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Convergence and Ulam-Hyers-Rassias Stability Analyses of Numerical
Solutions of Bratu Type Equations using Picard Method

Saif Ullah*®, Muzaher Ali"*, Sana Bajwa'*', and Ahsan Bilal

Department of Mathematics, Government College University Lahore, Pakistan
ABSTRACT

The Bratu equation is a basic nonlinear boundary value problem with
important applications to fuel ignition, thermal combustion, and
nanotechnology. The current article presents a new application of the
Picard iterative technique to find accurate approximate solutions for this
equation. Firstly, the conditions for existence and uniqueness of the
solutions are determined. Furthermore, the article provides an explicit
formulation of Picard’s scheme for second-order ordinary differential
equations and its particular implementation to the Bratu type problem.
The iterative solutions obtained are analyzed thoroughly for convergence
and are proved to be Ulam-Hyers-Rassias stable, a very strong type of
stability not yet known for these kind of solutions. Numerical tests for three
cases (u =1, 2, and the critical value pu = 3.51383) are shown to
exemplify outstanding accuracy of the proposed approach. A thorough
comparison with known techniques including the Adomian Decomposition
Method, Homotopy Perturbation Method, and Variational Iteration Method
indicates that the Picard iterative scheme is much better in terms of
accuracy since its maximum absolute errors are much smaller.

Keywords: Bratu type equations, convergence analysis, error estimation,
existence and uniqueness of solutions, Picard method, Ulam-Hyers-Rassias
stability.

Highlights

e The foremost aim of the current article is to compute approximate
solutions of BTEs using Picard’s method which are new and not
described before in the literature.

e The convergence of the sequence U,(x), generated by Picard’s iteration
is assessed using the uniform convergence criterion on the interval x €
[0,1].
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e This demonstrates that both exact and Picard’s solutions make an
excellent agreement.

1. INTRODUCTION

Mathematical modeling of many physical phenomena is achieved in the
form of integral equations, differential equations (DEs), or integro-
differential equations [1-3]. Bratu type DEs have many applications in
practical life. These include fuel ignition, Chandrasekhar model,
nanotechnology, thermal reaction, heat transfer by conduction, radiative
heat transfer, and chemical reactor theory [4-7]. The scientists and
researchers are very keen in the study of Bratu type equations (BTEs). This
is because the solutions of such type of equations are more natural and
significant due to their important usage in engineering and scientific
experimentations. The following equation is called one dimensional Bratu
equation [8, 9]

U'(x)+p e!/® =0 with U(0)=0, U(1)=0; V x €
[ 0,1] (1)

where p > 0 is a physical parameter. Exact solution of above equation (1)
is [10]

cosh ([x —0.5] %)

cosh (%)

where 9 can be obtained from

U(x) = —2In

)

0= 77 cosn(2)
= p cosh|,).

Several analytical, semi-analytical, and numerical schemes have been
used to solve BTEs. Decomposition Method (DM) [11], Homotopy
Perturbation Method (HPM) [12, 13], Perturbation Iteration Algorithm
(PIA) [14], Optimal Homotopy Asymptotic Method (OHAM) [15], Laplace
Method (LM) [16], Variational Iteration Method (VIM) [17], Perturbation
Method (PM) [18], and B Spline Method (BSM) [19] have been
implemented to handle BTE:s.

While the above-mentioned approaches have been used successfully,
they require intricate calculations, for instance, the formation of Adomian
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polynomials or determining auxiliary parameters and functions in
homotopy-based approaches. The Picard iterative scheme is an attractive
alternative considering its simplicity of concept, ease of implementation,
and well-established rapid convergence for many nonlinear problems
[20-24]. However, its use on the Bratu equation, especially with an
extensive study on the stability of its solutions, is an uncharted territory.
Therefore, the current article aimed to fill that gap. The novelty of this
research is two-pronged: (i) systematic use and numerical verification of the
Picard method for BTEs and (ii) pioneering Ulam-Hyers-Rassias stability
study of the approximate solutions developed by the iterative scheme.

