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Abstract 

In this paper, semi-analytical solutions of time-fractional Korteweg-de 

Vries (KdV) equations are obtained by using a novel variational 

technique. The method is based on the coupling of Laplace Transform 

Method (LTM) with Variational Iteration Method (VIM) and it was 

implemented on regular and modified KdV equations of fractional order 

in Caputo sense. Correction functionals were used in general Lagrange 

multipliers with optimality conditions via variational theory. The 

implementation of this method to non-linear fractional differential 

equations is quite easy in comparison with other existing methods. 

Keywords: Time-Fractional KdV equations, Variational Iteration 

Method (VIM), Laplace Variational Method (LVM), non-linear 

Fractional Differential Equations 

Introduction 

The majority of phenomena in science and engineering are modeled 

using non-linear differential equations, especially non-linear partial 

differential equations such as Korteweg-de Vries equation [1, 2], non-

linear Schro¨ndinger equation [3, 4], AC power flow model [5], 

Richard’s equation for unsaturated water flow [6, 7], general relativity 

[8], etc. 

In the recent decades, fractional derivative has been widely used in 

different non-linear problems to better understand the complex 

phenomena which not only agree with the current state of the solution 

but also with its historical background. This fact makes fractional 

calculus special so that there are various fractional operators and any 

scientist modelling the real world phenomena can choose the operator 

that best fits the model [18]. In order to model the real world problems, 
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people have obtained new fractional operators with non-local and non-

singular kernels [18]. 

The Variational Iteration Method (VIM) was first presented by the 

Chinese mathematician Ji-Huan He [17]. The key property of the method 

is its flexibility and its ability to solve non-linear differential equations 

using a very simple procedure. The results are acceptable and have been 

implemented to an extensive class of non-linear problems [17]. Laplace 

Transform Method (LTM) is a powerful tool which has been used during 

the last few decades to solve not only ODEs with constant and variable 

coefficients but also PDEs. 

Recently, active attention has been paid to couple more than one 

techniques to solve a problem in order to get better results with rapid 

convergence [16]. In this paper, two techniques VIM and LTM are 

combined and labelled as Laplace Variational Method (LVM). The key 

extracts of this semi-analytical technique are (a) to use initial condition 

(and avoid boundary conditions without any discretization) [16], (b) 

linearization and (c) restrictive assumptions to solve the non-linear 

fractional differential equations. 

The method description of the proposed technique LVM is presented 

in section 2. In section 3, it is employed to obtain the solutions of the 

time-fractional differential equations, representing obscure non-linear 

phenomena in a very simple way. In section 4, the conclusion is drawn 

and discussion is made about the effectiveness of the proposed method 

and the solutions of shallow water waves. 

Here, we present the related definitions of Laplace Transform and the 

fractional derivative of Laplace Transform. 

1.1 Laplace Transform 

The Laplace Transform of a function 𝑢(𝑡) is defined as  

ℱ(𝑠) = ℒ{𝜙(𝑡)} = ∫ 𝑒−𝑠𝑡 𝜙 
∞

0

(𝑡)𝑑𝑡.                   

1.2 Laplace Transform of Fractional Derivative in Caputo Sense 

The Laplace Transform of the fractional derivative 𝐷⍺ (𝑓(𝑡)), 
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ℒ{𝐷𝑡
⍺𝜙(𝑡)} =  𝑠⍺𝐹 (𝑠) − ∑ 𝑠⍺−𝑞−1

𝑛−1

𝑞=0

𝜙𝑞(0),

𝑛 − 1 < 𝑛⍺ ≤ 𝑛.                                                   (1.1)  

2. Method Description 

To understand the method description of LVM, first consider the 

generalized fractional differential equation having the following form, 

𝐷𝑡
⍺𝜙(𝜉, 𝑡) + 𝐿(𝜙(𝜉, 𝑡))  + 𝑁 (𝜙(𝜉, 𝑡))

= 𝑓 (𝜉, 𝑡);                                                                (2.1) 

