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1College of Computer Science & Information Systems, Institute of Business 
Management, Karachi, Pakistan  
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ABSTRACT 
The current study presented a new proposition, named as ‘Log-Logistic 
(LogLogi) family’. Furthermore, the study offered notable features, 
statistical and reliability properties, as well as expansions of densities of the 
proposed family of distributions and estimation techniques for its 
parameters. Seven classical estimation approaches were discussed for 
parameter estimation of the proposed scheme. The simulation was 
conducted to assess the accuracy of model parameters using seven different 
estimation methodologies. Moreover, the applicability of the proposed 
family of distribution was established considering two sub-models by 
applying different goodness of fit tests on two datasets. The newly proposed 
model proved to be highly-adaptable and demonstrated superior 
performance compared to other models. 
Keywords: Anderson-Darling, least square, Log-Logistic distribution, 
maximum likelihood, Monte Carlo simulation  

1.INTRODUCTION  
Over the past decade, research on data modeling has surged across 

numerous scientific fields, including reliability theory, life insurance, health 
surveillance, sports analysis, and more. This rapid growth in data modeling 
interest is largely due to the vast amounts of information now observed, 
collected, and processed, driven by the rise of big data and data analytics. 
Additionally, access to advanced computational platforms has significantly 
contributed to this trend. As the volume of information continues to 
increase, the need to develop more robust models in order to interpret the 
complex dimensions of data becomes ever more essential. The method of 
differential equation given by Pearson [1] was the most significant 
development in statistical literature. Hastings, Mosteller and Winsor [2], 
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and Tukey [3] proposed another way of introducing new distribution by 
using quantile function. Azzalini [4] proposed a family of skewed 
distributions. The well-known beta distribution was used by Eugene, Lee, 
and Famoye [5] to generate new distribution. Zografos and Balakrishnan 
[6] forged a handy and flexible class named as gamma-G distributions. The 
Transformed-transformer (T-X family) method, proposed by Alzaatreh et 
al. [7], is widely recognized and highly regarded as a method to generate 
new distributions.  

The current study aligns with the above-stated need to introduce more 
advanced models capable of capturing complex data structures while 
preserving parsimony. Furthermore, the study presented a new, flexible 
family of distributions, namely, Log-Logistic (LogLogi) family as well as 
explored the diverse estimation methods.  

This study proposed a new family of distributions and highlighted the 
diverse estimation technique in classical paradigm. Additionally, the study 
also discussed important theoretical properties along with seven different 
frequentist estimators for the proposed family. The performance of 
proposed family of distributions was further evaluated by simulation study 
for varying sample sizes along with variation in parameter values. 
Furthermore, the study also provided two applications to real data.  

A number of studies have been published to compare the classical 
estimation methods in order to estimate the parameters of recognized 
distributions. Some of the studies are included here, firstly, Nassar et al. [8] 
for transmuted exponentiated Pareto, Shakhatreh et al. [9] for the 
generalized extended exponential-Weibull, Sen et al. [10] for the quasi 
Xgamma-geometric, Afify et al. [11] for the Weibull Marshall–Olkin 
Lindley, Nassar et al. [12] for Alpha Power Exponential distribution, and 
Hassan et al. [13] for power Lomax distribution. 

Section 2 of the study outlines the Cumulative Distribution Function 
(CDF) and Probability Distribution Function (PDF) of the proposed 
scheme. Section 2.1 and its subsections provide a comprehensive overview 
of reliability and statistical properties along with two sub-models. The 
subsection 2.3 concentrates on estimating the parameters using the 
Maximum Likelihood Method (ℳℒ), Ordinary Least Squares (𝑂𝑂ℒ𝑆𝑆), 
Weighted Least Squares (𝜔𝜔ℒ𝑆𝑆), Method of Percentile (𝑃𝑃ℂ𝐸𝐸), Maximum 
Product of Spacing Method (ℳ𝑃𝑃𝑃𝑃), Method of Cram´er-von-Mises 
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(ℂ𝑉𝑉ℳ), and Method of Anderson-Darling (Å𝐷𝐷). In section 3, a simulation 
study and real data analysis for one of the sub-models has been presented to 
further demonstrate the utility of the proposed family. The findings are 
summarized in Section 4. 

