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ABStRact. A detailed investigation of properties and numerical solutions of Bratu type equations is 
performed in this article. The approximate solutions of Bratu differential equations are computed by 
Picard’s iterative scheme. The existence, uniqueness and convergence of solutions are verified for 
every example. It has also been proved that Bratu type equations are Ulam-Hyers-Rassias stable. 
Furthermore, the derived results are compared with those already exist in the literature so as to vali- 
date that Picard’s scheme estimates the actual solutions very precisely as compared to other numerical 
techniques. The absolute errors are also estimated and compared which verified that results obtained 
by Picard’s method have least error. 
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Abbreviations 

BTEs Bratu type equations ODE Ordinary differential equation 
DM Decomposition method VIM Variational Iteration method 
PM Perturbation method HPM Homotopy Perturbation method 
LM Laplace method PIA Perturbation Iteration Algorithm 
BSM B Spline method OHAM Optimal Homotopy Asymptotic method 

 
1. InTRODUCTIOn 

Mathematical modeling of many physical phenomena achieved in the form of integral equations, dif- 
ferential equations, or integro-differential equations [1–3]. Bratu type differential equations have many 
applications in practical life including fuel ignition, Chandrasekhar model, nanotechnology, thermal 
reaction, heat transfer by conduction, radiative heat transfer, and chemical reactor theory [4–7]. The 
scientists and researchers are very keen in the study of Bratu type equations (BTEs) as the solutions 
of such types of equations are more natural and significant because of their important usage in engi- 
neering and scientific experimentations. 

Following equation is called one dimensional Bratu equation [8, 9] 

U (x) + µ eU(x) = 0 with U (0) = 0 , U (1) = 0 ; ∀ x ∈ [ 0 , 1] (1) 
where µ > 0 is a physical parameter. Exact solution of above equation (1) is [10] 

 

 

 where ϑ can be obtained from 

U (x) = −2 ln 2 , 
cosh( ϑ ) 
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Several analytical, semi-analytical, and numerical schemes have been used to solve BTEs. Decomposi- 
tion method (DM) [11], Homotopy Perturbation method (HPM) [12, 13], Perturbation Iteration Algo- 
rithm (PIA) [14], Optimal Homotopy Asymptotic method (OHAM) [15], Laplace method (LM) [16], 
Variational Iteration method (VIM) [17], Perturbation method (PM) [18], B Spline method (BSM) [19] 
have been implemented to handle Bratu type equations (BTEs). 

Picard’s method is an efficient and accurate technique which is used to solve nonlinear differential 
equations, linear and nonlinear integral equations, and differential equations arising in fractal heat 
transfer [20–24]. It converges rapidly and gives accurate solution, especially when it is applied to 
nonlinear equation. This aspect motivates us to solve Bratu equations using Picard’s method. 

The study of the Ulam-Hyers type stability of various dynamic systems has received great attention. The 
famous Ulam-Hyers stability originated in a lecture at the Wisconsin University in 1940, in which Ulam 
[25] proposed the problem of the stability for functional equations. A significance breakthrough came 
in 1941, when Hyers [26] gave a partial solution to Ulam’s problem. After in-depth analysis of the Ulam-
Hyers stability structure, some researchers have extended and used the concept of Ulam- Hyers 
stability, such as generalized Ulam-Hyers stability [27, 28], Ulam-Hyers-Rassias stability [29], generalized 
Ulam-Hyers-Rassias stability, etc. Huang et al. [30] analyzed Hyers-Ulam stability while Qarawani [31] 
investigated Hyers-Ulam-Rassias stability of nonlinear differential equations. Wang et al. considered 
Ulam-Hyers stability of fuzzy fractional differential equations with delay [32, 33]. 

The foremost aim of present article is to compute approximate solutions of BTEs using Picard’s method 
which are new and not described before in the literature. The article is organized as: Section 2 covers 
conditions for existence and uniqueness of solutions, while section 3 comprehend the illustration of 
Picard’s method. Section 4 has solutions of numerical examples. The convergence and stability analyses 
of derived solutions have been performed in section 5 and 6, respectively. Error estimation and 
comparison of results are incorporated in section 7, while the article is concluded in section 8. 