𝜙(𝜉, 0) = 𝜙0;   𝑛 − 1 < 𝑛⍺ ≤ 𝑛;     𝑡 > 0 

Where 𝐷𝑡
⍺ is time fractional derivative in Caputo sense, L is linear 

operator, N is non-linear operator and 𝑓(𝜉, 𝑡) is the known function. The 

recursive relation after applying the Laplace Transform on Eq. (2.1) is as 

follows, 

𝜙𝑛+1(𝜉, 𝑠) =  𝜙𝑛 (𝜉, 𝑠) +  λℒ {𝐷𝑡
⍺𝜙(𝜉, 𝑡) + 𝐿 (𝜙𝑛(𝜉, 𝑡)) +

𝑁 (𝜙𝑛 (𝜉, 𝑡)) − 𝑓(𝜉, 𝑡)},                                                            (2.2) 

Where λ is the general Lagrange multiplier. Here, taking the variation 

in order to obtain the value of Lagrange multiplier using optimality 

conditions we obtain 

𝛿𝜙𝑛+1(𝜉, 𝑡)

𝛿𝜙𝑛(𝜉, 𝑡)
) = 0,     and    𝛿𝜙𝑛̃ = 0, 

That gives  λ =  
−1

s⍺  .  On substituting the value of λ and taking Inverse 

Laplace Transform of Eq. (2.2), we obtain 

𝜙𝑛+1(ξ, t) =  𝜙𝑛 (ξ, t) − ℒ−1 {𝑠−⍺ ℒ{𝐷𝑡
⍺𝜙𝑛(ξ, t) + 𝐿(𝜙𝑛(ξ, t)) +

𝑁(𝜙𝑛(ξ, t)) − 𝑓(ξ, t)}}.                                                             (2.3) 

On substituting 𝑛 = 0,1,2, …, we obtain the successive 

iterations𝜙1, 𝜙2, 𝜙3,... In the next section, we implement the proposed 

LVM to solve non-linear fractional differential equations. 

3. Applications 

This section is dedicated to examples on which LVM has been applied. 
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More specifically, we apply the method to solve different non-linear 

time-fractional KdV equations. 

3.1 Example 1 

Here, we solve time-fractional regular KdV equations using LVM. 

𝐷𝑡
⍺𝜙 + ⍺1𝜙𝜙ξ + 𝛽1𝜙ξξξ = 0;      0 <  ⍺ 

≤ 1,                                                                                 (3.1) 

having the initial condition 

𝜙(ξ, 0) = 𝜙0 = sech2𝛽1ξ, 

where ⍺1 =
𝑐0

2𝐾2
(∊ 𝑐𝜆3) is the non − liner, 𝛽1 =

𝑐0ℎ2

6
 represents the dispersion parameter.  

Now, we apply VIM on Eq. (3.1). We get 

𝜙𝑛+1(ξ, t) = 𝜙𝑛 (ξ, t)

+  𝜆 {𝐷𝑡
⍺𝜙𝑛(ξ, t) + ⍺1𝜙𝑛

𝜕𝜙𝑛

𝜕ξ

+
𝜕3𝜙𝑛

𝜕ξ3
}.                                                                          (3.2) 

Applying Laplace Transform on Eq. (3.2), we obtain 

𝜙𝑛+1(ξ, 𝑠) = 𝜙𝑛 (ξ, s) + ℒ {𝜆 {𝐷𝑡
⍺𝜙𝑛(ξ, 𝑠) + ⍺1𝜙𝑛

𝜕𝜙𝑛

𝜕ξ
+

𝜕3𝜙𝑛

𝜕ξ3
}}.  (3.3) 

Now, using the definition of Laplace Transform of fractional 

derivative given in Eq. (3.4) in Eq. (3.3) 

ℒ{𝐷𝑡
⍺𝜙𝑛(ξ, t)}

=  𝑠⍺𝜙𝑛(ξ, 𝑠) − 𝑠⍺−1𝜙𝑛(ξ, 0),                                                                 (3.4) 

we get 

𝜙𝑛+1(ξ, 𝑠) =  𝜙𝑛(ξ, 𝑠) + 𝜆{𝑠⍺𝜙𝑛(ξ, 𝑠) − 𝑠⍺−1𝜙𝑛(ξ, 0)}

+  𝜆ℒ {⍺1𝜙𝑛̃

𝜕𝜙𝑛̃

𝜕ξ
+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}. 

