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Abstract 

The nanoparticles used in nanofluid are prepared for carbides and 

oxides. In this paper, a nanofluid flow over a stretching sheet in the 

presence of viscous dissipation, heat source, and magnetic field was 

numerically explored with the help of the Runge-Kutta shooting 

technique and the effects of various parameters were analyzed using 

graphical representation. 

Keywords: buoyancy assisting, buoyancy opposing, MHD Boundary 

Layer Flow, nanofluid, Runge-Kutta shooting technique 

Introduction 

Nanofluid contains a nanometer sized metallic component in base fluid 

particles. The nanoparticles used in nanofluid are typical, same as those 

prepared for carbides and oxides. Afridib et al. [1] considered MHD 

stagnation point flows over a stretching sheet. Alawi et al. [2] focused 

on determining and modelling the forceful thermal conductivity and 

viscosity of nanofluid. Ali at al. [3] enhanced the thermophysical heat 

transference fluid. Awaludin et al. [4] studied the effects of MHD 

stagnation point fluid over a stretching sheet. Baag et al. [5] investigated 

heat transfer and boundary layer flow of MHD on a stretching sheet. 

Bhatti et al. [6] described the flow of a shrinking sheet of MHD. 

Chaudhary et al. [7] analysed the viscous flow of a shrinking surface in 

a porous medium. Ganesh et al. [8] analyzed the influence of non-linear 

thermal radiation on boundary layer flow and convective heat 

transference of 𝐴𝐼2𝑂3 nanofluid.  
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Ghan et al. [9] discussed an incompressible and unidirectional MHD 

flow of fluids on an oscillating in-clines belt embedded in the porous 

medium. Hamid et al. [10] discussed the influence of Williamson fluid. 

Ishaq et al. [11] investigated two dimensional nanofluid flow over a 

stretching sheet. Kumar et al. [12] studied the numerically unsteady flow 

of melting heat transference of nanofluids over a stretched sheet. Kamal 

et al. [13] investigated the MHD stagnation point draw of a nanofluid at 

a permeable stretching sheet with chemical attitude effect. Kumar et al. 

[14] studied the unsteady hydromagnetic boundary layer stagnation point 

nanofluid flow over a non-linear stretching surface. Kumar et al. [15] 

discussed MHD on the stretching surface. Maripala [16] investigated the 

nanofluid flow in the occurrence of radiations. 

Mahmood et al. [17] examined the axisymmetric fluid on a disc. 

Makinde et al. [18] investigated the steady MHD nanofluid boundary 

layer flow over a non-linear stretching sheet. Nojoomizadeh et al. [19] 

numerically investigated the heat transfer and laminar flow with a 

previous medium. Reddy and Krishna [20] described the unstable flood 

of the transversely magnetic field of constant strength. Shaba and Ali 

[21] investigated the problems of hydromagnetics boundary layer flow 

of a dusty fluid over a stretching sheet. Singh et al. [22] investigated 

MHD slip flow over a flat platter. Waqas et al. [23] described the idea of 

computation to investigate for buoyance and radiation effect on the 

MHD stagflation points of micropolar fluid. Wen et al. [24] studied the 

natural carbon dioxide (𝐶𝑜2), the field at low pressure (below 1 MPa) in 

a closed system. Younas et al. [25] studied external heat and radiated 

heat sources. Zaib et al. [26] discussed the axisymmetric flood of 

homogeneous-heterogeneous reactional. Sohaib et al. [27] obtained the 

numerical solution for radiation on hydromagnetic stagnation point flow.  

According to the best knowledge of the author, the numerical study 

of the effect of heat and boundary layer flow on steady convection flow 

and heat transfer past a vertical stretching sheet is not available. Energy 

and momentum equations are obtained with the help of similarity 

variables. The governing partial differential equations are transmuted 

into ordinary differential equations and numerically solved by using 

Runge-Kutta shooting technique. The effects of various parameters are 

analyzed using their graphical representation. 