The study of Ulam-Hyers type stability of various dynamical systems
has received considerable attention. The famous Ulam-Hyers stability
instigated in a seminar at the Wisconsin University in 1940, where Ulam
[25] suggested the problem of the stability for functional equations. A
significant development occurred in 1941, when Hyers [26] gave a partial
solution to Ulam’s problem. After an in-depth analysis of the Ulam-Hyers
stability structure, some researchers extended and used the concept of
Ulam-Hyers stability, such as generalized Ulam-Hyers stability [27, 28],
Ulam-Hyers-Rassias stability [29], and generalized Ulam-Hyers-Rassias
stability. Huang et al. [30] analyzed Hyers-Ulam stability, while Qarawani
[31] investigated Hyers-Ulam-Rassias stability of nonlinear DEs. Wang et
al. considered Ulam-Hyers stability of fuzzy fractional DEs with delay [32,
33].

The foremost aim of the current article is to compute approximate
solutions of BTEs using Picard’s method which are new and not described
before in the literature. The article is organized as: Section 2 covers
conditions for existence and uniqueness of solutions, while section 3
comprehends the illustration of Picard method. Section 4 presents the
solutions of numerical examples. The convergence and stability analyses of
the derived solutions have been performed in section 5 and 6, respectively.
Estimation of error and comparison of results are incorporated in section 7,
while conclusion of the article is drafted in section 8.

2. CONDITIONS FOR EXISTENCE AND UNIQUENESS OF
SOLUTIONS OF BRATU EQUATIONS

The existence and uniqueness of solutions for the Bratu problem are
well-established and depend critically on the parameter p . The
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foundational result is summarized in the following theorem:

Theorem 1. There are three cases for p given in equation (1)

* If u = gy, then there exists one solution,

o If u < py, then there exist two solutions,

o If u > oy, then no solution exists.

Here pg is called the critical value [12, 13] given as:

1_1
4

and its numerical value is

to = 3.513830719.

14-

12-

10-

J2 i s h(ﬂ)
Uo sin 7)

\

3.513830719

p=

Figure 1. Comparison of u and 9.
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Figure 1 shows that when y < 3.513830719, then 9 has two values
for each value of u. Hence, there are two solutions for each

u < 3.513830719. For u = 3.513830719, only one value of
Y = 4.798645359 exists and there is a unique solution. When

u > 3.513830719, there is no resultant value of 9, and in this case, no
solution of Bratu equation exists [12, 13].

3. DESCRIPTION OF PICARD METHOD

This section discusses the description of Picard method for second-
order ordinary differential equation (ODE) and its implementation to BTE.

3.1. Formulation of Picard Method for Second-Order ODE
Let us take a second-order ODE
LU@X)=NUX) , (2)

where L(U(x)) is linear operator, while N (U(x)) is nonlinear
operator [20]. Writing L(U(x)) in terms of derivative of second-order as

LUX) =U"(x) ,

while NV (U(x)) in terms of U(x) and U '(x) as

NUE) =UE) , U'(x)

then, equation (2) yields

U'x) =NU(x) , U '(x) , 3)
where

UO)=a and U '(0)=23.

Solving equation (3), we have

U)=a+p x+ [, [F NU®X) , U '(x)dx dx . (4)
Hence, the iterative formula is

Upsr() =a+ B x+ [] Jy NUa() , Up/@)dx dx ,  (5)

that is Picard’s iterative scheme for second-order ODE [21, 22].
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3.2. Implementation to Bratu Equation
Let us take equation (1) as

U'(x)+p e® =0 with U0)=0,U1)=0; V x€

[0 ,1]. ©6)
Here LUx))=U"(x) and N(Ux)) =
u eV@®,

From the above equation (6), we have [12, 34]

U'(x) =—u e®, (7)
Implementation of Picard method yields

Unsr(x) =a+ B x—pfy [ e¥n@dx dx )

where U(0) = a =0 , and S changes as u changes.
= Upn@=p x—pf; [ e"Wdx dx . ©)
This is Picard’s iterative scheme for Bratu equation.

4. SOLUTIONS OF BTEs USING PICARD METHOD

In this section, Picard’s iterative scheme is used to compute the
approximate solutions of various BTEs.

4.1. Example-1

Consider
U'(x)+e™@ =0 with U0)=0,U(1)=0; V «x €
[ 0 ,1]. (10)

Here, u = 1. As previously deliberated that for u < 3.513830719 ,
there exist two solutions of Bratu equation. Thus, equation (10) has two
solutions and for finding those solutions

cosh ([x — 0.5] %)

cosh (%)

where 9 can be obtained from

U(x) = —2In

)

UMT— 7
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9 =2 h (‘9)
= u cosh|).
Since u =1, so
9
9 =2 cosh (Z) (11)
After solving equation (11), we have

9, = 1.517164598 , 9, = 10.9387028.