2. CondITIOns foR ExISTEncE and UnIQUEnESS Of SoLUTIOns of BRaTU EQUaTIOns 

Below given result provides fundamental conditions for existence and uniqueness of solutions of Bratu 
equations. 

Theorem 1. There are three cases for µ given in equation (1) 
• If µ = µ0, then there exists one solution, 
• If µ < µ0, then there exist two solutions, 
• If µ > µ0, then no solution exists. 

Here µ0 is called the critical value [12, 13] given as 
 

 
and its numerical value is 

1 = 
1 

2 µ 
4 0 sinh

  
ϑ
  

, 

µ0 = 3.513830719. 
Figure 1 shows that when µ < 3.513830719, then ϑ has two values for each value of µ. Hence, there 

are two solutions for each µ < 3.513830719. For µ = 3.513830719, only one value of ϑ = 4.798645359 
exists and we have unique solution. When µ > 3.513830719, we do not have resultant value of ϑ, and 
in this case, no solution of Bratu equation exists [12, 13]. 
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Figure 1: Comparison of µ and ϑ. 

 
 

3. DESCRIPTIOn of PICaRD’s METHOD 

Description of Picard’s method for second order ordinary differential equation (ODE) and its imple- 
mentation to Bratu equation are carried out in this section. 

3.1. Formulation of Picard’s Method for Second Order ODE. Let us take a second order ODE 

L(U (x)) = N (U (x)) , (2) 

where L(U (x)) is linear operator while N (U (x)) is nonlinear operator [20]. 

Writing (U (x)) in terms of derivative of second order as 
′′ 

 
while N (U (x)) in terms of U (x) and U 

N 

(U (x)) = U 
′ 
(x) as 

  

(x) , 

 
′ 

then, equation (2) yields 

 
where 

 U (x) = N
  

U (x) , U 
′′ 

 
 

 
′ 

 
′ 
(x)

  
, (3) 

 
Solving equation (3), we have 

U (0) = α and U (0) = β . 

x 

U (x) = α + β x + 
0 

 

 

N  U (x) , U 
0 

 
′ 
(x)

   
dxdx. 

 
(4) 

x 

L 

(U (x)) = U (x) , U (x) , 
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Hence, the iterative formula is 
x  x 

U (x) = α + β x + 
∫ 
∫ 

N
 

′ 

 (5) 

n+1 Un(x) , Un(x) 
0  0 

dxdx, 

that is Picard’s iterative scheme for second order ordinary differential equation [21, 22]. 

3.2. Implementation to Bratu Equation. Let us take equation (1) as 
′′ U (x) 

U  (x) + µ e = 0 with U (0) = 0 , U (1) = 0 ; ∀ x ∈ [ 0 , 1]. (6) 
Here  

L(U (x)) = U 
 
(x) and N (U (x)) = µ eU(x). 

From equation(6), we have [12, 34]  
U (x) = −µ eU(x) 

 
. (7) 

Implementation of Picard’s method, yields 
x  x 

 

 
where 

Un+1(x) = α + β x − µ 
0 

eUn(x)dxdx, (8) 
0 

U (0) = α = 0 , 
and β changes as µ changes 

x 

⇒ Un+1(x) = β x − µ 
0 

x 

eUn(x)dxdx. (9) 
0 

This is Picard’s iterative scheme for Bratu equation. 

4. SoLUTIOns of BTEs USIng PICaRD’s METHOD 

In this section, we use Picard’s iterative scheme to compute approximate solutions of various Bratu 
type equations. 

4.1. Example 1. Consider 

U ′′ (x) + eU(x) = 0 with U (0) = 0 , U (1) = 0 ; ∀ x ∈ [ 0 , 1]. (10) 

Here, µ = 1. As previously deliberated that for µ < 3.513830719 , there exist two solutions of Bratu 
equation. Thus, equation (10) has two solutions and for finding those solutions 

 
 

 where ϑ can be obtained from 

U (x) = −2 ln 2 , 
cosh( ϑ ) 
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After solving equation (11), we have 

ϑ1 = 1.517164598 , ϑ2 = 10.9387028. 