One can obtain the value of Lagrange multiplier using the optimality 

conditions, that is, λ = 
−1

𝑠⍺ . On substituting the value of λ, we have 
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𝜙𝑛+1(ξ, 𝑠) =  𝜙𝑛(ξ, 𝑠) −
1

𝑠⍺
 {𝑠⍺𝜙𝑛(ξ, 𝑠) − 𝑠⍺−1𝜙𝑛(ξ, 0)}

−
−1

𝑠⍺
ℒ {⍺1𝜙𝑛̃

𝜕𝜙𝑛̃

𝜕ξ
+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}. 

Taking Inverse Laplace Transform and simplifying it, we obtain 

𝜙𝑛+1(ξ, 𝑡) =  𝜙𝑛(ξ, 𝑡)

−  ℒ−1 {𝑠−⍺ℒ {𝐷𝑡
⍺𝜙𝑛(ξ, 𝑡) + ⍺1𝜙𝑛

𝜕𝜙𝑛

𝜕ξ
+ 𝛽1

𝜕3𝜙𝑛

𝜕ξ3
}}. 

For n = 0,1,2,..., we have the successive approximations 𝜙1,𝜙2, 𝜙3 … 

𝜙1(ξ, 𝑡) =  𝜙0(ξ, 𝑡) −  ℒ−1 {𝑠−⍺ℒ {𝐷𝑡
⍺𝜙0 + ⍺1𝜙0

𝜕𝜙0

𝜕ξ
+ 𝛽1

𝜕3𝜙𝑛

𝜕ξ3
}}. 

Putting the values of 𝜙1(ξ, 𝑡), 𝜙1
𝜕𝜙0

𝜕ξ
 and

𝜕3𝜙𝑛

𝜕ξ3 , we find 

𝜙1(ξ, 𝑡) = 𝑎 seach2𝛽1 −
𝑡⍺

Γ(1 + ⍺)
 {−2𝑎2⍺1𝛽1seach2𝛽1 than𝛽1ξ

+ 𝛽1(16𝑎𝛽1
3seach4𝛽1than𝛽1ξ

− 8𝑎𝑏1
3seach2 𝛽1ξ tanh3 𝛽1ξ}. 

𝜙1 can be obtained in the same manner. 

𝑇ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝜙 (𝜉, 𝑡)𝑐𝑎𝑛 𝑏𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡𝑎𝑘𝑖𝑛𝑔 𝑠𝑢𝑛 𝑜𝑓 𝜙0, 𝜙1, 

𝜙2, . . . , 𝑖. 𝑒., 

𝜙(𝜉, 𝑡)  =  𝛴(𝜙0  +  𝜙1  +  𝜙2 + . . . . ). 

3.2 Example 2 

In this example, we consider another time-fractional KdV equation of 

the form 

𝐷𝑡
⍺𝜙 +  𝛽1𝜙ξξξ =  0;      0 <  𝛼 ≤  1,  

subject to the initial condition 

𝜙(𝜉, 𝑡) =  𝜙0 =  
𝑎

cosh2  𝛽1𝜉
, 

where 𝛽1 =  
𝑐0ℎ2

6 
  represents dispersion. Applying VIM, we find 
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𝜙𝑛+1(𝜉, 𝑡) = 𝜙𝑛(𝜉, 𝑡) + 𝜆 {𝐷𝑡
⍺𝜙𝑛(ξ, 𝑡) +

𝛽1
𝜕3𝜙𝑛

𝜕ξ3
}.                                                                                                    (3.5) 

