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ABstRact. A detailed investigation of properties and numerical solutions of Bratu type equations is
performed in this article. The approximate solutions of Bratu differential equations are computed by
Picard’s iterative scheme. The existence, uniqueness and convergence of solutions are verifiedffor
every example. It has also been proved that Bratu type equations are Ulam-Hyers-Rassias stable.
Furthermore, the derived results are compared with those already exist in the literature so.as,to valix
date that Picard’s scheme estimates the actual solutions very precisely as compared to othérnumeksical
techniques. The absolute errors are also estimated and compared which verified that results obtained
by Picard’s method have least error.
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PM Perturbation method HPM Homotopy Perturbation method

LM Laplace method PIA Perturbation Iteration Algorithm

BSM | B Spline method OHAM | Optimal Hemotopy Asymptotic method

1. InTRODUCTION

Mathematical modeling of many physical phenomenaiachieved in the form of integral equations, dif-
ferential equations, or integro-differentiahequations/j1—3]. Bratu type differential equations have many
applications in practical life including fueldignition, Chandrasekhar model, nanotechnology, thermal
reaction, heat transfer by conduction, radiativé heat transfer, and chemical reactor theory [4-7]. The
scientists and researchers areguery keen inuthe study of Bratu type equations (BTEs) as the solutions
of such types of equations afe more“natural and significant because of their important usage in engi-
neering and scientific experimentations.

Following equation_is,called one dimensional Bratu equation [8, 9]
U () +ue™@£o  with U(0)=0, U(1)=0; V x€]o0,1] (1)
where u > 0fis alphysicalparameter. Exact solution of above equetion (1) is [10]

cosh [x—0.5]%
Ux)=—2In ,
cosh(§)

where, 0 can'be obtained from

— 6
6= 2ucosh -—
H 4
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Several analytical, semi-analytical, and numerical schemes have been used to solve BTEs. Decomposi-
tion method (DM) [11], Homotopy Perturbation method (HPM) [12, 13], Perturbation Iteration Algo-
rithm (PIA) [14], Optimal Homotopy Asymptotic method (OHAM) [15], Laplace method (LM) [16],
Variational Iteration method (VIM) [17], Perturbation method (PM) [18], B Spline method (BSM) [19]
have been implemented to handle Bratu type equations (BTEs).

Picard’s method is an efficient and accurate technique which is used to solve nonlinear differential
equations, linear and nonlinear integral equations, and differential equations arising in fractal heat
transfer [20-24]. It converges rapidly and gives accurate solution, especially when it is applied to
nonlinear equation. This aspect motivates us to solve Bratu equations using Picard’s method.

The study of the Ulam-Hyers type stability of various dynamic systems has received great attention. The
famous Ulam-Hyers stability originated in a lecture at the Wisconsin University in 1940, in which Ulam
[25] proposed the problem of the stability for functional equations. A significance breakthrough came
in 1941, when Hyers [26] gave a partial solution to Ulam’s problem. After in-depth analysis of the Ulam-
Hyers stability structure, some researchers have extended and used the concept of Ulam- Hyers
stability, such as generalized Ulam-Hyers stability [27, 28], Ulam-Hyers-Rassias stability [29], generalized
Ulam-Hyers-Rassias stability, etc. Huang et al. [30] analyzed Hyers-Ulam stability while Qarawani [31]
investigated Hyers-Ulam-Rassias stability of nonlinear differential equations. Wang et al. considered
Ulam-Hyers stability of fuzzy fractional differential equations with delay [32,33].

The foremost aim of present article is to compute approximate solutions of BTEs using Picard’s method
which are new and not described before in the literature. The article is organized as: Section 2 covers
conditions for existence and uniqueness of solutions, while section 3 comprehend the illustration of
Picard’s method. Section 4 has solutions of numerical examples. The convergence and stability analyses
of derived solutions have been performed in section 5 and 6, respectively. Error estimation and
comparison of results are incorporated in section 7, while the article is concluded in section 8.