2.PROPOSED TECHNIQUE FRAMEWORK 
Start with the CDF of the proposed family, for a positive random variable 
υ , the expression is  

( ) ( )
( ) ( )

;
;

; 1 ;
G

υ ζ
υ ξ

υ ζ υ ζ

Η
=

Η + −Η
  (1) 

The PDF derived from (1) is  

( ) ( ) ( )( ) ( )( ) ( ) ( )
21/2 1/2

; 0.5 ; ; 1 ; ; 1 ;g υ ξ υ ζ υ ζ υ ζ υ ζ υ ζ
−− −  = Η −Η Η + −Η   

(2) 

where ( );υ ζ  is a baseline PDF of n  observations 1 2, ,..., nυ υ υ , ζ is a 
parameter vector of baseline distribution and ξ  is a parameter vector of the 
proposed distribution family . The proposed family is called as LogLogi 
family. The LogLogi family is new in the literature.  

2.1 Reliability Metrices and Distribution Quantile  
The reliability metrices of the proposed family are conferred in this 

subsection. The survival and hazard functions are derived by using (1) and 
(2) and written as:  

( ) ( )
( ) ( )

1 ;
;

; 1 ;
S
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; 0.5 ; ; 1 ; ; 1 ;h υ ξ υ ζ υ ζ υ ζ υ ζ υ ζ
−− −  = Η −Η Η + −Η 

By using (1) and (2), other characteristics can also be readily derived, such 
as reversed hazard and cumulative hazard functions for the LogLogi family. 
The analytically-solvable proposed CDF offers an additional advantage for 
random number generation. The distribution quantile function of the 
LogLogi family can be derived as 1( ) ( )Q Fν ν−= , : 0  1toν . The explicit 
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formula of thν  quantile is obtained as: 

( )
2

1
2 2

,
1
νυ ζ

ν ν
−
 
 = Η
 + − 

 

2.2 Submodels of the LogLogi Family 
This section presents two submodels of the proposed LogLogi family by 

considering the exponential and log-logistic distribution. Both the CDF and 
PDF of the proposed submodels along with PDF plots are also presented in 
Figures 1 and 2. 

2.2.1 The LogLogi-Exponential Distribution. Both the CDF and PDF 
of one parameter (λ ) exponential distribution has ( ) 1 e λυυ −Η = −  and 

( ) e λυυ λ −= , respectively. The CDF and PDF of the submodel denoted by 
LogLogi-Exponential (LogLogi-E), respectively, can be derived as  

( ) 1;
1

eG
e e

λυ

λυ λυ
υ ξ

−

− −

−
=

− +
, and 

( ) ( ) ( )
21/2 1/2
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, where 

0υ >  and 0λ >  is a scale 

parameter. 
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Figure 1. PDF Plots of LogLogi-Exponential Distribution 

2.2.2 The LogLogi-Logistic Distribution. The Log-Logistic 
distribution has CDF and PDF as ( ) 1

( ) 1 ( ) βυ λυ
−−Η = +  and 

( ) 21( ) ( ) 1 ( )β βυ λβ λυ λυ
−−= + , respectively,  with parameters λ  and β . The 

CDF and PDF of the submodel denoted by LogLogi-Logistic (LogLogi-L) 
can be derived as  

( )
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where 0υ > . The  0β >  is a shape parameter and 0λ >  is a scale 
parameter. 
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Figure 2. PDF Plots of LogLogi-Logistic Distribution 

2.3 Estimation Methods 
This section considers seven methods of estimation to estimate the 

unknown parameters of the LogLogi family of distributions. The estimation 
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methods applied are (i) ℳℒ, (ii) ℒ𝑆𝑆, (iii) 𝜔𝜔ℒ𝑆𝑆, (iv) 𝑃𝑃ℂ𝐸𝐸, (v) ℳ𝑃𝑃𝑃𝑃, (vi) 
ℂ𝑉𝑉ℳ, and (vii) Å𝐷𝐷.   