Thus, two solutions are obtained, that is, 99; (called lower solution) and
9, (called higher solution). However, in the present case, merely lower
solution will be used, then

1.517164598)

cosh ([x —0.5] >

U(x) = —2In 1517164598 '
osh (=2=7==)
= U(x) = —2 In(0.9321424738 cosh(0.7585822990 x

— 0.3792911495))

which is the exact solution of equation (10). Taking Uy(x) = 0 and
applying Picard method, we get

Uy (x) = 0.5493527280 x — 0.5 x2 ,
U, (x) = 0.0003720238095 x® — 0.001634978357 x7 — 0.001651763169 x©

+0.01235224910 x5+ 0.02909214918 x* —0.09155878800 x3 — 0.5 x?
+0.5493527280 x,

and

U; (x) =0.5493527280 x— 0.5 x*— 0.09155878800 x>+
0.02909214918 x* +0.0183117576 x°>— 0.003459802640 x° —
0.001764607014 x’ + 0.9322482480 x 107 *x® +
1.580853532 X 107*x° + 0.4533942348 x 107°x!° —
1.393134891 x 107°x!! +0.06120893625 x 107°x'? +
0.06540389326 X 107°x3 + + 0.04400289 x 10 °x*
0.03474251 x 107°x!> — 0.03008674 x 1077x'® +
0.02236216459 x 1077 x'7 —0.02261465929 x 1078 x!8

(13)
that is the approximate solution of equation (10).
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4.2. Example-2
Consider

U'(x)+2 eY™ =0 with U(0)=0 ,U(1)=0; V x €
[ 0 ,1]. (14)

Here, pu = 2. As previously deliberated that for

u < 3.513830719 , there exist two solutions of Bratu equation. Thus,
equation (14) has two solutions and for finding those solutions

cosh ([x — 0.5] %)

cosh (%)

where 9 can be derived from

U(x) = —2In

)

V)
9 =,/2 u cosh (Z)
Since u = 2, so
9 =+/2x2 cosh (g). (15)
After solving equation (15), we get

9, = 2.357551054 , 9, = 8.5071995.

Thus, two solutions are obtained, that is, ¥; (called lower solution)
and 9, (called higher solution). However, in the present case, merely lower
solution will be used, then

cosh ([x —0.5] 2.357551054)

_ 2
U(x) = —2In 7357551054 :
cosh (=257—=7)
= U(x) = -2 In(0.8483379380 cosh(1.178775527 «x
— 0.5893877635)) ,

which is the exact solution of equation (14). Taking Uy(x) = 0 and
applying Picard method, we get

School of Science
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Up(x) = 1.248217518 x — x?
U,(x) = 0.005952380952 x® — 0.02971946472 x’

+0.01860156574 x° + 0.0924087264 x° + 0.0368294189 x*
—0.416072506 x3 — x? + 1.248217518 x, (16)

and
Us(x) = —0.115787055 x 107° x® + 0.130074688 x 1073 x17 —0.460289 x 1075 x'©
—0.02644413 x 107% x5 +0.2586929702 x 10™* x* 4+ 0.2374648306 x 10™% x13
—0.1722400368 x 1073 x'? — 0.5966016460 x 1073 x1 +0.001944801524 x1°
+0.003173141654x° — 0.00655987510 x& — 0.02640249326 x7 —0.001165361882 x°©
+0.1664290024 x5 + 0.03682941898 x* — 0.4160725060 x3 — x?+ 1.248217518 «x ,

(17)
that is the approximate solution of equation (14).
4.3. Example-3
Consider
U'"(x) +3.513830719 eU™ =0
with u)=0,U0Q) =
0;, Vv xe[ 0 ,1]. (18)

Here, u = 3.513830719. As previously deliberated that for

u = 3.513830719 , Bratu equation has a unique solution. Therefore,
equation (18) has a unique solution and for finding that

cosh ([x — 0.5] %)

cosh (%)

and 9 can be derived from

U(x) = —2In

)

0= 77 cosn(2)
= p cosh|,).