2. CondITIiOns foR ExXISTEncE and UnIQUENESS Of SoLUTIONns of BRaTU EQUarIOns

Below given result provides fundamental conditions for existence and uniqueness of solutions of Bratu
equations.

Theorem 1. There are three cases for u given in equation (1)
« If u = uo, then there exists one solution,
« If u < po, then there exist two solutions,
 If u> o, then no solution exists.

Here Lo is called the critical value [12,13] given as

1V
121_1 2F sinh -

7

and its numerical value is

Uo = 3.513830719.

Figure 1 shows that when u < 3.513830719, then 6 has two values for each value of u. Hence, there
are two solutions for each u <3.513830719. For u=3.513830719, only one value of 8 = 4.798645359
exists and we have unique solution. When u > 3.513830719, we do not have resultant value of 6, and
in this case, no solution of Bratu equation exists [12, 13].
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Figure 1: Comparison of u and 6.

3. DESCRIPTION of PicaRD’s METHOD

Description of Picard’s method for second order ordinary differential equation (ODE) and its imple-
mentation to Bratu equation are carried out in this section.

3.1. Formulation of Picard’s Method for Second Order ODE. Let us take a second order ODE
L(U(x)) = N(U(x)), (2)

where L(U(x)) is linear operator while N (U(x)) is nonlinear operator [20].
Writing (U (x)) in terms of derivative of second order as

L(U(x) = U (x),
while N (U(x)) in terms of U(x) and U (x) as

N(UMK) = U, UK ,
then, equation (2) yields U =N UK, U,
(x) (3)

where

U(O)=a and U (0)=86.
Solving equation (3), we have

Jx )
Ulx)=a+6x+ N U(x), U(x dxdx. (4)
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Hence, the iterative formula is {
X X

U (X)=a+68x+ J , (5)

N
i+l Un(x), U, (x) dxdx,

0 0

that is Picard’s iterative scheme for second order ordinary differential equation [21, 22].

3.2. Implementation to Bratu Equation. Let us take equation (1) as
" U(x)
U (x)+ue =0 with u()=0, U(1)=0; VY x € [0, 1]. (6)

Here }
L(U(x)) = U (x) and N (U(x)) = et

From equation(6), we have [12, 34]
U (x)= —pei, (7)

Implementation of Picard’s method, yields

Jx )x
Unia(X) =a+8x — u etn®dxdx, (8)
0 0
where
Uu)=a=0,
and 8 changes as u changes
Jx)x
= Una(x)=8x—u etn®dxdx. (9)
0 0

This is Picard’s iterative scheme for Bratu equation.

4. SoruTIOns of BTEs Using PicaRD’s METHOD

In this section, we use Picard’s iterative scheme to compute approximate solutions of various Bratu
type equations.

4.1. Example 1. Consider
U ' (x)+ed® =0  with U()=0, U(1l)=0; Y x € [0, 1]. (10)

Here, u = 1. As previously deliberated that for u <3.513830719, there exist two solutions of Bratu
equation. Thus, equation (10) has two solutions and for finding tflwse solutions
cosh [x —0.5]% -

U(x)=—2In ’
cosh(§)

where 6 can be obtained from

Since u =1, so

N 2]
6= 2 cosh Z . (11)
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After solving equation (11), we have
6:=1.517164598, 6, = 10.9387028.

Thus, we obtained two solutions 6; (called lower solution) and 8, (called higher solution). However

in the present case, merely lower solution will be used, then
|

cosh [X -0 5] 1.517164598
U(x)=—2In 1517164598 ,
cos 4

= U(x)=—2In 0.9321424738 cosh (0.7585822990 x — 0.3792911495) ,

that is the exact solution of equation (10). Taking Uo(x) = 0 and applying Picard’s method, we get