Applying Laplace Transform of Eq. (3.5), we have  

𝜙𝑛+1(𝜉, 𝑠) = 𝜙𝑛(𝜉, 𝑠)

+ λℒ {{𝐷𝑡
⍺𝜙𝑛(ξ, 𝑡)

+ 𝛽1

𝜕3𝜙𝑛

𝜕ξ3
}}.                                                                   (3.6) 

Using the definition Eq. (1.1), we get the expression 

𝜙𝑛+1(𝜉, 𝑡) = 𝜙𝑛(𝜉, 𝑠) + λ {s⍺𝜙n(𝜉, 𝑠) −  s⍺−1𝜙n(𝜉, 0)}

+ 𝜆ℒ {𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}.                                                             (3.7) 

One can find the value of general Lagrange multiplier 𝜆 =
−1

s⍺   using 

the optimality conditions 
𝛿𝜙𝑛+1(𝜉,𝑠)

𝛿𝜙𝑛(𝜉,𝑠)
= 0 and 𝛿𝜙𝑛̃ = 0.  

By putting the value of λ and applying Inverse Laplace Transform on 

Eq. (3.7), we get 

𝜙𝑛+1(𝜉, 𝑡) = 𝜙𝑛(𝜉, 𝑡)

− ℒ−1 {s−⍺ℒ {𝐷𝑡
⍺𝜙𝑛

+ 𝛽1

𝜕3𝜙𝑛

𝜕ξ3
}}.                                                                  (3.8) 

The following iterations 𝜙1,𝜙2,𝜙3 …  can be obtained from the Eq. 

(3.8),  

𝜙1(𝜉, 𝑡) = 𝜙0(𝜉, 𝑡) − ℒ−1 {𝑠−𝛼ℒ {𝐷𝑡
𝛼𝜙0 + 𝛽1

𝜕3𝜙0

𝜕𝜉3
}}  

𝜙2(𝜉, 𝑡) = 𝜙1(𝜉, 𝑡) − ℒ−1 {𝑠−𝛼ℒ {𝐷𝑡
𝛼𝜙1 + 𝛽1

𝜕3𝜙1

𝜕𝜉3
}}  
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Further, using the values of 𝜙0(𝜉, 𝑡) 𝑎𝑛𝑑 
𝜕3𝜙0

𝜕𝜉3   the above 

expressions will end up with 

𝜙1(𝜉, 𝑡) = 𝑎 𝑠𝑒𝑐ℎ2𝛽1𝜉

−
𝑡𝛼

𝛤(1 + 𝛼)
{𝛽1(16𝑎𝛽1

3𝑠𝑒𝑐ℎ4𝛽1𝜉𝑡𝑎𝑛ℎ𝛽1𝜉

− 8𝑎𝛽1
3𝑠𝑒𝑐ℎ2𝛽1𝜉𝑡𝑎𝑛ℎ3𝛽1𝜉)} 

𝜙1(𝜉, 𝑡)
= 𝑎 𝑠𝑒𝑐ℎ2𝛽1𝜉

−
1

𝛤(1 + 𝛼)
{𝑡𝛼𝛽1(16𝑎𝛽1

3𝑠𝑒𝑐ℎ4𝛽1𝜉𝑡𝑎𝑛ℎ𝛽1𝜉

− 8𝑎𝛽1
3𝑠𝑒𝑐ℎ2𝛽1𝜉𝑡𝑎𝑛ℎ3𝛽1𝜉)}

+
1

(𝛤(2𝛼))(𝛤(1 + 𝛼))(𝛤(1 + 2𝛼))
{2𝑎𝑡(−1+𝛼)𝛽1

4𝑠𝑒𝑐ℎ5𝛽1𝜉(−𝑡𝛼𝛼𝛤𝛼𝛤( 1

+ 2𝛼) (−11𝑠𝑖𝑛ℎ𝛽1𝜉)