Thus, we obtained two solutions ϑ1 (called lower solution) and ϑ2 (called higher solution). However 
in the present case, merely lower solution will be used, then 

  
cosh

 
[x − 0.5] 1.517164598 ! 

U (x) = −2 ln 
cosh

 1.517164598 , 

 
⇒ U (x) = −2 ln

 
0.9321424738 cosh (0.7585822990 x − 0.3792911495)

 
, 

that is the exact solution of equation (10). Taking U0(x) = 0 and applying Picard’s method, we get 

U1(x) = 0.5493527280 x − 0.5 x2 , 

U2(x) = 0.5493527280 x − 0.5 x2 − 0.09155878800 x3 + 0.02909214918 x4 + 0.01235224910 x5 (12) 
8 

— 0.001651763169 x − 0.001634978357 x + 0.0003720238095 x , 

and 

U3(x) = 0.5493527280 x − 0.5 x2 − 0.09155878800 x3 + 0.02909214918 x4 + 0.01831175760 x5 
8 9 

— 0.003459802640 x − 0.001764607014 x + 0.00009322482480 x + 0.0001580853532 x 
+ 0.4533942348 × 10 x − 0.00001393134891 x + 0.06120893625 × — 

10 x (13) 

+ 0.06540389326 × 10 x + 0.04400289 × 10 x − 0.03474251 × — 
10 x 

— 0.03008674 × 10 x + 0.02236216459 × 10 x − 0.02261465929 × 10 x  , 

that is the approximate solution of equation (10). 

4.2. Example 2. Consider 

′′ U (x)U (x) + 2 e = 0 with U (0) = 0 , U (1) = 
0 ; ∀ x ∈ [ 0 , 1]. (14) 

Here, µ = 2. As previously deliberated that for µ < 3.513830719 , there exist two solutions of Bratu 
equation. Thus, equation (14) has two solutions and for finding those solutions 

 

U (x) = −2 ln 
 

where ϑ can be derived from 

2 , 
cosh( ϑ ) 

 

 
Since µ = 2, so 

 

 
After solving equation (15), we get 

ϑ = 
√

2 µ cosh
  

ϑ
  

. 

 

ϑ = 
√

2 × 2 cosh
  

ϑ
 

. (15) 

ϑ1 = 2.357551054 , ϑ2 = 8.5071995. 



6 Saif Ullah, Muzaher Ali, Sana Bajwa, Ahsan Bilal 
 

 2  

4 
    

6 7 8 

6  15 

−5  16 −5  17 −6  18 

4 

4 

4 

  
cosh

 
[x − 0.5] 

 ! 

cosh
   

  
cosh

 
[x − 0.5] ϑ )

! 

Thus, we obtained two solutions ϑ1 (called lower solution) and ϑ2 (called higher solution). However 
in the present case, merely lower solution will be used, then 

  
cosh

 
[x − 0.5] 2.357551054 ! 

U (x) = −2 ln 
cosh

 2.357551054 , 

⇒ U (x) = −2 ln 0.8483379380 cosh (1.178775527 x − 0.5893877635)  , 
that is the exact solution of equation (14). Taking U0(x) = 0 and applying Picard’s method, we get 

U1(x) = 1.248217518 x − x2 , 
 
 
 

and 

U2(x) = 1.248217518 x − x2 − 0.4160725060 x3 + 0.03682941898 x4 + 0.09240872640 x5 

+ 0.01860156574 x6 − 0.02971946472 x7 + 0.005952380952 x8 , 

 
U3(x) = 1.248217518 x − x2 − 0.4160725060 x3 + 0.03682941898 x4 + 0.1664290024 x5 

— 0.001165361882 x − 0.02640249326 x − 0.006559875108 x + 0.003173141654 x 

(16) 

+ 0.001944801524 x10 − 0.0005966016460 x11 − 0.0001722400368 x12 (17) 

+ 0.00002374648306 x13 + 0.00002586929702 x14 − 0.02644413 × — 
10 x 

— 0.4602890 × 10 x + 0.1300746880 × 10 x − 0.1157870556 × 10 x , 

that is the approximate solution of equation (14). 