As u =3.513830719, so

9 =2 x 3.513830719 cosh (g) (19)

After solving equation (19), we have
Y = 4.798645359.
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Thus,
cosh ([x _05] 4.7986245359)
U(x) = —2In 4.798645359 '
osh (—4 )

= U(x) = =2 In(0.5524420911cosh(2.399322680 x
— 1.199661340)),

which is the exact solution of equation (18). Taking Uy(x) = 0 and
applying Picard method, we get
Uy(x) = 3.999916982 x — 0.5 x? ,
U,(x) = 0.00130722869 x® — 0.04183044990 x7 + 0.4538503540 x® — 1.5225505 x°
—2.196046963 x* —2.342505194 x3 — 1.756915360 x2 + 3.999916982 x ,
Us(x) = —2.405744959 x 1073x® + 6.295431774 x 1073x'7 + 6.06359428 x 107 3x1°

—0.04140070848 x5+ 0.2133926181 x'* —0.3033346185 x'% —0.1635341992 x!'?
—0.2943933311 x!! —1.238108848 x'° —0.09860541020 x° + 0.06549570825 x8
+1.569248472 x7 +2.820111160x° — 0.2276930256 x° — 1.827997980 x*

—2.342505194 x3 —1.756915360 x?2 +3.999916982 x, (20)
and

Uy(x) = 3.999916982 x — 1.756915360 x? — 2.342505194 x3 —
2.608816838 x* +2.057791678 x° + 1.436367948 x° +
0.3755924260 x7 — 0.5989937866 x® —1.115268983 x° —
0.1861262692 x'° 4+ 0.4014073533x" + 0.4895580669x'?
—0.2133778426x® — 0.1783860287x'* — 0.2345269362x1> —
0.110694331 x© +0.0325434749 x'7 + 0.0946829798 x'& +
0.0545570354 x'° + 0.023638545x%° —0.0242938671 x?! —
0.021804040 x22 + 0.0072424414 x23 +0.0741606236 x%* +
0.002463820 x2°> —0.0059534466 x2°—0.0012045626 x27 —
0.0067346123 x2® —0.0011077633 x2° + 0.00771358043x3° +
0.000802098x3* + 0.0003443211x3%2 + 0.61416749 x 107> x33 —
0.0201121798 x 107> x3* —0.0922424728 x 107> x35 —
0.16190965120 x 10~° x3° + 0.056308070 x 107° x37 + 0.00429760 X
1077 x38 4+ 0.0748094200 x 1077 x3° — 0.0306817000 x 10~ 7x*°
0.03965400 x 1078 x*!' 4+ 0.05616 x 10™° x*2 — 0.01964754709 X

107° x*3 4 0.041984642179 x 107° x** — 0.064080398 x 10710 x> +
0.07435209 x 10711 x4 —0.067626903 x 10712 x*7 4+ 0.0489542041 x

UMT—11
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10713 x*8 —0.0283546 x 1071* x*° 4+ 0.013108496 x 10~1> x>0 —
0.0047865113 x 1071 x> 4+ 0.013534696 x 1017 x°2 — 0.0286394 x
1071° x53 4 0.04273016 x 10723 x5% — 0.40268047 x 10725 x5 +
0.17958767 x 10727 x>6,

21)
that is the approximate solution of equation (18).
4.4. Example-4
Consider
U'(x)+5 eV™ =90 with Uuio)=o0, Ul =
0 ; v x € [ 0,1]. (22)

Here, u = 5. To find the solutions of above equation (22)

cosh ([x —0.5] %)

cosh (%) ,

and 9 can be derived from

9
9 =v2 X5 cosh (Z)

U(x) = —2In

Since u = 5, then

9 =vZ x5 cosh (g) (23)
After solving equation (23), we get

9 = (—3.181805553 + 5.282305940 i )V10.

Since ¥ is a complex number, therefore it can not be continued further.
It has already been deliberated upon that for u > 3.513830719, Bratu
equation has no solution.

5. CONVERGENCE ANALYSIS

This section discusses the convergence of solutions of numerical examples
derived by Picard method.

5.1. Convergence Criteria

The convergence of the sequence U,(x) generated by Picard’s iteration

l { Scientific Inquiry and Review
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is assessed using the uniform convergence criterion on the interval x €
[0, 1]. Recall that a sequence of functions U, (x) converges uniformly to a
function U(x) if[35]

lim sup|U,(x) — U(x)| = 0.
n—->oo

It will be demonstrated numerically that for given examples, the
maximum absolute error |U,(x) — U(x)| indeed decreases below a

predefined tolerance & after a finite number of iterations n, providing
strong empirical evidence for uniform convergence.