+ 𝑠𝑖𝑛ℎ3𝛽1𝜉)(𝑡𝛼𝛽1
4(−1208 + 1191𝑐𝑜𝑠ℎ2𝛽1𝜉 − 120𝑐𝑜𝑠ℎ4𝛽1𝜉

+ 𝑐𝑜𝑠ℎ6𝛽1𝜉)𝛤(1 + 𝛼)𝑠𝑒𝑐ℎ3𝛽1𝜉

+ 𝛤(1 + 2𝛼)(−11𝑠𝑖𝑛ℎ𝛽1𝜉 + 𝑠𝑖𝑛ℎ3𝛽1𝜉))} 

The solution ϕ(ξ, t)can be obtained by taking the sum of 𝜙0, 𝜙1, 

𝜙2, . . . , 𝑖. 𝑒., 

𝜙(𝜉, 𝑡) = 𝛴(𝜙0 + 𝜙1 + 𝜙2 +  … . . ) 

3.3 Example 3 

 Here, we consider the time − fractional KdV − like equation, i. e., 

𝐷𝑡
𝛼𝜙 + 𝑐0𝜙𝜉 + ⍺1(𝜙𝜉

2 − 𝜙𝜙𝜉) + 𝛽1𝜙𝜉𝜉𝜉 = 0;     0 < ⍺ ≤ 1, 

subject to the initial condition 

𝜙(𝜉, 0) = 𝜙0 =  
𝑎

cosh2β1𝜉
, 

where ⍺1 =  
𝑐0

2𝑘2
(∊ 𝑐𝜆3) represents non − linear and  𝛽1 =

 
𝑐0ℎ2

6
  represents the dispersion parameter. 

Now, implementing VIM, we have 
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𝜙𝑛+1(𝜉, 𝑡) = 𝜙𝑛(𝜉, 𝑡)

+  𝜆 {𝐷𝑡
⍺𝜙𝑛 + 𝑐0

𝜕𝜙𝑛̃

𝜕ξ
+ ⍺1((

𝜕𝜙𝑛̃

𝜕ξ
)2 − 𝜙𝑛̃

𝜕𝜙𝑛̃

𝜕ξ
)

+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
 }.                                                               (3.9) 

Applying Laplace Transform on Eq. (3.9), we obtain 

𝜙𝑛+1(𝜉, 𝑠) = 𝜙𝑛(𝜉, 𝑠)

+ ℒ {𝜆 {𝐷𝑡
⍺𝜙𝑛 + 𝑐0

𝜕𝜙𝑛̃

𝜕ξ
+ ⍺1((

𝜕𝜙𝑛̃

𝜕ξ
)2 − 𝜙𝑛̃

𝜕𝜙𝑛̃

𝜕ξ
)

+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}}. 

Using the definition Eq. (1.1), we have 

𝜙𝑛+1(𝜉, 𝑠) = 𝜙𝑛(𝜉, 𝑠) +  𝜆 {𝑠⍺𝜙𝑛(𝜉, 𝑠) − 𝑠⍺−1𝜙𝑛(𝜉, 0)}

+ 𝜆ℒ {𝑐0

𝜕𝜙𝑛̃

𝜕ξ
+ ⍺1((

𝜕𝜙𝑛̃

𝜕ξ
)2 − 𝜙𝑛̃

𝜕𝜙𝑛̃

𝜕ξ
)

+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}.                                                                (3.10) 

The value of Lagrange multiplier λ = 
−1

𝑠∝  sα can be obtained using the 

optimality conditions, i.e., 

𝛿𝜙𝑛+1(𝜉, 𝑠)

𝛿𝜙𝑛(𝜉, 𝑠)
= 0,   and    𝛿𝜙𝑛̃ = 0.  