2.3.1 Maximum Likelihood Estimation (ℳℒ𝐸𝐸). Let 1 2, ,..., nυ υ υ  be 
the observed sample values from the LogLogi family of distributions having 
PDF ( );g υ ζ  and then the log-likelihood function  is denoted by ( )|L ζ υ  
and written as  

𝐿𝐿�𝜁𝜁|𝜐𝜐� = 𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙(0.5) + �𝑙𝑙𝑙𝑙𝑙𝑙 ℏ (𝜐𝜐; 𝜁𝜁)
𝑛𝑛

𝑖𝑖=1
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− 0.5�𝑙𝑙𝑙𝑙𝑙𝑙�1 −𝛨𝛨(𝜐𝜐; 𝜁𝜁)�
𝑛𝑛

𝑖𝑖=1

− 2�𝑙𝑙𝑙𝑙𝑙𝑙 ��𝛨𝛨(𝜐𝜐; 𝜁𝜁) + �1 − 𝛨𝛨(𝜐𝜐; 𝜁𝜁)�
𝑛𝑛

𝑖𝑖=1

 

By differentiating the log-likelihood function ( )|L ζ υ  with respect to 
parameter (s) ζ , we will get the normal equations. By solving these normal 
equations analytically or numerically, ℳℒ estimates of the proposed 
LogLogi family can be obtained.  

2.3.2 Ordinary Least Squares (OLS). Consider a random sample of 
size n from the LogLogi family of distribution, and let 1: 2: :...n n n nυ υ υ< < <  be 
the order observations, then we can obtain the ℒ𝑆𝑆 estimates of the 
parameters of the LogLogi family of distributions by minimizing the 
expression 

( ) ( )
2

:
1

;
1

n

i n
i

iS
n

ζ υ ζ
=

 = Η − + 
∑ , where ( );υ ζΗ  is a baseline CDF. 

2.3.3 Weighted Least Squares (𝝎𝝎𝝎𝝎𝝎𝝎). Following the same notations 
as mentioned for OLS previously, the 𝜔𝜔ℒ𝑆𝑆 estimates can also be obtained 
by minimizing the expression.   

( ) ( ) ( )
( ) ( )

2 2

:
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1 2
;

1 1

n

i n
i

n n i
i n i n

ω ζ υ ζ
=

+ +  = Η − − + + 
∑ , where ( );υ ζΗ  is a 

baseline CDF. 

2.3.4 Method of Percentile (𝑷𝑷ℂ𝑬𝑬). To apply this method based on the 
quantile function, the key idea is to minimize the difference between sample 
percentiles and the theoretical percentiles derived from the distribution’s 
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quantile function. Given the quantile function ( ; )Q ν ζ  of the LogLogi 
distribution family with parameter (s) ζ , the  𝑃𝑃ℂ𝐸𝐸 estimates can be 
obtained by minimizing the following expression 

( ) ( )

2
2

1
: 2 2

1
,

1

n

i n
i

P x νζ ζ
ν ν

−

=

  
  = −Η

 + −   
∑ , where 0 1ν< < . 

2.3.5 Maximum Product of Spacing Method (𝓜𝓜𝓜𝓜𝓜𝓜). Consider an 
order sample 1: 2: :...n n n nυ υ υ< < <  and the CDF ( );υ ζΗ of the proposed 
LogLogi distribution family with parameter (s) ζ , the ℳ𝑃𝑃𝑃𝑃 estimates of 
ζ are obtained by maximizing the product of spacings between these 
ordered sample points, defined as follows: 

( ) ( )
1

1

1 log
1

n

i
i

M D
n

ζ ζ
+

=

=
+ ∑ , where ( ) ( ) ( ): 1:| |i i n i nD ζ υ ζ υ ζ−= Η −Η , where 

( )0: | 0nυ ζΗ =  and ( )n 1: | 1nυ ζ+Η = . 

2.3.6 Method of Cram´er-von-Mises (ℂ𝑽𝑽𝑽𝑽). The next two statistical 
techniques are often used for parameter estimation and goodness-of-fit 
testing. These quantify the difference between the sample data's empirical 
distribution function and the theoretical model. 

Firstly, ℂ𝑉𝑉ℳis defined, consider a sample observation 

1: 2: :...n n n nυ υ υ< < < , sorted in ascending order, with a CDF ( );υ ζΗ  with 
parameter vector ζ ,  the ℂ𝑉𝑉ℳ estimates for ζ  are obtained by minimizing 
( )C ζ  with respect to ζ  

( ) ( )
2

:
1

1 1 2 1;
12 2

n

i n
i

iC
n n n

ζ υ ζ
=

− = + Η −  
∑ , where :i nυ  denotes the thi  order 

statistic  
in the sorted sample. 