4.3. Example 3. Consider 

′′ U (x)U (x) + 3.513830719 e = 0 with U (0) = 
0 , U (1) = 0 ; ∀ x ∈ [ 0 , 1]. (18) 

Here, µ = 3.513830719. As previously deliberated that for µ = 3.513830719 , Bratu equation has a 
unique solution. Therefore, equation (18) has a unique solution and for finding that 

 
 

 
and ϑ can be derived from 

U (x) = −2 ln 2 , 
cosh( ϑ ) 

 

 
As µ = 3.513830719 , so 

ϑ = 
√

2 µ cosh
  

ϑ
  

. 

 

ϑ = 
√

2 × 3.513830719 cosh
 

ϑ
 

. (19) 
 

After solving equation (19), we have 

 
Thus, 

U (x) = −2 ln 

 
ϑ = 4.798645359. 
 

4.798645359 
 2  

4.798645359 
4 

⇒ U (x) = −2 ln
 

0.5524420911 cosh (2.399322680 x − 1.199661340)
 

, 

, 

9 
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that is the exact solution of equation (18). Taking U0(x) = 0 and applying Picard’s method, we get 

U1(x) = 3.999916982 x − 0.5 x2 , 

U2(x) = 3.999916982 x − 1.756915360 x2 − 2.342505194 x3 − 2.196046963 x4 
6 8 

— 1.522550589 x + 0.4538503540 x − 0.04183044990 x + 0.00130722869 x , 
U3(x) = 3.999916982 x − 1.756915360 x2 − 2.342505194 x3 − 1.827997980 x4 − 0.2276930256 x5 

+ 2.820111160 x6 + 1.569248472 x7 + 0.06549570825 x8 − 0.09860541020 x9 − 1.238108848 x10 

— 0.2943933311 x − 0.1635341992 x − 0.3033346185 x + 0.2133926181 x 

(20) 

16 17 
— 0.04140070848 x + 0.006063594280 x + 0.006295431774 x − 0.002405744959 x , 

and 

U4(x) = 3.999916982 x − 1.756915360 x2 − 2.342505194 x3 − 2.608816838 x4 + 2.057791678 x5 
+1.436367948 x6 + 0.3755924260 x7 − 0.5989937866 x8 − 1.115268983 x9 − 0.1861262692 x10 
+0.4014073533x11 + 0.4895580669x12 − 0.2133778426x13 − 0.1783860287x14 − 0.2345269362x15 

17 18 19 
−0.1108694331 x + 0.03254347491 x + 0.09468297982 x + 0.05455703540 x 
+0.002336385453 x20 − 0.02429386712 x21 − 0.02180400406 x22 + 0.007242441400 x23 
+0.007416062365 x24 + 0.0024638204 x25 − 0.0005953446661 x26 − 0.001204562610 x27 

30 31 
−0.0006734612338 x − 0.0001107763731 x + 0.0007713580433 x + 0.000080209802 x 
+0.0000344321121 x32 + 0.6141674 × 10 x − 0.02011121798 × — 

10 x 

35 36 −6  37 
−0.0922424728 × 10 x − 0.1619096512 × 10 x + 0.05630807 × x 

38 −7  39 40 41 
+0.0042976 × 10 x + 0.07480942 × x − 0.0306817 × 10 x − 0.039654 × 10 x 

42 43 −9  44 
+0.05616 × 10 x − 0.01964754709 × 10 x + 0.04198464217 × x 

45 −11  46 47 
−0.06408030986 × 10 x + 0.07435209057 × x − 0.06762690365 × 10 x 
+0.04895422041 × 10 x48 49 −15 

— 0.0283546 × 10 x + 0.01310784960 × x50 

51 −17  52 53 
−0.004786551130 × 10 x + 0.001353426966 × x − 0.00286394 × 10 x 

54 55 −27  56 
+0.04275830164 × 10 x − 0.4022680475 × 10 x + 0.1795876770 × x . (21) 

that is the approximate solution of equation (18). 