On substituting the Lagrange multiplier and applying inverse 

Laplace Transform on Eq. (3.10), we get 

𝜙𝑛+1(𝜉, 𝑡) = 𝜙𝑛(𝜉, 𝑡)

− ℒ−1 {
1

𝑠∝
ℒ {𝐷𝑡

⍺𝜙𝑛 + 𝑐0

𝜕𝜙𝑛

𝜕ξ
+ ⍺1((

𝜕𝜙𝑛

𝜕ξ
)2 − 𝜙𝑛

𝜕𝜙𝑛

𝜕ξ
)

+ 𝛽1

𝜕𝜙𝑛

𝜕ξ3
}}.  

For 𝑛 = 0,1,2,..., we get the approximations  𝜙1, 𝜙2, 𝜙3  ... that are 
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𝜙1(𝜉, 𝑡) = 𝜙0(𝜉, 𝑡)

− ℒ−1 {
1

𝑠𝛼
ℒ {𝐷𝑡

⍺𝜙0 + 𝑐0

𝜕𝜙0

𝜕ξ
+ ⍺1((

𝜕𝜙0

𝜕ξ
)2 − 𝜙0

𝜕𝜙𝑛

𝜕ξ
)

+ 𝛽1

𝜕𝜙0

𝜕ξ3
}}.                                                                (3.11) 

Now, putting the values of𝜙0(𝜉, 𝑡),
𝜕𝜙0

𝜕ξ
)2, 𝜙0

𝜕𝜙0

𝜕ξ
 and 

𝜕3𝜙0

𝜕ξ3
  Eq. 

(3.11) and simplifying, we obtain 

𝜙1(𝜉, 𝑡) = 𝑎 𝑠𝑒𝑐ℎ2𝛽1𝜉

−
𝑡∝

Γ(1+ ∝
{−2𝑎𝑐0𝛽1sech2𝛽1𝜉 tanh 𝛽1𝜉

+ ⍺1(2𝑎2𝛽1sech4𝛽1𝜉 tanh 𝛽1𝜉
+ 4𝑎2𝛽1

2sech4 𝛽1𝜉tanh2 𝛽1𝜉)
+ 𝛽1(16𝑎𝛽1

3sech4 𝛽1𝜉 tanh 𝛽1𝜉
− 8𝑎𝛽1

3sech2 𝛽1𝜉 tanh3𝛽1𝜉)}. 

𝜙2 can be evaluated in the same manner and 𝜙(𝜉, 𝑡) can be obtained by 

taking the sum of 

𝜙0, 𝜙1, 𝜙2, i.e., 

𝜙(𝜉, 𝑡) = 𝛴(𝜙0 + 𝜙1 + 𝜙2 +  … . . ). 

3.4 Example 4: Gardner’s Equation 

Here, we solve time-fractional Gardner’s equation using Variational 

Iteration Transform Method,  

𝐷𝑡
𝛼𝜙 + ⍺1𝜙(1 + 𝜙)𝜙𝜉 + 𝛽1𝜙𝜉𝜉𝜉 = 0,    

along with the condition 

𝜙(𝜉, 0) = 𝜙0 =
𝑎

cosh2𝛽1𝜉
, 

where ⍺1 = 
𝑐0

2𝑘2(∊c𝜆3) represents the non-linear and 𝛽1 =
𝑐

0ℎ2

6
 represents 

the dispersion parameter. Implementing VIM, 

𝜙𝑛+1(𝜉, 𝑡) = 𝜙𝑛(𝜉, 𝑡) +  𝜆 {𝐷𝑡
𝛼𝜙𝑛 + ⍺1𝜙𝑛̃(1 + 𝜙𝑛̃)

𝜕𝜙𝑛̃

𝜕ξ
+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}. 

Now, applying Laplace Transform that gives 
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𝜙𝑛+1(𝜉, 𝑠) = 𝜙𝑛(𝜉, 𝑠) +  ℒ  {𝜆 {𝐷𝑡
𝛼𝜙𝑛 + ⍺1𝜙𝑛̃(1 + 𝜙𝑛̃)

𝜕𝜙𝑛̃

𝜕ξ
+

𝛽1
𝜕3𝜙𝑛̃

𝜕ξ3
}}. 