2.3.7 Method of Anderson-Darling (Å𝑫𝑫). Following the mechanism 
of minimization, consider a sample observation 1: 2: :...n n n nυ υ υ< < < , sorted in 

ascending order, with a CDF ( );υ ζΗ  with parameter vector ζ ,  the Å𝐷𝐷 
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estimates for ζ are obtained by minimizing ( )A ζ  with respect to ζ  

( ) ( ) ( ) ( )( ){ }: 1:
1

1 2 1 log | log 1 |
n

i n n i n
i

A n i
n

ζ υ ζ υ ζ− +
=

= − − − Η + −Η∑ , where :i nυ  

denotes  

the thi  order statistic in the sorted sample. 

3.SIMULATION STUDY OF THE LOGLOGI-E  MODEL 
The study undertook a M. Carlo simulation to evaluate the performance 

of the ℳℒ, ℒ𝑆𝑆, 𝜔𝜔ℒ𝑆𝑆, 𝑃𝑃ℂ𝐸𝐸, ℳ𝑃𝑃𝑃𝑃, ℂ𝑉𝑉ℳ, and Å𝐷𝐷 estimation methods for 
the LogLogi-E distribution. For each parameter of the LogLogi-E model, the 
mean, bias, and mean square error were computed across varying sample 
sizes. These summaries measures were obtained by repeating the simulation 
process multiple times for each selected sample size. The simulated results 
of the LogLogi-E model at 1.5, 2, 4λ = are given in Tables 1, 2, and 3. 

As the sample sizes are increased, the mean simulated value tends to 
original supposed values. Additionally, the bias obtained by each method 
tends to zero as the sample sizes increase. Similar trends are also determined 
for the MSE of each method. The simulated results of the LogLogi-E model 
by each seven methods clearly show the consistency of the estimates and 
asymptotically unbiased. 

3.1 Data Analysis 
To further assess its utility, the LogLogi family is explored through the 

LogLogi-L model with two real life datasets. First dataset refers to time-to-
failure (in hours) of turbocharger used in a specific type of engine. Each 
from total 40 observations, representing the operational lifetime of the 
turbocharger until failure occur. It provides failure behavior and durability 
characteristics, making it useful for lifetime modeling.  This data set was 
used by Xu et al. [14]. The second dataset comprises the survival times (in 
months) of 20 patients who were diagnosed with acute myeloid leukemia. 
Each observation represents the duration from diagnosis to either death or 
the end of the study period, making it valuable for application in survival 
analysis and time event modeling. This data set was used by Afify et al. 
[15]. 
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Table 1. Mean, Bias, and MSE of the LogLogi-E Model for 1.5λ =  

Method Estimate n=10 n=20 n=30 n=50 n=100 n=200 n=300 
ML Mean 1.88578 1.72263 1.608156 1.554885 1.532891 1.516067 1.508344 
LS Mean 2.107319 1.686933 1.6181 1.561735 1.529782 1.518896 1.509292 
WLS Mean 2.043634 1.656902 1.601244 1.552345 1.526236 1.516212 1.508554 
CVM Mean 2.193216 1.731717 1.648066 1.579366 1.538522 1.52324 1.512184 
PCE Mean 1.547705 1.44745 1.457001 1.44756 1.461672 1.473345 1.478725 
MPS Mean 1.537071 1.4428 1.457499 1.451449 1.469011 1.480471 1.484921 
AD Mean 1.803524 1.610383 1.581333 1.540953 1.521858 1.513609 1.506598 
ML Bias 0.38578 0.28748 0.108156 0.054885 0.032891 0.016067 0.008344 
LS Bias 0.607319 0.186933 0.1181 0.061735 0.029782 0.018896 0.009292 
WLS Bias 0.543634 0.156902 0.101244 0.052345 0.026236 0.016212 0.008554 
CVM Bias 0.693216 0.231717 0.148066 0.079366 0.038522 0.02324 0.012184 
PCE Bias 0.047705 -0.05255 -0.043 -0.05244 -0.03833 -0.02665 -0.02128 
MPS Bias 0.037071 -0.0572 -0.0425 -0.04855 -0.03099 -0.01953 -0.01508 
AD Bias 0.303524 0.110383 0.081333 0.040953 0.021858 0.013609 0.006598 
ML MSE 0.148827 0.102327 0.011698 0.003012 0.001082 0.000258 6.96E-05 
LS MSE 0.368837 0.034944 0.013948 0.003811 0.000887 0.000357 8.63E-05 
WLS MSE 0.295538 0.024618 0.01025 0.00274 0.000688 0.000263 7.32E-05 
CVM MSE 0.480549 0.053693 0.021924 0.006299 0.001484 0.00054 0.000148 
PCE MSE 0.002276 0.002761 0.001849 0.00275 0.001469 0.00071 0.000453 
MPS MSE 0.001374 0.003272 0.001806 0.002357 0.00096 0.000381 0.000227 
AD MSE 0.092127 0.012184 0.006615 0.001677 0.000478 0.000185 4.35E-05 
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Table 2. Mean, Bias, and MSE of the LogLogi-E Model for 2λ =  