4.4. Example 4. Consider 

U  (x) + 5 eU(x) = 0 with U (0) = 0 , U (1) = 0 ; ∀ x ∈ [ 0 , 1]. (22) 
Here, µ = 5. To find the solutions of above equation (22) 

 
 

 and ϑ can be derived from 

U (x) = −2 ln 2 , 
cosh( ϑ ) 

 

 
Since µ = 5, then 

ϑ = 
√

2 × 5 cosh
  

ϑ
 

. 

 

ϑ = 
√

2 × 5 cosh
  

ϑ
 

. (23) 

13 10 — 

14 

′′ 
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After solving equation (23), we get 

ϑ = (−3.181805553 + 5.282305940 i)
√

10. 

Since ϑ is a complex number, therefore we can not continue further. We have deliberated already that 
for µ > 3.513830719 , Bratu equation has no solution. 

 
5. ConvERgEncE AnaLysIS 

The convergence of solutions of numerical examples derived by Picard’s method is discussed in this 
section. 

5.1. Convergence Criteria. Let Un(x) be the sequence of functions approximated by Picard’s method 
defined on set D ⊂ Rn. The sequence Un(x) → U (x) when for each ε > 0 , there ex- ist m , n 
∈ Z+ for which [35] 

sup Un(x) − U (x) =  Un(x) − U (x)  < ε  when m < n. 

When m and ε depend upon x , the convergence is called pointwise convergence, while the convergence 
is said to be uniform convergence when m and ε do not depend on x . In the limiting form, it is 
represented as [35] 

lim 
n→∞ 

Un(x) = U (x) . 

Theorem 2. The sequence Un(x) is uniformly convergent iff 

lim 
n→∞ 

 Un(x) − U (x)  = 0. 

5.2. Convergence of Solution of Example 1. As we have discussed in Theorem 2 that Un(x) is 
convergent uniformly iff 

sup Un(x) − U (x) =  Un(x) − U (x)  < ε when m < n , ∀ x ∈ [ 0 , 1] . 

Taking 

 
we have 

 
ε = 0.00009, 

sup  Un(x) − U (x) =  Un(x) − U (x)  = Max Error < ε when m < n , ∀ x ∈ [ 0 , 1] 

which implies that Un(x) converges to U (x), where m = 2 and U (x) represents exact solution. 

5.3. Convergence of Solution of Example 2. As we have discussed in Theorem 2 that Un(x) is 
convergent uniformly iff 

sup Un(x) − U (x) =  Un(x) − U (x)  < ε when m < n , ∀ x ∈ [ 0 , 1] . 

Taking 

 
we have 

 
ε = 0.0009, 

sup  Un(x) − U (x) =  Un(x) − U (x)  = Max Error < ε when m < n , ∀ x ∈ [ 0 , 1] 

which implies that Un(x) converges to U (x), where m = 2 and U (x) represents exact solution. 
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5.4. Convergence of Solution of Example 3. As we have discussed in Theorem 2 that Un(x) is 
convergent uniformly iff 

sup Un(x) − U (x) =  Un(x) − U (x)   < ε when m < n , ∀ x ∈ [ 0 , 1] . 
 

Taking 

 
we have 

 
ε = 0.022414, 

sup  Un(x) − U (x) =  Un(x) − U (x)  = Max Error < ε when m < n , ∀ x ∈ [ 0 , 1] 

which implies that Un(x) converges to U (x), where m = 3 and U (x) is the exact solution. 

 
6. STaBILITy AnaLysIS 

We perform stability analysis of numerical scheme for Bratu type equations by using the following 
stability criteria. 