5.2. Convergence Analysis of Solution of Example-1

Since it has been discussed above that U,(x) is uniformly convergent if
and only if

sup| Up(x) —U@)| = N1U,(x)-U) I <&

when m< n, vV xel[ 0,1] .

Taking e = 0.00009, wehave

sup| Up,(x) —UX)| = IU(x)—Ux) Il =Max Error <¢
when m< n, A4 x €[ 0 ,1]

which implies that U,(x) converges to U,(x), where m = 2 and U(x)
represents exact solution.

5.3. Convergence Analysis of Solution of Example-2

Since it has been discussed above that U, (x) is uniformly convergent if
and only if

sup| Up(x) —=U@)| = 1U,(x)-UX) Il <e¢

when m< n , vV xe[ 0,1] .

Taking & = 0.0009, we have

sup| Up(x) —UX)| = IUp(x) —U(x) Il =Max Error <e¢
when m< n, v x €[ 0 ,1]

which implies that U,(x) converges to U(x), where m =2 and U(x)
represents exact solution.

5.4. Convergence Analysis of Solution of Example-3

Since it has been discussed above that U,(x) is uniformly convergent if

School of Science
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and only if

sup| Up(x) —U@)| = I1Up(x) —U@) I < ¢

when m< n, v x €[ 0,1] .

Taking e = 0.022414, we have

sup| Up(x) —UX)| = NU,(x) —U(x) Il =Max Error <e¢
when m< n, \4 x €[ 0,1]

which implies that U,(x) converges to U(x), where m = 3 and U(x) is the
exact solution.

6. STABILITY ANALYSIS

This section discusses the stability analysis of numerical scheme for
BTEs using the following stability criteria.

6.1. Ulam-Hyers-Rassias Stability (Generalized Ulam-Hyres Stability)

The general second-order differential equation is considered as

") — G ¢ ,§ () =0 with £(0) =
0 and & '(0)=0. (24) (24)

Following [29-31], it can be said that equation (24) is Ulam-Hyers-Rassias
(UHR) stable with respect to a continuous functions &(x) if

L&) - 6(x ,8(x) , &' <HX) ,
2. [6(x) — M=Mx) ,

where &(x) , {(x) € C %[a,b] and H(x), M(x) are positive
continuous functions. Furthermore, H(x) does not depend on &(x) and
G(x ,&(x) ,§ "(x)).
6.2. Ulam-Hyers-Rassias Stability of Bratu Equation

Theorem 2. The Bratu equation is Ulam-Hyers-Rassias stable, if it fulfills
the conditions given below

L | U, (x) + wpe™®|<HE),
2. | Uy(x) — U)| < M®).

While a full theoretical proof is beyond the scope of this numerical
study, strong numerical evidence will be provided for the stability of
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derived approximate solutions. For Picard iterations U,(x), it will be
numerically verified that these inequalities hold for given examples.

6.3. Stability Analysis of Example-1

Consider

U'(x) +eV™ =0 with ui)=o0, U(1)
=0 ; v x € [ 0,1].

Here, ¢(x) = Uz(x) and {(x) = U(x), then

| UY(x) +eUs®| < max| UY(x) +e¥®| < H(x)
= x2 +0.0038857183 ,

and

| Us() —U®) | = max| Us(x) -Ux) |< M(x)
= x% +0.000089546 .

Hence, Example-1 fulfills the hypothesis of Theorem 2 and is
Ulam-Hyers-Rassias stable.

6.4. Stability Analysis of Example-2

Consider

U'(x)+2 eY™@ =0 with U0)=0, U(1)
=0 ; v x € [ 0,1].

Here, ¢(x) = Uz(x) and {(x) = U(x), then

| UY()+2 e3®| < max| Uf(x)+2 eB®| < H(x)
=x*+0.09701083186 ,

and

| Us()=U@) | < max| Us(0)—=U() | = M)
= x*+0.00082169 .

Thus, Example-2 follows the hypothesis of Theorem 2 and is
Ulam-Hyers-Rassias stable.