Ui(x) = 0.5493527280 x — 0.5 x?,

U-(x) = 0.5493527280x — 0.5 x> — 0.09155878800 x> + 0.02909214918 x* + 0.01235224910 x° (12)
8
— 0.001651763169X — 0.001634978357 X +0.0003720238095 x ,

and
Us(x) = 0.5493527280 x — 0.5x* — 0.09155878800 x> + 0.02909214918 x* + 0.01831175760 x°
8 9
— 0.003459802640 X — 0.001764607014 X +0.00009322482480x +0.0001580853532 x
+0.4533942348 x 10> x*® — 0.00001393134891 x ™' +0.06120893625 X 10 ° x'? (13)

+0.06540389326 X 10 ° x'3 +0.04400289 x 10 % x* — 0.03474251 X 10 © x*°

—0.03008674 X 10 7 x*® +0.02236216459 X 10’ x*” — 0.02261465929 X 10 & x*8,

that is the approximate solution of equation (10).

4.2. Example 2. Consider

UKy (x)+2e =0 with U)=o0, U(1) =
0} V x €0, 1]. (14)

Here, u= 2. As previously deliberated that for u <3.513830719, there exist two solutions of Bratu
equation. Thus, equation (14) has two solutions and for finding those solutions
!
cosh [x —0.5]%
U(x)=—2In ’
cosh(%)

where 6 can be derived from

v 6
6= 2ucosh 7

Since u =2, so

6= 2X2cosh . (15)

After solving equation (15), we get

0, =2.357551054, 0, = 8.5071995.
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Thus, we obtained two solutions 6; (called lower solution) and 8, (called higher solution). However
in the present case, merely lower solution will be used, then |
cosh [x — 0.5]2357551054 '
: 2

Ux)=—2In 2357551054 ,
cosh 4

= U(x)=—21In 0.8483379380 cosh (1.178775527 x — 0.5893877635) ,
that is the exact solution of equation (14). Taking Uo(x) = 0 and applying Picard’s method, we get
Ui(x) = 1.248217518 x — x?,
Ua(x) = 1.248217518 x — x* — 0.4160725060 x> + 0.03682941898 x* + 0.09240872640 x> (16)
+0.01860156574 x* — 0.02971946472 x” + 0.005952380952 X8,
and
Us(x) = 1.248217518 x — x* — 0.4160725060 x> + 0.03682941898 x* + 0.1664290024 x°
— 0.001165361882 % — 0.02640249326 x” — 0.006559875108 x4+ 0.003173141654 x °

+0.001944801524 x*® — 0.0005966016460 x** — 0.0001722400368 x* (17)

+0.00002374648306 x** + 0.00002586929702 x'* — 0.02644413 X 10 ° x®°

— 0.4602890 X 10 "> x'® + 0.1300746880 X 10 > x’ — 0.1157870556 X 10 © x'&,

that is the approximate solution of equation (14).

4.3. Example 3. Consider

U (x) + 3.513830719 e =0 with u(0) =
Q U(l)=0; V xelo,1]. (18)

Here, u = 3.513830719. As previously deliberated that for u = 3.513830719, Bratu equation has a

unique solution. Therefore, equation (18) has a unique solution and for finding that
1

Ux) = —21n cosh [x — 0.5]%)
cosh(§) ’

and 6 can be derived from

— 6
6= 2ucosh — .
H 4

As u=3.513830719, so

Vv 2
6= 23513830719 cosh " . (19)

After solving equation (19), we have
6 = 4.798645359.

Thus,

4.798645359
cosh [x —0.5]7=5 >

h 4.798645359 4
1

U(x)=—2In o

= U(x)=—2In 0.5524420911 cosh (2.399322680x — 1.199661340) ,
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that is the exact solution of equation (18). Taking Uo(x) =0 and applying Picard’s method, we get
Ui(x) =3.999916982 x — 0.5x2,

Ua(x) = 3.999916982 x — 1.756915360 x> — 2.342505194 x* — 2.196046963 x*
6 8
— 1.522550589 X +0.4538503540x — 0.04183044990x +0.00130722869 x ,

Us(x) = 3.999916982 x — 1.756915360 x> — 2.342505194 x> — 1.827997980 x* — 0.2276930256x°  (20)
+2.820111160 x° + 1.569248472 x” + 0.06549570825 x8 — 0.09860541020 x° — 1.238108848 xX°
— 0.2943933311 x ! — 0.1635341992 x 12 — 0.3033346185x 13 + 0.2133926181 x 4