 
6.1. Generalized Ulam-Hyres Stability (Ulam-Hyers-Rassias Stability). Let the second order 
differential equation is 

ξ (x) − G  x , ξ(x) , ξ (x)
  

= 0 with ξ(0) = 0 and ξ (0) = 0. (24) 
′′ ′ ′ 

 
Theorem 3. The above equation (24) is Ulam-Hyers-Rassias stable, if it fulfills the conditions given 
below 

 (1) ξ (x) − G  x , ξ(x) , ξ (x)  ≤ H(x) , 
′′ ′ 

 
(2) ξ(x) − ζ(x) ≤ M (x) , 

 
where ξ(x) , ζ(x) ∈ C 2[a, b] and H(x), M (x) ar e positive continuous functions. Furthermore, H(x) 
does not depend on ξ(x) and  G x , ξ(x) , ξ (x) [29–31]. 

6.2. Stability of Example 1. Consider 
′′ U (x) 

U  (x) + e = 0 with U (0) = 0 , U (1) = 0 ; ∀ x ∈ [ 0 , 1]. 

Here, ξ(x) = U3(x) and ζ(x) = U (x), then 
′′ U3(x) ′′ U3(x) 2 

and 

U (x) + e ≤ max U3 (x) + e  ≤ H(x) = x   + 0.0038857183 , 

| U3(x) − U (x) | ≤ max | U3(x) − U (x) | ≤ M (x) = x2 + 0.000089546 . 

Hence, Example 1 fulfills the conditions of Theorem 3 and is Ulam-Hyers-Rassias stable. 
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6.3. Stability of Example 2. Consider 
′′ U (x) 

U (x) + 2 e = 0 with U (0) = 0 , U (1) = 0 ; ∀ x ∈ [ 0 , 1]. 

Here, ξ(x) = U3(x) and ζ(x) = U (x), then 
′′ U3(x) ′′ U3(x) 4 

and 

U (x) + 2 e ≤ max U3 (x) + 2 e  ≤ H(x) = x   + 0.09701083186 , 

| U3(x) − U (x) | ≤ max | U3(x) − U (x) | ≤ M (x) = x  + 0.00082169 . 

Thus, Example 2 follows the conditions of Theorem 3 and is Ulam-Hyers-Rassias stable. 
 

6.4. Stability of Example 3. Consider 

′′ U (x)U   (x) + 3.513830719 e = 0 with U (0) = 0 , U (1) = 
0 ; ∀  x  ∈ [ 0 , 1]. 

Here, ξ(x) = U4(x) and ζ(x) = U (x), then 
 

′′ U4 (x) ′′ U4 (x) 6 

U  (x) + 3.513830719 e 

and 

 ≤ max U4 (x) + 3.513830719 e  ≤ H(x) = x + 65.60872438 , 

| U4(x) − U (x) | ≤ max | U4(x) − U (x) | ≤ M (x) = x + 0.022414 . 

Thus, Example 3 satisfies the conditions of Theorem 3 and is Ulam-Hyers-Rassias stable. 

 
7. RESULTS and DISCUSSIOns 

Here, we demonstrate the efficacy and veracity of Picard’s iterative scheme through error’s estimation, 
comparison of maximum errors and graphical illustrations of the obtained approximate solutions of 
BTEs. 

 
7.1. Results of Example 1. Table 1 contains Error estimated by using Picard’s method, which shows 
that max Error = Error  = 0.000895460. The Error  estimated by Picard’s method, Perturbation 
Iteration Algorithm (PIA) [21], Decomposition method (DM) [18], HPM (Homotopy Perturbation 
method) [13], and OHAM [15] are listed in Table 2 which indicates that Picard’s method has smallest 
 Error  . 

