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Convergence and Ulam-Hyers-Rassias Stability Analyses of Numerical 
Solutions of Bratu Type Equations using Picard Method 
Saif Ullah∗ , Muzaher Ali , Sana Bajwa , and Ahsan Bilal  
Department of Mathematics, Government College University Lahore, Pakistan 

ABSTRACT 
The Bratu equation is a basic nonlinear boundary value problem with 
important applications to fuel ignition, thermal combustion, and 
nanotechnology. The  current  article presents  a new application of the 
Picard iterative technique to find accurate approximate solutions for this 
equation. Firstly, the conditions for  existence and uniqueness of the 
solutions are  determined. Furthermore, the article  provides  an explicit 
formulation of Picard’s scheme for second-order ordinary differential 
equations  and its particular implementation to the Bratu type problem. 
The iterative solutions obtained are analyzed thoroughly for convergence 
and are proved to be Ulam-Hyers-Rassias stable, a very strong type of 
stability not yet known for these kind of solutions. Numerical tests for three 
cases ( 𝜇𝜇 = 1 , 2, and the critical value 𝜇𝜇 = 3.51383 ) are shown to 
exemplify outstanding accuracy of  the proposed approach. A thorough 
comparison with known techniques including the Adomian Decomposition 
Method, Homotopy Perturbation Method, and Variational Iteration Method 
indicates that the Picard iterative scheme is much better in terms of 
accuracy since its maximum absolute errors are much smaller. 
Keywords: Bratu type equations, convergence analysis, error estimation, 
existence and uniqueness of solutions, Picard method, Ulam-Hyers-Rassias 
stability. 

Highlights 

• The foremost aim of the current article is to compute approximate 
solutions of BTEs using Picard’s method which are new and not 
described before in the literature. 

• The convergence of the sequence 𝑈𝑈𝑛𝑛(𝑥𝑥), generated by Picard’s iteration 
is assessed using the uniform convergence criterion on the interval 𝑥𝑥 ∈
[0, 1]. 
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• This demonstrates that both exact and Picard’s solutions make an 
excellent agreement. 

1. INTRODUCTION 
Mathematical modeling of many physical phenomena is achieved in the 

form of integral equations, differential equations (DEs), or integro- 
differential equations [1-3]. Bratu type DEs have many applications in 
practical life. These include fuel ignition, Chandrasekhar model, 
nanotechnology, thermal reaction, heat transfer by conduction, radiative 
heat transfer, and chemical reactor theory [4-7]. The scientists and 
researchers are very keen in the study of Bratu type equations (BTEs). This 
is because the solutions of such type of equations are more natural and 
significant due to their important usage in engineering and scientific 
experimentations. The following equation is called one dimensional Bratu 
equation [8, 9]  

𝑈𝑈′′(𝑥𝑥) + 𝜇𝜇 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0  with 𝑈𝑈(0) = 0, 𝑈𝑈(1) = 0 ;  ∀  𝑥𝑥 ∈
 [ 0, 1] (1) 

 where 𝜇𝜇 > 0 is a physical parameter. Exact solution of above equation (1) 
is [10]  

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5] 𝜗𝜗2�

cosh �𝜗𝜗4�
�, 

where 𝜗𝜗 can be obtained from  

𝜗𝜗 = �2 𝜇𝜇 cosh �
𝜗𝜗
4
�. 

Several analytical, semi-analytical, and numerical schemes have been 
used to solve BTEs. Decomposition Method (DM) [11], Homotopy 
Perturbation Method (HPM) [12, 13], Perturbation Iteration Algorithm 
(PIA) [14], Optimal Homotopy Asymptotic Method (OHAM) [15], Laplace 
Method (LM) [16], Variational Iteration Method (VIM) [17], Perturbation 
Method (PM) [18], and B Spline Method (BSM) [19] have been 
implemented to handle BTEs. 

While the above-mentioned approaches have been used successfully, 
they require intricate calculations, for instance, the formation of Adomian 
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polynomials or determining auxiliary parameters and functions in 
homotopy-based approaches. The Picard iterative scheme is an attractive 
alternative considering its simplicity of concept, ease of implementation, 
and well-established rapid convergence for many nonlinear problems 
[20-24]. However, its use on the Bratu equation, especially with an 
extensive study on the stability of its solutions, is an uncharted territory. 
Therefore, the current article  aimed to fill that gap. The novelty of  this 
research is two-pronged: (i) systematic use and numerical verification of the 
Picard method for BTEs and (ii) pioneering Ulam-Hyers-Rassias stability 
study of the approximate solutions developed by the iterative scheme. 

The study of Ulam-Hyers type stability of various dynamical systems 
has received considerable attention. The famous Ulam-Hyers stability 
instigated in a seminar at the Wisconsin University in 1940, where Ulam 
[25] suggested the problem of the stability for functional equations. A 
significant development occurred in 1941, when Hyers [26] gave a partial 
solution to Ulam’s problem. After an in-depth analysis of the Ulam-Hyers 
stability structure, some researchers extended and used the concept of 
Ulam-Hyers stability, such as generalized Ulam-Hyers stability [27, 28], 
Ulam-Hyers-Rassias stability [29], and generalized Ulam-Hyers-Rassias 
stability. Huang et al. [30] analyzed Hyers-Ulam stability, while Qarawani 
[31] investigated Hyers-Ulam-Rassias stability of nonlinear DEs. Wang et 
al. considered Ulam-Hyers stability of fuzzy fractional DEs with delay [32, 
33]. 