Method Estimate n=10 n=20 n=30 n=50 n=100 n=200 n=300 
ML Mean 2.506317 2.366311 2.147423 2.077875 2.036928 2.021717 2.013743 
LS Mean 2.705231 2.249726 2.144788 2.073071 2.046248 2.025105 2.011243 
WLS Mean 2.626977 2.209806 2.122652 2.062773 2.041037 2.022577 2.010888 
CVM Mean 2.821682 2.310054 2.184035 2.096541 2.057951 2.030912 2.015082 
PCE Mean 2.036854 1.924847 1.931119 1.929103 1.949793 1.964953 1.970029 
MPS Mean 2.022736 1.918781 1.93136 1.934983 1.960314 1.975446 1.979414 
AD Mean 2.367672 2.149176 2.094102 2.051806 2.034288 2.018975 2.00842 
ML Bias 0.506318 0.250464 0.147424 0.077875 0.036928 0.021717 0.013743 
LS Bias 0.705231 0.249726 0.144788 0.073071 0.046248 0.025105 0.011243 
WLS Bias 0.626977 0.209806 0.122652 0.062773 0.041037 0.022577 0.010888 
CVM Bias 0.821682 0.310054 0.184035 0.096541 0.057951 0.030912 0.015082 
PCE Bias 0.036854 -0.07515 -0.06888 -0.0709 -0.05021 -0.03505 -0.02997 
MPS Bias 0.022736 -0.08122 -0.06864 -0.06502 -0.03969 -0.02455 -0.02059 
AD Bias 0.367672 0.149176 0.094102 0.051806 0.034288 0.018975 0.00842 
ML MSE 0.256357 0.104558 0.021734 0.006064 0.001364 0.000472 0.000189 
LS MSE 0.497351 0.062363 0.020964 0.005339 0.002139 0.00063 0.000126 
WLS MSE 0.393101 0.044019 0.015043 0.00394 0.001684 0.00051 0.000119 
CVM MSE 0.675161 0.096134 0.033869 0.00932 0.003358 0.000956 0.000227 
PCE MSE 0.001358 0.005648 0.004745 0.005026 0.002521 0.001228 0.000898 
MPS MSE 0.000517 0.006597 0.004711 0.004227 0.001575 0.000603 0.000424 
AD MSE 0.135183 0.022254 0.008855 0.002684 0.001176 0.00036 7.09E-05 
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Table 3. Mean, Bias, and MSE of the LogLogi-E Model for 4λ =  

Method Estimate n=10 n=20 n=30 n=50 n=100 n=200 n=300 
ML Mean 5.059087 4.759021 4.274531 4.164586 4.075315 4.041302 4.021166 
LS Mean 5.280128 4.533099 4.324273 4.142926 4.087729 4.044307 4.026456 
WLS Mean 5.137602 4.443417 4.279244 4.123711 4.077618 4.040633 4.024467 
CVM Mean 5.512552 4.652192 4.404179 4.190062 4.111037 4.055893 4.034232 
PCE Mean 4.052084 3.878288 3.864438 3.857835 3.89457 3.931908 3.943802 
MPS Mean 4.029397 3.865482 3.866626 3.870307 3.915234 3.951754 3.960795 
AD Mean 4.67171 4.317621 4.216967 4.099834 4.063382 4.033777 4.019242 
ML Bias 1.059087 0.59034 0.274531 0.164586 0.075315 0.041302 0.021166 
LS Bias 1.280128 0.533099 0.324273 0.142926 0.087729 0.044307 0.026456 
WLS Bias 1.137602 0.443417 0.279244 0.123711 0.077618 0.040633 0.024467 
CVM Bias 1.512552 0.652192 0.404179 0.190062 0.111037 0.055893 0.034232 
PCE Bias 0.052084 -0.12171 -0.13556 -0.14217 -0.10543 -0.06809 -0.0562 
MPS Bias 0.029397 -0.13452 -0.13337 -0.12969 -0.08477 -0.04825 -0.03921 
AD Bias 0.67171 0.317621 0.216967 0.099834 0.063382 0.033777 0.019242 
ML MSE 1.121666 0.121666 0.075367 0.027089 0.005672 0.001706 0.000448 
LS MSE 1.638727 0.284195 0.105153 0.020428 0.007696 0.001963 0.0007 
WLS MSE 1.294139 0.196619 0.077977 0.015304 0.006025 0.001651 0.000599 
CVM MSE 2.287813 0.425355 0.163361 0.036124 0.012329 0.003124 0.001172 
PCE MSE 0.002713 0.014814 0.018377 0.020211 0.011115 0.004637 0.003158 
MPS MSE 0.000864 0.018095 0.017789 0.01682 0.007185 0.002328 0.001537 
AD MSE 0.451194 0.100883 0.047074 0.009967 0.004017 0.001141 0.00037 
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The initial validation of the LogLogi-L model is to compare with 
competitive model by using real data. The important Log-logistics 
distribution is considered for comparison with the proposed LogLogi-L 
model. This is because, logistic distribution is being used as a special case 
in the LogLogi family. The following goodness-of-fit methods, namely, 
Kolmogorov–Smirnov (KS), Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), consistent Akaike Information Criterion 
(CAIC), and Hannan-Quinn Information Criterion (HQIC) were used for 
comparison. Model with smallest values of these statistics is deemed more 
suitable for the data. All the computations and graphs were performed by 
using the R software.  