Figure 2(a, b) demonstrates the comparison of exact solution with approximate solutions obtained 
by Picard’s iterative scheme. Figure 2(a) shows that both approximate and exact solutions coincide with 
each other. Figure 2(b) shows that approximate solutions of zero to third orders are converging to exact 
solution. Figure 2(c) illustrates the comparison of solutions obtained by Picard’s iterative scheme, HPM, 
OHAM, DM, and PIA with the exact solution, which shows that Picard’s solution and exact solution 
make an excellent agreement while other solutions diverge from exact solution. Figure 2(d) shows that 
Picard’s iterative scheme has least  Error  as compared to other mentioned 
techniques. 
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Table 1: Error Estimation of Example 1 

 
x Exact Solution Picard’s Solution |Error| 
0.00 0.0000000000 0.0000000000 0.0000000000 
0.10 0.0498467900 0.0498468027 

−8 
1.27000 × 10 

0.20 0.0891899350 0.0891902388 
−7 

3.03800 × 10 
0.30 0.1176090956 0.1176109762 

6 
1.88060 × 10 

0.40 0.1347902526 0.1347966401 
−6 

6.38750 × 10 
0.50 0.1405392142 0.1405548425 

−5 
1.56280 × 10 

0.60 0.1347902526 0.1348215219 
−5 

3.12690 × 10 
0.70 0.1176090956 0.1176641754 

−5 
5.50798 × 10 

0.80 0.0891899350 0.0892797819 
−5 

8.95460 × 10 
0.90 0.0498467900 0.0498874514 

−5 
4.06614 × 10 

1.00 0.0000000000 0.0000000000 0.0000000000 
 
 

Table 2: Comparison of  Error  of Example 1 
 

Methods  Error  
Picard’s method 0.0000895460 
Perturbation Iteration Algorithm 0.0011992210 
Decomposition method 0.0030154732 
Homotopy Perturbation method 0.1431299094 
OHAM 0.9944206698 

 
7.2. Results of Example 2. Table 3 lists Error estimated by Picard’s iterative scheme. We can ob- 
serve that  Error  = max Error = 0.00082169. The  Error  estimated by Picard’s method, Laplace 
method (LM) [16], Decomposition method (DM) [18], Perturbation Iteration Algorithm (PIA) [14], 
and Homotopy Perturbation method (HPM) [13] contained in Table 4 indicates that Picard’s method 
has smallest  Error  amongst these methods. 

Figure 3(a, b) illustrates the comparison of exact solution with approximate solutions obtained by 
Picard’s iterative scheme. Figure 3(a) shows that both approximate and exact solutions match with each 
other. Figure 3(b) shows that approximate solutions of zero to third orders are converging to exact 
solution. Figure 3(c) demonstrates the comparison of solutions obtained by Picard’s iterative scheme, 
DM, LM, PIA, and HPM with the exact solution, which shows that Picard’s solution and exact solution 
make an excellent agreement while solutions derived by other mentioned techniques diverge from 
exact solution. Figure 3(d) shows that Picard’s iterative scheme has least  Error  as compared to other 
mentioned techniques. 

 
7.3. Results of Example 3. The Error estimated by Picard’s iterative scheme is enlisted in Table 5 
which shows that Error  = max Error = 0.022414. The Error  estimated by Picard’s method, B 
Spline method [19], HPM (Homotopy Perturbation method) [13], PIA (Perturbation Iteration al- 
gorithm) [14], and VIM (Variational Iteration method) [17] are listed in Table 6 which shows that 
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Figure 2: Graphical Illustration of Example 1 
 
 
 
 

 
Picard’s method has smallest  Error  amongst these methods. 

Figure 4(a,b) illustrates the comparison of exact solution with approximate solutions obtained by 
Picard’s iterative scheme. Figure 4(a) shows that both approximate and exact solutions match with each 
other. Figure 4(b) shows that approximate solutions of zero to fourth orders are converging to 
exact solution. Figure 4(c) demonstrates the comparison of approximate solutions computed by Picard’s 
iterative scheme, BSM, HPM, PIA, and VIM with exact solution, which shows that Picard’s solution and 
exact solution make an excellent agreement while solutions computed by other mentioned methods 
move away from exact solution. Figure 4(d) shows that Picard’s iterative scheme has smallest Error  as 
compared to other mentioned schemes. 
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Table 3: Error Estimation of Example 2 

 
x Exact Solution Picard’s Solution |Error| 
0.00 0.0000000000 0.0000000000 0.0000000000 
0.10 0.1144107440 0.1144110226 