The foremost aim of the  current article is to compute approximate 
solutions of BTEs using Picard’s method which are new and not described 
before in the literature. The article is organized as: Section 2 covers 
conditions for existence and uniqueness of solutions, while section 3 
comprehends the illustration of Picard method. Section 4 presents the 
solutions of numerical examples. The convergence and stability analyses of 
the derived solutions have been performed in section 5 and 6, respectively. 
Estimation of error and comparison of results are incorporated in section 7, 
while conclusion of the article is drafted in section 8.  

2. CONDITIONS FOR EXISTENCE AND UNIQUENESS OF 
SOLUTIONS OF BRATU EQUATIONS 

The existence and uniqueness of solutions for the Bratu problem are 
well-established and depend critically on the parameter 𝜇𝜇 . The 
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foundational result is summarized in the following theorem:  

Theorem 1. There are three cases for μ given in equation (1)   

• If 𝜇𝜇 = 𝜇𝜇0, then there exists one solution,  

• If 𝜇𝜇 < 𝜇𝜇0, then there exist two solutions,  

• If 𝜇𝜇 > 𝜇𝜇0, then no solution exists.  

Here 𝜇𝜇0 is called the critical value [12, 13] given as: 

1 =
1
4�

2 𝜇𝜇0 sinh �
𝜗𝜗
4
�, 

and its numerical value is  

𝜇𝜇0 = 3.513830719. 

 
Figure 1. Comparison of 𝜇𝜇 and 𝜗𝜗. 
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Figure 1 shows that when 𝜇𝜇 < 3.513830719, then 𝜗𝜗 has two values 
for each value of 𝜇𝜇. Hence, there are two solutions for each  

𝜇𝜇 < 3.513830719. For 𝜇𝜇 = 3.513830719, only one value of  

𝜗𝜗 = 4.798645359 exists and there is a unique solution. When  

𝜇𝜇 > 3.513830719, there is no resultant value of 𝜗𝜗, and in this case, no 
solution of Bratu equation exists [12, 13].  

3. DESCRIPTION OF PICARD METHOD 
This section discusses the description of Picard method for second- 

order ordinary differential equation (ODE) and its implementation to BTE. 

3.1. Formulation of Picard Method for Second-Order ODE  
Let us take a second-order ODE  

ℒ(𝑈𝑈(𝑥𝑥)) = 𝒩𝒩(𝑈𝑈(𝑥𝑥)) , (2) 

where ℒ(𝑈𝑈(𝑥𝑥))  is linear operator, while 𝒩𝒩(𝑈𝑈(𝑥𝑥))  is nonlinear 
operator [20]. Writing ℒ(𝑈𝑈(𝑥𝑥)) in terms of derivative of second-order as  

ℒ(𝑈𝑈(𝑥𝑥)) = 𝑈𝑈′′(𝑥𝑥) , 
while 𝒩𝒩(𝑈𝑈(𝑥𝑥)) in terms of 𝑈𝑈(𝑥𝑥) and 𝑈𝑈 ′(𝑥𝑥)  as 

𝒩𝒩(𝑈𝑈(𝑥𝑥) = (𝑈𝑈(𝑥𝑥) ,  𝑈𝑈 ′(𝑥𝑥)) 
then, equation (2) yields  

𝑈𝑈′′(𝑥𝑥) = 𝒩𝒩(𝑈𝑈(𝑥𝑥) , 𝑈𝑈 ′(𝑥𝑥)) , (3) 
where  

𝑈𝑈(0) = 𝛼𝛼  and  𝑈𝑈 ′(0) = 𝛽𝛽. 
Solving equation (3), we have  

𝑈𝑈(𝑥𝑥) = 𝛼𝛼 + 𝛽𝛽 𝑥𝑥 + ∫𝑥𝑥0 ∫𝑥𝑥0 𝒩𝒩(𝑈𝑈(𝑥𝑥) , 𝑈𝑈 ′(𝑥𝑥))𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 . (4) 

Hence, the iterative formula is  

𝑈𝑈𝑛𝑛+1(𝑥𝑥) = 𝛼𝛼 + 𝛽𝛽 𝑥𝑥 + ∫𝑥𝑥0 ∫𝑥𝑥0 𝒩𝒩(𝑈𝑈𝑛𝑛(𝑥𝑥) ,  𝑈𝑈𝑛𝑛 ′(𝑥𝑥))𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 , (5) 

that is Picard’s iterative scheme for second-order ODE [21, 22].  
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3.2. Implementation to Bratu Equation  
Let us take equation (1) as 

𝑈𝑈′′(𝑥𝑥) + 𝜇𝜇 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0  with  𝑈𝑈(0) = 0 , 𝑈𝑈(1) = 0 ; ∀ 𝑥𝑥 ∈
[ 0 , 1]. (6) 

Here ℒ(𝑈𝑈(𝑥𝑥)) = 𝑈𝑈′′(𝑥𝑥)         and         𝒩𝒩(𝑈𝑈(𝑥𝑥)) =
𝜇𝜇 𝑒𝑒𝑈𝑈(𝑥𝑥). 
From the above equation (6), we have  [12, 34] 

𝑈𝑈′′(𝑥𝑥) = −𝜇𝜇 𝑒𝑒𝑈𝑈(𝑥𝑥). (7) 
Implementation of Picard method yields  

𝑈𝑈𝑛𝑛+1(𝑥𝑥) = 𝛼𝛼 + 𝛽𝛽 𝑥𝑥 − 𝜇𝜇 ∫𝑥𝑥0 ∫𝑥𝑥0 𝑒𝑒𝑈𝑈𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 , (8) 

where 𝑈𝑈(0) = 𝛼𝛼 = 0 , and 𝛽𝛽 changes as 𝜇𝜇 changes. 