2. Problem Description 

In this study, the vertical stretching sheet is in the direction of the x-axis  
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and the y-axis is orthogonal to the sheet. u is the velocity component in 

the x-direction and v is the velocity component in the y-direction. Taking 

into consideration c which is a positive constant; u = 𝑢𝑒(𝑥)= ax 

represents the unrestricted stream velocity, while u = 𝑢𝑤(𝑥)= cx 

represents the velocity when there is stretching on the sheet. When a heat 

source / sink is present, 𝐻0 is an external magnetic field that is practically 

perpendicular to the sheet. The principal equations of continuity, 

momentum, and energy are written as follows, 

𝜕𝑢

𝜕𝑥
+
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= 0        (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
 = −

1

𝜌

𝑑𝑝

𝑑𝑥
+

𝜕2𝑢

𝜕𝑦2
−

𝜎𝜇𝑒
2𝐻0

2

𝜌
𝑢 +gβ (𝑇 − 𝑇∞)   (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 +
𝑄

𝜌𝐶𝑝
(𝑇 − 𝑇∞)+𝜏(𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2
) (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2      (4) 

where 𝐷𝐵 is Brownian diffusion, 𝐷𝑇  is Thermophoresis diffusion, 𝜎 

is electrical conductivity, 𝜇𝑒 is magnetic permeability, 𝑇∞ is the 

temperature of free stream, g is the acceleration due to gravity, 𝛽 is the 

volumetric coefficient of thermal expansion, k is thermal conductivity, 

𝜐 =
𝜇

𝜌
 is the kinematic viscosity, and 𝑇𝑤 = 𝑇∞ + 𝑏𝑥 is the temperature 

of the sheet. 𝐶𝑤 = 𝐶∞ + 𝑏𝑥,  is the ratio of heat capacities. 

The boundary conditions pertaining to the horizontally moving 

boundary and convective heat transfer at the wall are formulated below. 

𝑣 = 0, 𝑢 = 𝑢𝑤(𝑥) = 𝑐𝑥, −𝑘
𝜕𝑇

𝜕𝑦
= ℎ𝑓(𝑇𝑓 − 𝑇), 𝐶 = 𝐶𝑤𝑎𝑡 y = 0 (5) 

( ) ,eu u x ax= = , ,T T C C as y = = →
 

3. Similarity Analysis 

The subsequent change and dimensionless quantities are used into 

equations while taking into account the boundary conditions. 

We have 
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     u = xa ( )f   ,   v = − ( )av f  . 

The equation of continuity satisfies equations (2-4) and transforms 

them as shown below. 
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= represents the factor of heat generation or absorption. 

eL = 

B

v

D
 is the Lewis number parameter,

bN  = 𝜏 B

bx
D

v
is the 

Brownainmotion parameter, and
tN  = 𝜏

DT bx

T v

 is the Thermophoresis 

parameter.  

4. Results and Discussion 

A steady laminar flow above a vertical stretching sheet with the existence  

( )2 21 1 0af ff f H f    + − + + − + =
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of viscous dissipation, heat sink or source, and magnetic field was 

explored numerically with the help of the Runge-Kutta shooting 

technique. physical parameter effects 
eL , 

bN , 
tN , Hartmann number, 

stretching velocity ratio, Biot number and velocity distribution along 

with skin friction and heat transfer coefficient. 

In Table 1, numerical comparison of the values of Pr for heat 

transformation is obtained by using the Runge-Kutta shooting scheme. 

The skin friction coefficient is compared with previously studied results 

in Table 2. In Figure 1, the effect of Ha on velocity for opposing and 

assisting flow is shown (𝑁𝑏 = 𝑁𝑡 = 𝐿𝑒 = 0). Figure 2 shows the effects 

of A when stretching is in flow in the opposite direction (𝑁𝑏 = 𝑁𝑡 =
𝐿𝑒 = 0). In Figure 3, the effects of Bi in the presence of a heat source on 