−7 
7.7860 × 10 

0.20 0.2064191156 0.2064266804 
−6 

7.5640 × 10 
0.30 0.2738793116 0.2739270572 

5 
4.7745 × 10 

0.40 0.3150893646 0.3152541108 
−4 

1.6474 × 10 
0.50 0.3289524214 0.3293601056 

−4 
8.2169 × 10 

0.60 0.3150893646 0.3152541108 
−4 

1.6474 × 10 
0.70 0.2738793116 0.2739270572 

−5 
4.7745 × 10 

0.80 0.2064191156 0.2064266804 
−6 

7.5640 × 10 
0.90 0.1144107440 0.1144110226 

−7 
7.7860 × 10 

1.00 0.0000000000 0.0000000000 0.0000000000 

 
Table 4: Comparison of  Error  of Example 2 

 
Method  Error  
Picard’s method 0.0008216900 
Laplace method 0.0123778084 
Decomposition method 0.0146751156 
Perturbation Iteration Algorithm 0.0523780000 
Homotopy Perturbation method 0.2559341111 

 
Table 5: Error Estimation of Example 3 

 
x Exact Solution Picard’s Solution |Error| 
0.0 0.000000000 0.0000000000 0.000000000 
0.1 0.395805699 0.3957501818 

−5 
5.5517 × 10 

0.2 0.739097410 0.7385461713 
−4 

5.5124 × 10 
0.3 1.008758260 1.0074268710 

−3 
1.3314 × 10 

0.4 1.182536660 1.1817929190 
−4 

7.4374 × 10 
0.5 1.242742690 1.2393843260 

−3 
3.3584 × 10 

0.6 1.182536660 1.1712949450 
−2 

1.1242 × 10 
0.7 1.008758260 0.9890955265 

−2 
1.9663 × 10 

0.8 0.739097410 0.7166833621 
−2 

2.2414 × 10 
0.9 0.395805699 0.3834243783 

−2 
1.2381 × 10 

1.0 0.000000000 0.0000000000 0.000000000 
 

8. ConcLUSIOn 

Current investigation is devoted to the derivation of approximate solutions of BTEs using Picard’s iter- 
ative scheme which is a reliable, effective, and efficient method for solutions of such type of equations. 
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Figure 3: Graphical Illustration of Example 2 
 

 
Table 6: Comparison of  Error  of Example 3 

 
Method  Error  
Picard’s method 0.0224140000 
B Spline method 0.1347528700 
Homotopy Perturbation method 0.4964351282 
Perturbation Iteration Algorithm 0.7001783219 
Variational Iteration method 1.3943488610 

 
Existence and uniqueness of solutions have been confirmed. Convergence and stability of solutions 
of numerical examples have also been examined. Furthermore, the absolute error for each numerical 
example has been computed. The Picard’s results are compared with the results attained by DM, PIA, 
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Figure 4: Graphical Illustration of Example 3 
 
 
 

HPM, OHAM, LM, VIM, PM, and BSM through tables and graphical illustrations, and then discussed 
thoroughly. The derived results categorically indicate the following findings: 

• The solutions of BTEs are convergent. 
• The BTEs are Ulam-Hyers-Rassias stable. 
• Picard’s solutions have least Error amongst other mentioned techniques. 
• Picard’s solutions are established to be in excellent agreement with exact solutions. 

The derived results demonstrate the ability of Picard’s iterative scheme in contrast of other stated 
methods and certainly verify the efficacy and precision of Picard’s method for solution of BTEs. More- 
over, these results will establish a foundation for further exploration concerning future development in 
differential equations and other associated fields of research. The current research investigation can be 
extended for the case of fractional Bratu differential equations comprising different forms of fractional 
derivatives. 
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