16 17
— 0.04140070848 x = +0.006063594280x  +0.006295431774x  — 0.002405744959 x18,

and

Us(x) = 3.999916982 x — 1.756915360 x> — 2.342505194 x* — 2.608816838 x* + 2.057791678 x°
+1.436367948 x° + 0.3755924260 x’ — 0.5989937866 x® — 1.115268983 x° — 0.1861262692 x*°
+0. 4014073533X11 +0.4895580669x** — 0 2133778426x" — 0 1783860287x'* — 0. 2345269362X15

~0.1108694331 x * +0. O3254347491x +0. 09468297982x +0. 05455703540x
+0.002336385453 x*° — 0.02429386712 x** — 0.02180400406 x** + 0.007242441400 x>
+0.007416062365 x** +0.0024638204 x> — 0. 0005953446661 x* —0. 001204562610 x*

—0.0006734612338 x *® — 0.0001107763731 x *° +0. 0007713580433x +0.000080209802 x

+0.0000344321121 x®2 + 0.6141674 X 10 ° x>3 — 0.02011121798 X 10 ° x**
-5
37

35 _¢ 36 -6
—0.0922424728 X 10 X 0.1619096512_>7< 1309 ®x  +0.05630807 X 10 X

B 41
+0.0042976 X 10 745< +0.07480942 x 10 x e 0.0306817 X 10 ’ x 50 0. 039654 X 10 8x

+0.05616 X 10 ~x — 0. 01964754709 X10 °x + O 04198464217 x 10 x

. 47
—0.06408030986 X 10 ° x  +0.07435209057 X 10  x  — 0.06762690365 X 10 % x

_ _ 49 —15
+0.04895422041 X 10 B2 x™® _ 00283546 x 10 x  +0.01310784960 x 10 ~ x*°

—16 —19
51 —17 52 53
~0.004786551130 X 10 x ~ +0.001353426966 X 10 _x  —0.00286394 X 10 x
+0.04275830164 X 10 > x  — 0.4022680475 X 10 > x +0.1795876770 X 10 ~ x . (21)

that is the approximate solution of equation (18).

4.4. Example 4. Consider

U (x)+5eu® =90 with u)=0, U(1)=0; V x € [0, 1]. (22)
Here, u=5. To find the solutions of above equation (22)
cosh [x —0.5]% -

U(x)=—2In ,
cosh(§)

and 6 can be derived from

6= 2 X5 cosh

Since u =25, then
- e
6= 2 X 5cosh Z . (23)
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After solving equation (23), we get

v
6 = (—3.181805553 + 5.282305940 i) 10.

Since 6 is a complex number, therefore we can not continue further. We have deliberated already that
for u > 3.513830719, Bratu equation has no solution.

5. ConvERgENCcE AnaLysIS

The convergence of solutions of numerical examples derived by Picard’s method is discussed in this
section.

5.1. Convergence Criteria. Let Ux(x) be the sequence of functions approximated by Picard’s method
defined on set D C R”. The sequence Ux(x) — U (x) when for each € > 0, there ex-ist m, n
€ Z* for which [35]

sup Un(x) — U(x) =] Un(x) —U(x)|| <€ when m<n.

When m and € depend upon x, the convergence is called pointwise convergence, while the convergence
is said to be uniform convergence when m and &€ do not depend on x . In the limiting form, it is
represented as [35]

lim U.(x) = U(x).
1n— o0
Theorem 2. The sequence Unx(x) is uniformly convergent iff

lim ||Un(x) — U(x)| = 0.

5.2. Convergence of Solution of Example 1. As we have discussed in Theorem 2 that Ux(x) is
convergent uniformly iff

sup Un(x) — U(x) =] Unlx) — U(x)|| <e when m<n, Vxelo0,1].