the dimensionless temperature for assisting and opposing flow can be 

seen. A similar effect for Bi can be seen in Figure 4 which illustrates the 

result of the Biot number in the company of heat sink on dimensionless 

temperature for assisting and opposing flow at 
r aP H A= =  (

0b t eN N L= = = ). Figure 5 displays the effects of stretching velocity 

ratio and mixed convection parameter on dimensionless skin friction for 

both assisting and opposing flow. It is found that skin friction increases 

with the mixed convection parameter and
aH , even though it drops with 

the stretching velocity ratio for mutually opposing and assisting flow (

0b t eN N L= = = ). The effects of Biot number 𝐵𝑖, heat generation / 

absorption coefficient  , and mixed convection parameter 𝜆 on the 

dimensionless heat transfer rate for both assisting and opposing flow are 

illustrated respectively in Figure 6 ( 0b t eN N L= = = ). The effects of 

Brownian motion
bN  in the presence of heat source on the dimensionless 

temperature for assisting and opposing flows are shown in Figure 7, 

respectively (
tN = 0.1, 0.2) (

e
L = 0.1, 0.5). Figure 8 illustrates the result 

of Thermophoresis 
tN  in the company of heat sink on the dimensionless 

temperature for assisting and opposing flow at 
r aP H A= =  (

bN = 0.1, 

0.2) (
e

L = 0.1, 0.5). The effects of Lewis number Le and 𝜆 for both 

assisting and opposing flow are illustrated respectively in Figure 9 (
tN

= 0.1, 0.2) (
bN = 0.1, 0.5).  
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Table 1. Numerical Comparison of 𝜃′(0) for Pr 

Pr Liaqat et al. 

[29] 

Sohaib et al. 

[28]  

Our Results 

0.72 0.8086 0.80863 0.80866 

1.00 1.0000 1.00000 1.00000 

3.00 1.9236 1.92367 1.92376 

10.0 3.7206 3.72066 3.72084 

100 12.2946 12.29405 12.29452 

Table 2. Numerical Comparison of – 𝑓′′(0) for M 

M Bagh et al. 

[31] 

Liaqat et al. 

[30] 

Our Results 

0.0 1.0000080 1.0000078 1.0000196 

0.2 1.0954458 1.0954462 1.0954480 

0.5 1.2247446 1.2247452 1.2247476 

1.0 1.4142132 1.4142142 1.4142192 

1.2 1.4832393 1.4832385 1.4832416 

1.5 1.5811384 1.5811392 1.5811402 

2.0 1.7320504 1.7320515 1.7320522 

 

Figure 1. Impact of Ha and Bi on velocity for supporting and conflicting 

flow 
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Figure 2. Impact of A and Bi on velocity for supporting and conflicting 

flow 

 
Figure 3. Impact of Bi and 𝛿 on temperature for supporting and 

conflicting flow 

   
Figure 4. Impact of Bi and 𝜆 on temperature for supporting and 

conflicting flow 
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Figure 5. Impact of A and 𝜆 on temperature for supporting and 

conflicting flow 

   

Figure 6. Impact of 𝜆 and 𝛿 on temperature for supporting and 

conflicting flow 

 

Figure 7. Impact of Nb and 𝜆 on temperature for supporting and 

conflicting flow 
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Figure 8. Impact of Nt and 𝛿 on temperature for supporting and 

conflicting flow 

   

Figure 9. Impact of Le and 𝛿 on temperature for supporting and 

conflicting flow 

5. Conclusion 

A nanofluid flow over a stretching sheet in the presence of viscous 

dissipation, heat source, and magnetic field was numerically explored 

with the help of the Runge-Kutta shooting technique. The effects of the 

specific parameters that influence the temperature and velocity 

distribution were noticed. Some notable observations are outlined as 

follows. 

• The increase in Ha and 𝜆 causes an increase in the velocity profile; 

however, an opposite behavior is demonstrated for A. 

• The heat transfer coefficient increases buoyancy assisting and it 

decreases buoyancy opposing.  
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• The non-dimensional velocity decreases by increasing the 

Hartmann number for buoyancy assisting  but an opposite effect is 

seen for buoyancy opposing flow. 

• Temperature profile increases with the increase in 𝑁𝑡. 

• Temperature rises as Bi increases. 
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