⇒     𝑈𝑈𝑛𝑛+1(𝑥𝑥) = 𝛽𝛽 𝑥𝑥 − 𝜇𝜇 ∫𝑥𝑥0 ∫𝑥𝑥0 𝑒𝑒𝑈𝑈𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 . (9) 

This is Picard’s iterative scheme for Bratu equation. 

4. SOLUTIONS OF BTEs USING PICARD METHOD 
In this section, Picard’s iterative scheme  is used to compute the 

approximate solutions of various BTEs.  

4.1. Example-1 
Consider 

𝑈𝑈′′(𝑥𝑥) + 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0  with  𝑈𝑈(0) = 0 , 𝑈𝑈(1) = 0 ;   ∀   𝑥𝑥 ∈
 [ 0 , 1]. (10) 

Here, 𝜇𝜇 = 1. As previously deliberated that for 𝜇𝜇 < 3.513830719 , 
there exist two solutions of Bratu equation. Thus, equation (10) has two 
solutions and for finding those solutions  

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5]𝜗𝜗2�

cosh �𝜗𝜗4�
�, 

where 𝜗𝜗 can be obtained from  
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𝜗𝜗 = �2 𝜇𝜇 cosh �
𝜗𝜗
4
�. 

Since 𝜇𝜇 = 1, so  

𝜗𝜗 = √2 cosh �𝜗𝜗
4
�. (11) 

After solving equation (11), we have 

𝜗𝜗1 = 1.517164598 ,                𝜗𝜗2 = 10.9387028. 
Thus, two solutions are obtained, that is, 𝜗𝜗1 (called lower solution) and 

𝜗𝜗2 (called higher solution). However, in the present case, merely lower 
solution will  be used, then 

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5] 1.517164598

2 �

cosh �1.517164598
4 �

� , 

⇒ 𝑈𝑈(𝑥𝑥) = −2 ln(0.9321424738 cosh(0.7585822990 𝑥𝑥 
− 0.3792911495)) 

which is the exact solution of equation (10). Taking 𝑈𝑈0(𝑥𝑥) = 0 and 
applying Picard method, we get  

𝑈𝑈1(𝑥𝑥) = 0.5493527280 𝑥𝑥 − 0.5 𝑥𝑥2 ,
𝑈𝑈2(𝑥𝑥) = 0.0003720238095 𝑥𝑥8 − 0.001634978357 𝑥𝑥7 − 0.001651763169 𝑥𝑥6

+0.01235224910 𝑥𝑥5 + 0.02909214918 𝑥𝑥4 − 0.09155878800 𝑥𝑥3 − 0.5 𝑥𝑥2
 

   +0.5493527280 𝑥𝑥,                                                                                                  

and 

U3 (x) = 0.5493527280 x −  0.5 x2 −  0.09155878800 x3 +
0.02909214918 x4 + 0.0183117576 x5 −  0.003459802640 x6 −
 0.001764607014 x7 +  0.9322482480 × 10−4x8  +
1.580853532 ×  10−4x9  +  0.4533942348 × 10−5x10  −
 1.393134891 ×  10−5x11  + 0.06120893625 × 10−6x12  +
 0.06540389326 ×  10−5x13 + + 0.04400289 ×  10−6x14  −
 0.03474251 ×  10−6x15  −  0.03008674 × 10−7x16  +
 0.02236216459 × 10−7 x17 − 0.02261465929 ×  10−8 x18   

(13) 
that is the approximate solution of equation (10). 
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4.2. Example-2 
Consider 

𝑈𝑈′′(𝑥𝑥) + 2 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0  with 𝑈𝑈(0) = 0 , 𝑈𝑈(1) = 0 ;  ∀  𝑥𝑥 ∈
[ 0 , 1]. (14) 

Here,  𝜇𝜇 = 2.  As previously deliberated that for  

𝜇𝜇 < 3.513830719 , there exist two solutions of Bratu equation. Thus, 
equation (14) has two solutions and for finding those solutions  

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5]𝜗𝜗2�

cosh �𝜗𝜗4�
� , 

where 𝜗𝜗 can be derived from  

𝜗𝜗 = �2 𝜇𝜇 cosh �
𝜗𝜗
4
�. 

Since 𝜇𝜇 = 2, so  

𝜗𝜗 = √2 × 2 cosh �𝜗𝜗
4
�. (15) 

After solving equation (15), we get  

𝜗𝜗1 = 2.357551054 ,           𝜗𝜗2 = 8.5071995. 
Thus, two solutions are  obtained, that is, 𝜗𝜗1 (called lower solution) 

and 𝜗𝜗2 (called higher solution). However, in the present case, merely lower 
solution will  be used, then 

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5] 2.357551054

2 �

cosh �2.357551054
4 �

� , 

⇒  𝑈𝑈(𝑥𝑥) = −2 ln(0.8483379380 cosh(1.178775527 𝑥𝑥
− 0.5893877635)) , 

which is the exact solution of equation (14). Taking 𝑈𝑈0(𝑥𝑥) = 0 and 
applying Picard method, we get  
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 𝑈𝑈1(𝑥𝑥) = 1.248217518 𝑥𝑥 − 𝑥𝑥2 ,
𝑈𝑈2(𝑥𝑥) = 0.005952380952 𝑥𝑥8 − 0.02971946472 𝑥𝑥7