Taking
e = 0.00009,

we have

sup Un(x) — U(x) =] Un(x) — U(x)|| = Max Error < € when m<n, Vxe€][0,1]

which implies that Ux(x) converges to U(x), where m =2 and U(x) represents exact solution.

5.3. Convergence of Solution of Example 2. As we have discussed in Theorem 2 that Ux(x) is
convergent uniformly iff

sup Un(x) — U(x) = Un(x) — U(x)|| <€ when m<n, Vxe]o,1].

Taking
€ = 0.0009,

we have

sup Un(x) — U(x) = | Un(x) — U(x)|| = Max Error<e when m<n, V xe€][0,1]

which implies that Ux(x) converges to U(x), where m =2 and U(x) represents exact solution.
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5.4. Convergence of Solution of Example 3. As we have discussed in Theorem 2 that Ux(x) is
convergent uniformly iff

sup Un(x) — U(x) = || Un(x) —UX)|| <€ when m<n, Vxe[o,1].
Taking
g = 0.022414,

we have

sup Un(x) — U(x) = | Un(x) — U(x)|]| = Max Error < € when m<n, Vxe&[0,1]

which implies that Ux(x) converges to U(x), where m =3 and U(x) is the exact solution.

6. STaBILITy AnaLysIS

We perform stability analysis of numerical scheme for Bratu type equations by using the following
stability criteria.

6.1. Generalized Ulam-Hyres Stability (Ulam-Hyers-Rassias Stability). Let the second order
differential equation is

ExX) — G x,&x), E(x) =0 with &O0)=0 and & (0)=0. (24)

Theorem 3. The above equation (24) is Ulam-Hyers-Rassias stable, if it fulfills the conditions given
below

(1) &.x) — G x,¢&x), §,(x) =HXx),

(2) &x) — dx) = M(x),

where &(x), Z(x) € C?[a, b] and H(x), M(x) are positive continuous functions. Furthermore, H(x)
does not depend on &(x) and G x, &(x), & ’(x) [29-31].

6.2. Stability of Example 1. Consider
" U(x)
U (x)+e =0 with u)=0, U(@1)=0; VY x € [0, 1].
Here, &(x) = Us(x) and Z(x) = U(x), then

Us(x) Us(x) 2

= max Us(x)+e = H()=x", 00038857183,

U;(x)+e

and

| Us(x) — U(x)| < max]|Us(x) — U(x)| < M(x) =x*>+ 0.000089546.

Hence, Example 1 fulfills the conditions of Theorem 3 and is Ulam-Hyers-Rassias stable.
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6.3. Stability of Example 2. Consider

" U(x)
U (x)+2e =0 with u)=0, U(@1)=0; V xe[o0,1].

Here, &(x) = Us(x) and Z(x) = U(x), then

Us(x)

U;(x) +2e Us(x)

" _ 4
= max Us(x) +2e = H(x) =x", 009701083186,

and

| Us(x) — U(x)| < max]| Us(x) — U(x)| < M(x) = x %+ 0.00082169.

Thus, Example 2 follows the conditions of Theorem 3 and is Ulam-Hyers-Rassias stable.

6.4. Stability of Example 3. Consider

U} (x) +3.513830719 ¢ = with u(0) =0, u(1) =
0, VY x € [0, 1].

Here, &(x) = Ua(x) and Z(x) = U(x), then

Us (x) " Us (x) 6
U, (x) + 3.513830719 ¢ < max Us(x)+3.513830719e =< H(x) =x +65.60872438,

and

| Ua(x) — U(x)| < max|Ua(x) —U(x)| < M(x) =x ®+0.022414.

Thus, Example 3 satisfies the conditions of Theorem 3 and is Ulam-Hyers-Rassias stable.

7. RESULTS and DISCUSSIOns

Here, we demonstrate the efficacy and veracity of Picard’s iterative scheme through error’s estimation,
comparison of maximum errors and graphical illustrations of the obtained approximate solutions of
BTEs.