6.5. Stability Analysis of Example-3

Consider
U"(x) +3.513830719 eV@ =0 with U0)=0, U(1)
=0; Vx €[0,1].
School of Science {@ UMTf 15
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Here, &(x) = Uu(x) and {(x) = U(x), then

| UL (x)+3.513830719 e¥+®)| < max| UJ (x)+3.513830719 eUs+®)|
< H(x)=x®+ 6560872438 ,

and

Us(x) —U) | < max| Uy(x)=U(x) | = M)
= x° +0.022414 .

Thus, Example-3 fulfils the hypothesis of Theorem 2 and is Ulam-
Hyers-Rassias stable.

7. RESULTS AND DISCUSSION

Here, the efficacy and veracity of Picard’s iterative scheme has been
demonstrated through error’s estimation, comparison of maximum errors,
and graphical illustrations of the obtained approximate solutions of BTEs.

7.1. Results of Example-1

Table 1 contains |Error| estimated using Picard method, which shows
that max |Error| = | Error| = 0.000895460. The I Error ||
estimated by Picard method, PIA [21], DM [18], HPM [13], and OHAM
[15] are listed in Table 2. It explained that Picard’s method has smallest ||
Error |.

Figure 2(a , b) demonstrates the comparison of exact solution with
approximate solutions obtained by Picard’s iterative scheme. Figure 2(a)
shows that both approximate and exact solutions coincide with each other.
Figure 2(b) indicates that approximate solutions of zero to third orders are
converging to exact solution. Figure 2(c) illustrates the comparison of
solutions obtained by Picard’s iterative scheme, HPM, OHAM, DM, and
PIA with the exact solution. This demonstrates that both exact and Picard’s
solutions make an excellent agreement, while other solutions diverge from
exact solution. Figure 2(d) indicates that Picard’s iterative scheme has least
Il Error || as compared to other stated techniques.

Table 1. Error Estimation of Example-1

X Exact Sol. Picard’s Sol. | Error |
0.00 0.0000000000 0.0000000000 0.0000000000
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X Exact Sol. Picard’s Sol. | Error |
0.10 0.0498467900 0.0498468027 1.27000 x 10~8
0.20 0.0891899350 0.0891902388 3.03800 x 10~/
0.30 0.1176090956 0.1176109762 1.88060 x 1070
0.40 0.1347902526 0.1347966401 6.38750 x 1070
0.50 0.1405392142 0.1405548425 1.56280 x 1072
0.60 0.1347902526 0.1348215219 3.12690 x 107
0.70 0.1176090956 0.1176641754 5.50798 x 107
0.80 0.0891899350 0.0892797819 8.95460 x 1072
0.90 0.0498467900 0.0498874514 4.06614 x 1072
1.00 0.0000000000 0.0000000000 0.0000000000

Table 2. Comparison of || Error|| of Example-1

Methods | Error||
Picard’s Method 0.0000895460
Perturbation Iteration Algorithm 0.0011992210
Decomposition Method 0.0030154732
Homotopy Perturbation Method 0.1431299094
OHAM 0.9944206698
(@ ) (b)
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Figure 2. Graphical Illustration of Example-1
7.2. Results of Example-2

Table 3 lists | Error | estimated by Picard’s iterative scheme. It can
be observed that || Error || = max | Error | =0.00082169. The
[l Error || estimated by Picard method, Laplace method (LM) [16], DM
[18], PIA [14], and HPM [13] drafted in Table 4 indicates that Picard’s
method has smallest || Error || amongst these methods.

Figure 3(a , b) illustrated the comparison of exact solution with
approximate solutions obtained by Picard’s iterative scheme. Figure 3(a)
shows that both approximate and exact solutions match with each other.
Figure 3(b) shows that approximate solutions of zero to third orders are
converging to exact solution. Figure 3(c) demonstrates the comparison of
solutions obtained by Picard’s iterative scheme, DM, LM, PIA, and HPM
with the exact solution. This illustrates that both exact and Picard’s
solutions make an excellent agreement, while solutions derived by other
mentioned techniques diverge from exact solution. Figure 3(d) represents
that Picard’s iterative scheme has least || Error || as compared to other
stated methods.