+0.01860156574 𝑥𝑥6      + 0.0924087264 𝑥𝑥5 + 0.0368294189 𝑥𝑥4
 

   −0.416072506 𝑥𝑥3 − 𝑥𝑥2 + 1.248217518 𝑥𝑥, (16) 

and  
𝑈𝑈3(𝑥𝑥) = −0.115787055 × 10−6 𝑥𝑥18 + 0.130074688 × 10−5 𝑥𝑥17 − 0.460289 × 10−5 𝑥𝑥16

−0.02644413 × 10−6 𝑥𝑥15 + 0.2586929702 × 10−4 𝑥𝑥14 + 0.2374648306 × 10−4 𝑥𝑥13
−0.1722400368 × 10−3 𝑥𝑥12 − 0.5966016460 × 10−3 𝑥𝑥11 + 0.001944801524 𝑥𝑥10
+0.003173141654𝑥𝑥9 − 0.00655987510 𝑥𝑥8 − 0.02640249326 𝑥𝑥7 − 0.001165361882 𝑥𝑥6
+0.1664290024 𝑥𝑥5 + 0.03682941898 𝑥𝑥4 − 0.4160725060 𝑥𝑥3 −  𝑥𝑥2 + 1.248217518 𝑥𝑥 ,

  

(17) 
that is the approximate solution of equation (14).  

4.3. Example-3 
Consider 

𝑈𝑈′′(𝑥𝑥) + 3.513830719 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0  

 with                         𝑈𝑈(0) = 0, 𝑈𝑈(1) =
0; ∀   𝑥𝑥 ∈ [ 0 , 1]. (18) 

Here, 𝜇𝜇 = 3.513830719. As previously deliberated that for  

𝜇𝜇 = 3.513830719 ,  Bratu equation has a unique solution. Therefore, 
equation (18) has a unique solution and for finding that 

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5]𝜗𝜗2�

cosh �𝜗𝜗4�
�, 

and 𝜗𝜗 can be derived from  

𝜗𝜗 = �2 𝜇𝜇 cosh �
𝜗𝜗
4
�. 

As  𝜇𝜇 = 3.513830719,  so  

𝜗𝜗 = √2 × 3.513830719 cosh �𝜗𝜗
4
�. (19) 

After solving equation (19), we have  

𝜗𝜗 = 4.798645359. 
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Thus,  

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5] 4.798645359

2 �

cosh �4.798645359
4 �

� , 

⇒ 𝑈𝑈(𝑥𝑥) = −2 ln(0.5524420911cosh(2.399322680 𝑥𝑥
− 1.199661340)), 

which is the exact solution of equation (18). Taking 𝑈𝑈0(𝑥𝑥) = 0 and 
applying Picard method, we get  

 𝑈𝑈1(𝑥𝑥) = 3.999916982 𝑥𝑥 − 0.5 𝑥𝑥2 ,
𝑈𝑈2(𝑥𝑥) = 0.00130722869 𝑥𝑥8 − 0.04183044990 𝑥𝑥7 + 0.4538503540 𝑥𝑥6 − 1.5225505 𝑥𝑥5

−2.196046963 𝑥𝑥4 − 2.342505194 𝑥𝑥3 − 1.756915360 𝑥𝑥2 + 3.999916982 𝑥𝑥 ,
 𝑈𝑈3(𝑥𝑥) = −2.405744959 × 10−3𝑥𝑥18 + 6.295431774 × 10−3𝑥𝑥17 + 6.06359428 × 10−3𝑥𝑥16

−0.04140070848 𝑥𝑥15 + 0.2133926181 𝑥𝑥14 − 0.3033346185 𝑥𝑥13 − 0.1635341992 𝑥𝑥12
−0.2943933311 𝑥𝑥11 − 1.238108848 𝑥𝑥10 − 0.09860541020 𝑥𝑥9 + 0.06549570825 𝑥𝑥8 
+1.569248472 𝑥𝑥7 + 2.820111160𝑥𝑥6 − 0.2276930256 𝑥𝑥5 − 1.827997980 𝑥𝑥4

 

   −2.342505194 𝑥𝑥3 − 1.756915360 𝑥𝑥2 + 3.999916982 𝑥𝑥,  (20) 