7.1. Results of Example 1. Table 1 contains Error| estimated by using Picard’s method, which shows
that max Error =|[[Errof|| = 0.000895460. The [Error || estimated by Picard’s method, Perturbation
Iteration Algorithm (PIA) [21], Decomposition method (DM) [18], HPM (Homotopy Perturbation
method) [13], and OHAM [15] are listed in Table 2 which indicates that Picard’s method has smallest
| Error]|.

Figure 2(a, b) demonstrates the comparison of exact solution with approximate solutions obtained
by Picard’s iterative scheme. Figure 2(a) shows that both approximate and exact solutions coincide with
each other. Figure 2(b) shows that approximate solutions of zero to third orders are converging to exact
solution. Figure 2(c) illustrates the comparison of solutions obtained by Picard’s iterative scheme, HPM,
OHAM, DM, and PIA with the exact solution, which shows that Picard’s solution and exact solution
make an excellent agreement while other solutions diverge from exact solution. Figure 2(d) shows that
Picard’s iterative scheme has least |Error| as compared to other mentioned

techniques.
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Table 1: Error Estimation of Example 1

X Exact Solution | Picard’s Solution | |Error]

0.00 | 0.0000000000 0.0000000000 0.0000000000
0.10 | 0.0498467900 0.0498468027 1.27000 X 10
0.20 | 0.0891899350 0.0891902388 3.03800 X 10
0.30 | 0.1176090956 0.1176109762 1.88060 X 10
0.40 | 0.1347902526 0.1347966401 6.38750 X 10
0.50 | 0.1405392142 0.1405548425 1.56280 X 10
0.60 | 0.1347902526 0.1348215219 3.12690 X 10 ~
0.70 | 0.1176090956 0.1176641754 5.50798 X 10
0.80 | 0.0891899350 0.0892797819 8.95460 X 10
0.90 | 0.0498467900 0.0498874514 4.06614 X 10
1.00 | 0.0000000000 0.0000000000 0.0000000000

11

Table 2: Comparison of ||Error| of Example 1

Methods |Error]]

Picard’s method 0.0000895460
Perturbation Iteration Algorithm | 0.0011992210
Decomposition method 0.0030154732
Homotopy Perturbation method | 0.1431299094
OHAM 0.9944206698

7.2. Results of Example 2. Table 3 lists Eqror estimated by Picard’s iterative scheme. We can ob-
serve that||Error || = max Error # 0.00082169. The ||Error || estimated by Picard’s method, Laplace
method (LM) [16], Decomposition method (DM) [18], Perturbation Iteration Algorithm (PIA) [14],
and Homotopy Perturbation method (HPM) [13] contained in Table 4 indicates that Picard’s method
has smallest ||[Error|| amongst these methods.

Figure 3(a, b) illustrates the comparison of exact solution with approximate solutions obtained by
Picard’s iterative scheme. Figure 3(a) shows that both approximate and exact solutions match with each
other. Figure 3(b) shows that approximate solutions of zero to third orders are converging to exact
solution. Figure 3(c) demonstrates the comparison of solutions obtained by Picard’s iterative scheme,
DM, LM, PIA, and HPM with the exact solution, which shows that Picard’s solution and exact solution
make an excellent agreement while solutions derived by other mentioned techniques diverge from
exact solution. Figure 3(d) shows that Picard’s iterative scheme has least ||Error| as compared to other
mentioned techniques.

7.3. Results of Example 3. The Erfor egtimated by Picard’s iterative scheme is enlisted in Table 5
which shows that [[Error|| = max Error = 0.022414. The |[Error|| estimated by Picard’s method, B
Spline method [19], HPM (Homotopy Perturbation method) [13], PIA (Perturbation Iteration al-
gorithm) [14], and VIM (Variational Iteration method) [17] are listed in Table 6 which shows that
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Picard’s method has smallest ||Error|| amongst these methods.

