13]). 

Moreover, new research directions in graph theory, including solving some 

conjectures, are given in [14-17]. The continued exploration of graph theory 

promises to yield further insights and advancements in technology. 
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