 and   
𝑈𝑈4(𝑥𝑥) = 3.999916982 𝑥𝑥 − 1.756915360 𝑥𝑥2 − 2.342505194 𝑥𝑥3  −
2.608816838 𝑥𝑥4  + 2.057791678 𝑥𝑥5 + 1.436367948 𝑥𝑥6 +
0.3755924260 𝑥𝑥7 − 0.5989937866 𝑥𝑥8 − 1.115268983 𝑥𝑥9 −
0.1861262692 𝑥𝑥10 + 0.4014073533𝑥𝑥11 + 0.4895580669𝑥𝑥12 
−0.2133778426𝑥𝑥13   −  0.1783860287𝑥𝑥14 − 0.2345269362𝑥𝑥15 −
0.110694331 𝑥𝑥16 + 0.0325434749 𝑥𝑥17 + 0.0946829798 𝑥𝑥18 +
0.0545570354 𝑥𝑥19 + 0.023638545𝑥𝑥20  − 0.0242938671 𝑥𝑥21 −
0.021804040 𝑥𝑥22 + 0.0072424414 𝑥𝑥23 + 0.0741606236 𝑥𝑥24 +
0.002463820 𝑥𝑥25 − 0.0059534466 𝑥𝑥26 − 0.0012045626 𝑥𝑥27 −
0.0067346123 𝑥𝑥28 − 0.0011077633 𝑥𝑥29 + 0.00771358043𝑥𝑥30 +
0.000802098𝑥𝑥31 + 0.0003443211𝑥𝑥32 + 0.61416749 × 10−5 𝑥𝑥33 −
0.0201121798 × 10−5 𝑥𝑥34 − 0.0922424728 × 10−5 𝑥𝑥35 −
0.16190965120 × 10−6 𝑥𝑥36 + 0.056308070 × 10−6 𝑥𝑥37  + 0.00429760 ×
10−7 𝑥𝑥38 + 0.0748094200 × 10−7 𝑥𝑥39 − 0.0306817000 × 10−7𝑥𝑥40  −
0.03965400 × 10−8 𝑥𝑥41 + 0.05616 × 10−9 𝑥𝑥42 − 0.01964754709 ×
10−9 𝑥𝑥43 + 0.041984642179 × 10−9 𝑥𝑥44 − 0.064080398 × 10−10 𝑥𝑥45 +
0.07435209 × 10−11 𝑥𝑥46  − 0.067626903 × 10−12 𝑥𝑥47 + 0.0489542041 ×
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10−13 𝑥𝑥48 − 0.0283546 × 10−14 𝑥𝑥49 + 0.013108496 × 10−15 𝑥𝑥50 −
0.0047865113 × 10−16 𝑥𝑥51 + 0.013534696 × 10−17 𝑥𝑥52 − 0.0286394 ×
10−19 𝑥𝑥53 + 0.04273016 × 10−23 𝑥𝑥54 − 0.40268047 × 10−25 𝑥𝑥55 +
0.17958767 × 10−27 𝑥𝑥56. 

(21) 

that is the approximate solution of equation (18). 

4.4. Example-4 
Consider  

𝑈𝑈′′(𝑥𝑥) + 5 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0       with    𝑈𝑈(0) = 0 ,    𝑈𝑈(1) =
0 ;    ∀   𝑥𝑥 ∈  [ 0 , 1].    (22) 

Here, 𝜇𝜇 = 5. To find the solutions of above equation (22) 

𝑈𝑈(𝑥𝑥) = −2ln�
cosh �[𝑥𝑥 − 0.5]𝜗𝜗2�

cosh �𝜗𝜗4�
�, 

and 𝜗𝜗 can be derived from  

𝜗𝜗 = √2 × 5 cosh �
𝜗𝜗
4
�. 

Since 𝜇𝜇 = 5, then  

𝜗𝜗 = √2 × 5 cosh �𝜗𝜗
4
�. (23) 

After solving equation (23), we get  

𝜗𝜗 = (−3.181805553 + 5.282305940  𝑖𝑖 )√10. 
Since 𝜗𝜗 is a complex number, therefore it can not be continued further. 

It has already been deliberated upon that for 𝜇𝜇 > 3.513830719, Bratu 
equation has no solution.  

5. CONVERGENCE ANALYSIS 
This section discusses the convergence of solutions of numerical examples 
derived by Picard method.  

5.1. Convergence Criteria 
The convergence of the sequence 𝑼𝑼𝒏𝒏(𝒙𝒙) generated by Picard’s iteration 
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is assessed using the uniform convergence criterion on the interval 𝒙𝒙 ∈
[𝟎𝟎,𝟏𝟏]. Recall that a sequence of functions 𝑼𝑼𝒏𝒏(𝒙𝒙) converges uniformly to a 
function 𝑼𝑼(𝒙𝒙) if [35] 

lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠|𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)| = 0. 

It will be demonstrated numerically that for given examples, the 
maximum absolute error |𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)|  indeed decreases below a 
predefined tolerance 𝜀𝜀  after a finite number of iterations 𝑛𝑛 , providing 
strong empirical evidence for uniform convergence. 

5.2. Convergence Analysis of Solution of Example-1 
Since it has been discussed above that 𝑼𝑼𝒏𝒏(𝒙𝒙) is uniformly convergent if 

and only if 

sup| 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)| = ∥ 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) ∥ < 𝜀𝜀   
when  𝑚𝑚 <  𝑛𝑛 ,    ∀ 𝑥𝑥 ∈ [ 0 , 1] . 
Taking   𝜀𝜀  =   0.00009,  we have 

sup| 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)| = ∥ 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) ∥ = Max  Error < 𝜀𝜀  

 when    𝑚𝑚 <  𝑛𝑛 ,    ∀   𝑥𝑥 ∈ [ 0 , 1] 

which implies that 𝑈𝑈𝑛𝑛(𝑥𝑥)  converges to 𝑈𝑈𝑛𝑛(𝑥𝑥) , where 𝑚𝑚 = 2  and 𝑈𝑈(𝑥𝑥) 
represents exact solution. 

5.3. Convergence Analysis of Solution of Example-2 
Since it has been discussed above that 𝑼𝑼𝒏𝒏(𝒙𝒙) is uniformly convergent if 

and only if 

sup| 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)| = ∥ 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) ∥ < 𝜀𝜀   
when  𝑚𝑚 <  𝑛𝑛 ,    ∀ 𝑥𝑥 ∈ [ 0 , 1] . 
Taking  𝜀𝜀 =   0.0009, we have 

sup| 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)| = ∥ 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) ∥ = Max  Error < 𝜀𝜀    

 when   𝑚𝑚 <  𝑛𝑛 ,    ∀   𝑥𝑥 ∈ [ 0 , 1] 

which implies that 𝑈𝑈𝑛𝑛(𝑥𝑥)  converges to 𝑈𝑈(𝑥𝑥) , where 𝑚𝑚 = 2  and 𝑈𝑈(𝑥𝑥) 
represents exact solution. 