Figure 4(a,b) illustrates the comparison of exact solution with approximate solutions obtained by
Picard’s iterative scheme. Figure 4(a) shows that both approximate and exact solutions match with each
Figure 4(b) shows that approximate solutions of zero to fourth orders are converging to
exact solution. Figure 4(c) demonstrates the comparison of approximate solutions computed by Picard’s
iterative scheme, BSM, HPM, PIA, and VIM with exact solution, which shows that Picard’s solution and
exact solution make an excellent agreement while solutions computed by other mentioned methods
move away from exact solution. Figure 4(d) shows that Picard’s iterative scheme has smallest |[Error|| as

other.

compared to other mentioned schemes.
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Table 3: Error Estimation of Example 2

X Exact Solution | Picard’s Solution | |Error]
0.00 | 0.0000000000 0.0000000000 0.0000000000
0.10 | 0.1144107440 0.1144110226 7.7860 X 10
0.20 | 0.2064191156 0.2064266804 7.5640 X 10
0.30 | 0.2738793116 0.2739270572 4.7745 % 10
0.40 | 0.3150893646 0.3152541108 1.6474 X 10
0.50 | 0.3289524214 0.3293601056 8.2169 X 10
0.60 | 0.3150893646 0.3152541108 1.6474 X 10
0.70 | 0.2738793116 0.2739270572 4.7745 X 10
0.80 | 0.2064191156 0.2064266804 7.5640 X 10
0.90 | 0.1144107440 0.1144110226 7.7860 X 10
1.00 | 0.0000000000 0.0000000000 0.0000000000
Table 4: Comparison of ||Error| of Example 2
Method |Error]]
Picard’s method 0.0008216900
Laplace method 0.0123778084
Decomposition method 0.0146751156
Perturbation Iteration Algorithm | 0.0523780000
Homotopy Perturbation method | 0.2559341111
Table 5: Error Estimation of Example 3
X | Exact Solution | Picard’s Solution | |Error|
0.0 | 0.000000000 0.0000000000 0.000000000
0.1 | 0.395805699 0.3957501818 5.5517 X 10
0.2 | 0.739097410 0.7385461713 55124 X 10
0.3 | 1.008758260 1.0074268710 1.3314 X 10
0.4 | 1.182536660 1.1817929190 7.4374 X 10
0.5 | 1.242742690 1.2393843260 3.3584 X 10
0.6 | 1.182536660 1.1712949450 1.1242 X 10
0.7 | 1.008758260 0.9890955265 1.9663 X 10
0.8 | 0.739097410 0.7166833621 22414 X 10
0.9 | 0.395805699 0.3834243783 1.2381 X 10
1.0 | 0.000000000 0.0000000000 0.000000000

8. ConcLUSIONn

Current investigation is devoted to the derivation of approximate solutions of BTEs using Picard’s iter-
ative scheme which is a reliable, effective, and efficient method for solutions of such type of equations.
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Figure 3: Graphical lllustration of Example 2

Table 6: Comparison of ||Error|| of Example 3

Method |Error]|
Picard’s method 0.0224140000
B Spline method 0.1347528700

Homotopy Perturbation method | 0.4964351282
Perturbation Iteration Algorithm | 0.7001783219
Variational Iteration method 1.3943488610

Existence and uniqueness of solutions have been confirmed. Convergence and stability of solutions
of numerical examples have also been examined. Furthermore, the absolute error for each numerical
example has been computed. The Picard’s results are compared with the results attained by DM, PIA,
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Figure 4: Graphical lllustration of Example 3

HPM, OHAM, LM, VIM, PM, and BSM through tables and graphical illustrations, and then discussed
thoroughly. The derived results categorically indicate the following findings:

+ The solutions of BTEs are convergent.

+ The BTEs are Ulam-Hyers-Rassias stable.

+ Picard’s solutions have least ||Error || amongst other mentioned techniques.

- Picard’s solutions are established to be in excellent agreement with exact solutions.

The derived results demonstrate the ability of Picard’s iterative scheme in contrast of other stated
methods and certainly verify the efficacy and precision of Picard’s method for solution of BTEs. More-
over, these results will establish a foundation for further exploration concerning future development in
differential equations and other associated fields of research. The current research investigation can be
extended for the case of fractional Bratu differential equations comprising different forms of fractional
derivatives.
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