Table 3. Error Estimation of Example-2

X Exact Sol. Picard’s Sol. | Error |
0.00 0.0000000000 0.0000000000 0.000000000
0.10 0.1144107440 0.1144110226 77860 x 107
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0.20 0.2064191156 0.2064266804 75640 x 1076
0.30 0.2738793116 0.2739270572 47745 x 1072
0.40 0.3150893646 0.3152541108 16474 x 1074
0.50 0.3289524214 0.3293601056 82169 x 1074
0.60 0.3150893646 0.3152541108 16474 x 1074
0.70 0.2738793116 0.2739270572 47745 x 1072
0.80 0.2064191156 0.2064266804 75640 x 1076
0.90 0.1144107440 0.1144110226 77860 x 10~
1.00 0.0000000000 0.0000000000 0.000000000
Table 4. Comparison of || Error|| of Example-2
Method |[Error||
Picard’s Method 0.0008216900
Laplace Method 0.0123778084
Decomposition Method 0.0146751156
Perturbation Iteration Algorithm 0.0523780000
Homotopy Perturbation Method 0.2559341111
(a) (b)
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Figure 3. Graphical Illustration of Example-2

7.3. Results of Example-3

The | Error | estimated by Picard’s iterative scheme is drafted in
Table 5 which shows that || Error| =max | Error | =
0.022414. The || Error [lestimated by Picard method, B Spline method
[19], HPM [13], PIA [14], and VIM [17] are drafted in Table 6 which shows
that Picard method has smallest || Error || amongst these methods.

Figure 4 (a, b) represents the comparison of exact solution with
approximate solutions obtained by Picard’s iterative scheme. Figure 4(a)
shows that both approximate and exact solutions match with each other.
Figure 4(b) shows that approximate solutions of zero to fourth orders are
converging to exact solution. Figure 4(c) illustrates a comparison of
approximate solutions computed by Picard’s iterative scheme, BSM, HPM,
PIA, and VIM with exact solution. This demonstrates that both exact and
Picard’s solutions make an excellent agreement, while solutions computed
by other mentioned methods move away from exact solution. Figure 4(d)
displays that Picard’s iterative scheme has smallest || Error || as compared
to other stated schemes.
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Table 5. Error Estimation of Example-3

X Exact Sol. Picard’s Sol. | Error |

0.0 0.000000000 0.0000000000 0.000000000
0.1 0.395805699 0.3957501818 55517 x 1072
0.2 0.739097410 0.7385461713 55124 x 1074
0.3 1.008758260 1.0074268710 1.3314 x 1073
0.4 1.182536660 1.1817929190 74374 x 1074
0.5 1.242742690 1.2393843260 3.3584 x 1073
0.6 1.182536660 1.1712949450 1.1242 x 1072
0.7 1.008758260 0.9890955265 1.9663 x 102
0.8 0.739097410 0.7166833621 22414 x 1072
0.9 0.395805699 0.3834243783 1.2381 x 1072
1.0 0.000000000 0.0000000000 0.000000000

(a) (b)
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Figure 4. Graphical Illustration of Example-3

Table 6. Comparison of || Error||

of Example-3

Method |Error||
Picard’s Method 0.0224140000
B Spline Method 0.1347528700
Homotopy Perturbation Method 0.4964351282
Perturbation Iteration Algorithm 0.7001783219

Variational Iteration Method

1.3943488610

8. Conclusion

The current article is devoted to the derivation of approximate
solutions of BTEs using Picard’s iterative technique which is a reliable,
effective, and efficient method to solve such kind of equations. Existence
and uniqueness of solutions have been confirmed. Convergence and
stability of solutions of numerical examples have also been examined.
Furthermore, the absolute errors for all examples have also been estimated.
The Picard’s results are compared with the results attained by DM, PIA,
HPM, OHAM, LM, VIM, PM, and BSM through tables and graphical
illustrations, and then discussed thoroughly. The derived results definitely
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designate the following outcomes: a) The solutions of BTEs are convergent,
b) The solutions of BTEs are Ulam-Hyers-Rassias stable, c¢) Picard’s
solutions have least [|[Error|| amongst other mentioned techniques, and d)
Picard’s solutions are in good agreement with exact solutions.

The results of the current research open up a number of promising
directions for extension. The Picard’s iterative method can be extended to
solve higher-dimensional Bratu problems, systems of Bratu equations, and
problems with nonlinear boundary conditions. In addition, investigating its
application to fractional-order Bratu type equations involving Caputo,
Riemann-Liouville, or other fractional derivatives is an important and
difficult direction for future study. The stability framework developed here
can also be used for other classes of nonlinear differential equations that are
solved using iterative methods.
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