5.4. Convergence Analysis of Solution of Example-3 
Since it has been discussed above that 𝑼𝑼𝒏𝒏(𝒙𝒙) is uniformly convergent if 
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and only if 

sup| 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)| = ∥ 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) ∥ <  𝜀𝜀     

when       𝑚𝑚 <  𝑛𝑛 ,    ∀  𝑥𝑥 ∈ [ 0 , 1] . 

Taking    𝜀𝜀  =   0.022414, we have 

sup| 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥)| = ∥ 𝑈𝑈𝑛𝑛(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) ∥ = Max  Error < 𝜀𝜀     

when   𝑚𝑚 <  𝑛𝑛 ,    ∀   𝑥𝑥 ∈ [ 0 , 1] 
which implies that 𝑈𝑈𝑛𝑛(𝑥𝑥) converges to 𝑈𝑈(𝑥𝑥), where 𝑚𝑚 = 3 and 𝑈𝑈(𝑥𝑥) is the 
exact solution.  

6. STABILITY ANALYSIS 
This section discusses the stability analysis of numerical scheme for 

BTEs using the following stability criteria.  

6.1. Ulam-Hyers-Rassias Stability (Generalized Ulam-Hyres Stability) 
The general second-order differential equation is considered as 

𝜉𝜉′′(𝑥𝑥)   −  𝐺𝐺(𝑥𝑥 , 𝜉𝜉(𝑥𝑥) , 𝜉𝜉  ′(𝑥𝑥)) = 0 with  𝜉𝜉(0) =
0  and  𝜉𝜉  ′(0) = 0.  (24) (24) 
Following [29-31], it can be said that equation (24) is Ulam-Hyers-Rassias 
(UHR) stable with respect to a continuous functions 𝜉𝜉(𝑥𝑥) if 

1.  | 𝜉𝜉′′(𝑥𝑥)   −  𝐺𝐺(𝑥𝑥 , 𝜉𝜉(𝑥𝑥) ,  𝜉𝜉  ′(𝑥𝑥))| ≤ 𝐻𝐻(𝑥𝑥) , 

2.  | 𝜉𝜉(𝑥𝑥)   −  𝜁𝜁(𝑥𝑥)| ≤ 𝑀𝑀(𝑥𝑥) , 

where 𝜉𝜉(𝑥𝑥) , 𝜁𝜁(𝑥𝑥) ∈ 𝐶𝐶  2[𝑎𝑎, 𝑏𝑏]  and 𝐻𝐻(𝑥𝑥), 𝑀𝑀(𝑥𝑥)  are positive 
continuous functions. Furthermore,  𝐻𝐻(𝑥𝑥) does not depend on 𝜉𝜉(𝑥𝑥) and 
𝐺𝐺(𝑥𝑥 , 𝜉𝜉(𝑥𝑥) , 𝜉𝜉  ′(𝑥𝑥)).  

6.2. Ulam-Hyers-Rassias Stability of Bratu Equation  
Theorem 2. The Bratu equation is Ulam-Hyers-Rassias stable, if it fulfills 
the conditions given below 

1.  � 𝑈𝑈𝑛𝑛′′(𝑥𝑥)   +  𝜇𝜇𝑒𝑒𝑈𝑈𝑛𝑛(𝑥𝑥)� ≤ 𝐻𝐻(𝑥𝑥) , 

2.  | 𝑈𝑈𝑛𝑛(𝑥𝑥)   −  𝑈𝑈(𝑥𝑥)| ≤ 𝑀𝑀(𝑥𝑥). 
While a full theoretical proof is beyond the scope of this numerical 

study, strong numerical evidence will be  provided for the stability of 
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derived approximate solutions. For Picard iterations 𝑈𝑈𝑛𝑛(𝑥𝑥) , it will be  
numerically verified that these inequalities hold for given examples. 

6.3. Stability Analysis of Example-1 
Consider  

𝑈𝑈′′(𝑥𝑥) + 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0  with      𝑈𝑈(0) = 0 ,     𝑈𝑈(1)
= 0 ;        ∀   𝑥𝑥 ∈  [ 0 , 1]. 

Here,  𝜉𝜉(𝑥𝑥) = 𝑈𝑈3(𝑥𝑥)  and  𝜁𝜁(𝑥𝑥) = 𝑈𝑈(𝑥𝑥), then 

� 𝑈𝑈3′′(𝑥𝑥) + 𝑒𝑒𝑈𝑈3(𝑥𝑥)�  ≤  max� 𝑈𝑈3′′(𝑥𝑥) + 𝑒𝑒𝑈𝑈3(𝑥𝑥)�  ≤  𝐻𝐻(𝑥𝑥)
= 𝑥𝑥2 + 0.0038857183 , 

and  
| 𝑈𝑈3(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) |   ≤  max| 𝑈𝑈3(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) | ≤  𝑀𝑀(𝑥𝑥)

= 𝑥𝑥2 + 0.000089546 . 

Hence, Example-1 fulfills the hypothesis of Theorem 2 and is 
Ulam-Hyers-Rassias stable. 

6.4. Stability Analysis of Example-2 
Consider 

𝑈𝑈′′(𝑥𝑥) + 2 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0   with   𝑈𝑈(0) = 0 ,     𝑈𝑈(1)
= 0 ;     ∀   𝑥𝑥 ∈  [ 0 , 1]. 