Using the definition of Laplace Transform of fractional derivative 

(Eq. 1.1) in the above equation, we have 

𝜙𝑛+1(𝜉, 𝑠) = 𝜙𝑛(𝜉, 𝑠) + 𝜆 {𝑠⍺𝜙𝑛(𝜉, 𝑠) − 𝑠⍺−1𝜙𝑛(𝜉, 0)}

+ ℒ {𝜆 {⍺1𝜙𝑛̃(1 + 𝜙𝑛̃)
𝜕𝜙𝑛̃

𝜕ξ
+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}}, 

While general Lagrange multiplier λ = 
−1

𝑠⍺  can be evaluated using the 

optimality conditions 

𝛿𝜙𝑛+1(𝜉, 𝑠)

𝛿𝜐𝑛(𝜉, 𝑠)
= 0,   and    𝛿𝜙𝑛̃ = 0,  

𝜙𝑛+1(𝜉, 𝑠) = 𝜙𝑛(𝜉, 𝑠)

− 𝑠−⍺ℒ {𝐷𝑡
𝛼𝜙𝑛 + ⍺1𝜙𝑛̃(1 + 𝜙𝑛̃)

𝜕𝜙𝑛̃

𝜕ξ
+ 𝛽1

𝜕3𝜙𝑛̃

𝜕ξ3
}. 

Here, we apply Inverse Laplace Transform that gives 

𝜙𝑛+1(𝜉, 𝑡) = 𝜙𝑛(𝜉, 𝑡)

− ℒ−1  {𝑠−⍺ℒ {𝐷𝑡
𝛼𝜙𝑛 + ⍺1𝜙𝑛̃(1 + 𝜙𝑛)

𝜕𝜙𝑛

𝜕ξ

+ 𝛽1

𝜕3𝜙𝑛

𝜕ξ3
}}. 

For 𝑛 = 0,1,2,..., we have the successive approximations ... that are 

𝜙0, 𝜙1, 𝜙2 

𝜙1(𝜉, 𝑡) = 𝜙0(𝜉, 𝑡)

− ℒ−1  {
1

𝑠⍺
ℒ {𝐷𝑡

𝛼𝜙0 + ⍺1𝜙0(1 + 𝜙0)
𝜕𝜙0

𝜕ξ

+ 𝛽1

𝜕3𝜙0

𝜕ξ3
}}.                                                             (3.12) 
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Substituting the values of 𝜙0(𝜉, 𝑡) , 
𝜕𝜙0

𝜕ξ
 in Eq. (3.12), we have 

𝜙1(𝜉, 𝑡) = 𝑎 𝑠𝑒𝑐ℎ2𝛽1𝜉

−
𝑡𝛼

Γ(1 +  𝛼)
{⍺1(−2𝑎2𝛽1sech4𝛽1𝜉 tanh 𝛽1𝜉

− 2𝑎3𝛽1 sech6𝛽1𝜉 tanh 𝛽1𝜉)
+  𝛽1(16𝑎 𝛽1

3sech4 𝛽1𝜉 tanh 𝛽1𝜉
− 8𝑎 𝛽1

3sech2 𝛽1𝜉tanh3 𝛽1𝜉)}, 

𝜙2can be obtained in a similar way. The solution 𝜙(𝜉, 𝑡) is the sum 

of 𝜙0, 𝜙1, 𝜙2,..., i.e., 

𝜙(𝜉, 𝑡) = 𝛴(𝜙0 + 𝜙1 + 𝜙2 +  … . . ). 

4. Concluding Remarks 

The proposed method LVM is understandable with only the basic 

knowledge of advance calculus; indeed, it is understandable even for the 

reader who has no background of calculus of variations. It is simple and 

easy to apply as compared to the more traditional VIM for fractional 

differential equations. The advantage of this extended variational method 

is that Laplace Transform helps to expedite the computational cost and 

can easily be applied to non-linear dynamical systems using user friendly 

softwares such as Mathematica𝑇𝑀 and Maple𝑇𝑀. 
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