Here,  𝜉𝜉(𝑥𝑥) = 𝑈𝑈3(𝑥𝑥)  and  𝜁𝜁(𝑥𝑥) = 𝑈𝑈(𝑥𝑥), then 
� 𝑈𝑈3′′(𝑥𝑥) + 2 𝑒𝑒𝑈𝑈3(𝑥𝑥)�  ≤  max� 𝑈𝑈3′′(𝑥𝑥) + 2 𝑒𝑒𝑈𝑈3(𝑥𝑥)�  ≤  𝐻𝐻(𝑥𝑥)

= 𝑥𝑥4 + 0.09701083186 , 

and  
| 𝑈𝑈3(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) |   ≤  max| 𝑈𝑈3(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) |  ≤  𝑀𝑀(𝑥𝑥)

= 𝑥𝑥4 + 0.00082169 . 

Thus, Example-2 follows the hypothesis of Theorem 2 and is 
Ulam-Hyers-Rassias stable. 

6.5. Stability Analysis of Example-3 
Consider 

𝑈𝑈′′(𝑥𝑥) + 3.513830719 𝑒𝑒𝑈𝑈(𝑥𝑥) = 0  with  𝑈𝑈(0) = 0 ,   𝑈𝑈(1)
= 0 ;  ∀ 𝑥𝑥 ∈ [ 0 , 1]. 
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Here,  𝜉𝜉(𝑥𝑥) = 𝑈𝑈4(𝑥𝑥)  and  𝜁𝜁(𝑥𝑥) = 𝑈𝑈(𝑥𝑥), then 

� 𝑈𝑈4′′(𝑥𝑥) + 3.513830719 𝑒𝑒𝑈𝑈4(𝑥𝑥)� ≤  max� 𝑈𝑈4′′(𝑥𝑥) + 3.513830719 𝑒𝑒𝑈𝑈4(𝑥𝑥)� 

≤  𝐻𝐻(𝑥𝑥) = 𝑥𝑥6 + 65.60872438 , 

and  
|𝑈𝑈4(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) |  ≤  max| 𝑈𝑈4(𝑥𝑥) − 𝑈𝑈(𝑥𝑥) |  ≤  𝑀𝑀(𝑥𝑥)

= 𝑥𝑥6 + 0.022414 . 
Thus, Example-3 fulfils the hypothesis of Theorem 2 and is Ulam- 

Hyers-Rassias stable.  

7. RESULTS AND DISCUSSION 
Here, the efficacy and veracity of Picard’s iterative scheme has been 

demonstrated through error’s estimation, comparison of maximum errors, 
and graphical illustrations of the obtained approximate solutions of BTEs.  

7.1. Results of Example-1  
Table 1 contains |𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄| estimated using Picard method, which shows 

that  𝐦𝐦𝐦𝐦𝐦𝐦 |𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄| = ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥ 
estimated by Picard method, PIA [21], DM [18], HPM [13], and OHAM 
[15] are listed in Table 2. It explained that Picard’s method has smallest ∥
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥. 

Figure 2(a , b) demonstrates the comparison of exact solution with 
approximate solutions obtained by Picard’s iterative scheme. Figure 2(a) 
shows that both approximate and exact solutions coincide with each other. 
Figure 2(b) indicates that approximate solutions of zero to third orders are 
converging to exact solution. Figure 2(c) illustrates the comparison of 
solutions obtained by Picard’s iterative scheme, HPM, OHAM, DM, and 
PIA with the exact solution. This demonstrates that both exact and Picard’s 
solutions make an excellent agreement, while other solutions diverge from 
exact solution. Figure 2(d) indicates that Picard’s iterative scheme has least 
∥ Error ∥ as compared to other stated techniques.  
Table 1. Error Estimation of Example-1 

x Exact Sol. Picard’s Sol. | Error | 

0.00 0.0000000000 0.0000000000 0.0000000000 
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x Exact Sol. Picard’s Sol. | Error | 

0.10 0.0498467900 0.0498468027 1.27000 × 10−8 

0.20 0.0891899350 0.0891902388 3.03800 × 10−7 

0.30 0.1176090956 0.1176109762 1.88060 × 10−6 

0.40 0.1347902526 0.1347966401 6.38750 × 10−6 

0.50 0.1405392142 0.1405548425 1.56280 × 10−5 

0.60 0.1347902526 0.1348215219 3.12690 × 10−5 

0.70 0.1176090956 0.1176641754 5.50798 × 10−5 

0.80 0.0891899350 0.0892797819 8.95460 × 10−5 

0.90 0.0498467900 0.0498874514 4.06614 × 10−5 

1.00 0.0000000000 0.0000000000 0.0000000000 

Table 2. Comparison of  Error  of Example-1 

Methods  Error  
Picard’s Method 0.0000895460 
Perturbation Iteration Algorithm 0.0011992210 
Decomposition Method 0.0030154732 
Homotopy Perturbation Method 0.1431299094 
OHAM 0.9944206698 
                 (a)                                   (b)                    
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                 (c)                                   (d)

   
Figure 2. Graphical Illustration of Example-1 

7.2. Results of Example-2 
Table 3 lists | 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 | estimated by Picard’s iterative scheme. It can 

be observed that ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥  = 𝐦𝐦𝐦𝐦𝐦𝐦 | 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 | = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The 
∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥ estimated by Picard method, Laplace method (LM) [16], DM 
[18], PIA [14], and HPM [13] drafted in Table 4 indicates that Picard’s 
method has smallest ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥ amongst these methods. 

Figure 3(a , b) illustrated the comparison of exact solution with 
approximate solutions obtained by Picard’s iterative scheme. Figure 3(a) 
shows that both approximate and exact solutions match with each other. 
Figure 3(b) shows that approximate solutions of zero to third orders are 
converging to exact solution. Figure 3(c) demonstrates the comparison of 
solutions obtained by Picard’s iterative scheme, DM, LM, PIA, and HPM 
with the exact solution. This illustrates that both exact and Picard’s 
solutions make an excellent agreement, while solutions derived by other 
mentioned techniques diverge from exact solution. Figure 3(d) represents 
that Picard’s iterative scheme has least ∥ Error ∥ as compared to other 
stated methods.  
Table 3. Error Estimation of Example-2 

x Exact Sol. Picard’s Sol. | Error | 

0.00 0.0000000000 0.0000000000 0.000000000 

0.10 0.1144107440 0.1144110226 7.7860 × 10−7 
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0.20 0.2064191156 0.2064266804 7.5640 × 10−6 

0.30 0.2738793116 0.2739270572 4.7745 × 10−5 

0.40 0.3150893646 0.3152541108 1.6474 × 10−4 

0.50 0.3289524214 0.3293601056 8.2169 × 10−4 

0.60 0.3150893646 0.3152541108 1.6474 × 10−4 

0.70 0.2738793116 0.2739270572 4.7745 × 10−5 

0.80 0.2064191156 0.2064266804 7.5640 × 10−6 

0.90 0.1144107440 0.1144110226 7.7860 × 10−7 

1.00 0.0000000000 0.0000000000 0.000000000 

Table 4. Comparison of  Error  of Example-2 

Method Error  
Picard’s Method 0.0008216900 
Laplace Method 0.0123778084 
Decomposition Method 0.0146751156 
Perturbation Iteration Algorithm 0.0523780000 
Homotopy Perturbation Method 0.2559341111 

                       (a)                                               (b) 
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                 (c)                                                 (d) 

  

Figure 3. Graphical Illustration of Example-2 

7.3. Results of Example-3 
The | 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 | estimated by Picard’s iterative scheme is drafted in 

Table 5 which shows that ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥  = 𝐦𝐦𝐦𝐦𝐦𝐦 | 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 |  =
 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥estimated by Picard method, B Spline method 
[19], HPM [13], PIA [14], and VIM [17] are drafted in Table 6 which shows 
that Picard method has smallest ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∥ amongst these methods. 

Figure 4 (a, b) represents the comparison of exact solution with 
approximate solutions obtained by Picard’s iterative scheme. Figure 4(a) 
shows that both approximate and exact solutions match with each other. 
Figure 4(b) shows that approximate solutions of zero to fourth orders are 
converging to exact solution. Figure 4(c) illustrates a comparison of 
approximate solutions computed by Picard’s iterative scheme, BSM, HPM, 
PIA, and VIM with exact solution. This demonstrates that both exact and 
Picard’s solutions make an excellent agreement, while solutions computed 
by other mentioned methods move away from exact solution. Figure 4(d) 
displays that Picard’s iterative scheme has smallest ∥ Error ∥ as compared 
to other stated schemes.  
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Table 5. Error Estimation of Example-3 

x Exact Sol. Picard’s Sol. | Error | 
0.0 0.000000000 0.0000000000 0.000000000 
0.1 0.395805699 0.3957501818 5.5517 × 10−5 

0.2 0.739097410 0.7385461713 5.5124 × 10−4 

0.3 1.008758260 1.0074268710 1.3314 × 10−3 

0.4 1.182536660 1.1817929190 7.4374 × 10−4 

0.5 1.242742690 1.2393843260 3.3584 × 10−3 

0.6 1.182536660 1.1712949450 1.1242 × 10−2 

0.7 1.008758260 0.9890955265 1.9663 × 10−2 

0.8 0.739097410 0.7166833621 2.2414 × 10−2 

0.9 0.395805699 0.3834243783 1.2381 × 10−2 

1.0 0.000000000 0.0000000000 0.000000000 

           (a)                                    (b) 
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              (c)                                     (d) 

  
Figure 4. Graphical Illustration of Example-3 

Table 6. Comparison of  Error  of Example-3 

Method Error  
Picard’s Method 0.0224140000 

B Spline Method 0.1347528700 

Homotopy Perturbation Method 0.4964351282 

Perturbation Iteration Algorithm 0.7001783219 

Variational Iteration Method 1.3943488610 

8. Conclusion 
The current article  is devoted to the derivation of approximate 

solutions of BTEs using Picard’s iterative technique which is a reliable, 
effective, and efficient method to solve such kind of equations. Existence 
and uniqueness of solutions have been confirmed. Convergence and 
stability of solutions of numerical examples have also been examined. 
Furthermore, the absolute errors for all examples have also been estimated. 
The Picard’s results are compared with the results attained by DM, PIA, 
HPM, OHAM, LM, VIM, PM, and BSM through tables and graphical 
illustrations, and then discussed thoroughly. The derived results definitely 
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designate the following outcomes: a) The solutions of BTEs are convergent, 
b) The solutions of BTEs are Ulam-Hyers-Rassias stable, c) Picard’s 
solutions have least ∥Error∥ amongst other mentioned techniques, and d) 
Picard’s solutions are in good agreement with exact solutions. 

The results of the  current  research open up a number of promising 
directions for extension. The Picard’s iterative method can be extended to 
solve higher-dimensional Bratu problems, systems of Bratu equations, and 
problems with nonlinear boundary conditions. In addition, investigating its 
application to fractional-order Bratu type equations involving Caputo, 
Riemann-Liouville, or other fractional derivatives is an important and 
difficult direction for future study. The stability framework developed here 
can also be used for other classes of nonlinear differential equations that are 
solved using iterative methods. 
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