All goodness-of-fit statistics for the LogLogi-L and log-logistic model 
are summarized in Tables 4 and 5 for data 1 and 2. All four goodness-of-fit 
statistics presented in Table 4 have less values for the proposed LogLogi-L 
model than log-logistic distribution. Both datasets repeat the same results. 
This means that the LogLogi-L model outperforms than log-logistics model 
for both datasets 1 and 2. Hence, it can be inferred that the LogLogi-L model 
is a healthier (better) choice than log-logistic model. The study also outlined 
the Maximum Likelihood Estimates (MLEs) and their Standard Errors (SE) 
for the parameters of the LogLogi-L and log-logistics model in Table 5. 
Table 4. Comparative Goodness-of-fit Results for the LogLogi-Logistic and 
Log-logistics Models 

Data Models AIC CAIC HQIC BIC 
1 LogLogi-Logistic 2.659868 2.984192 6.037626 3.881159  

Log-logistic 3.84608 4.170404 7.223839 5.067371 
2 LogLogi-Logistic 1.569319 2.275201 3.560784 1.958074  

Log-logistic 2.419614 3.125497 4.411079 2.808369 

Table 5. The KS, MLEs, and Corresponding SE of the Models 

Data Models Parameters MLE SE KS 

1 

LogLogi-
Logistic 

λ̂  0.060759 0.08543 0.50203 
β̂  0.026936 0.08745 (3.50E-09) 

Log-
logistic 

λ̂  0.361183 0.294903 0.45072 
β̂  0.360601 0.294428 (1.75E-07) 

2 LogLogi- λ̂  0.011799 0.048632 0.50496 
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Logistic β̂  0.012893 0.053186 (3.01E-05) 

Log-
logistic 

λ̂  0.278363 0.211494 0.49398 
β̂  0.280011 0.212759 (3.01E-05) 

4. CONCLUSION 
This study introduced a new and advanced flexible family of 

distributions that extends the corresponding parent distribution. Key 
features of the newly-developed family were derived. Furthermore, 
parameter estimation for the LogLogi family was explored using the 
familiar ℳℒ method along with six additional estimation methods. The 
effectiveness of the LogLogi family is further demonstrated through the sub-
model LogLogi-L, applied to two real-life datasets. The simulation results 
provided useful insights for the real-world applications where parameter 
estimation accuracy directly effects decision-making and model 
interpretation. Based on simulation results for three considered parameters, 
it was concluded that the ℳ𝑃𝑃𝑃𝑃 performed better than all other competitive 
models for small sample size, making it more suitable for empirical studies 
with limited or noisy data. Conversely, the Å𝐷𝐷 would be a better choice for 
large sample settings with well-behaved data distributions. These results 
may help policymakers, researchers, and analysts choose the most suitable 
estimation approach depending on data quality and study objects. 

4.1. Future Research Directions  
Future directions of the study should include the regression structure, 

specifically for the proposed sub-model. This is because the regression 
structure provides efficient results due to auxiliary information. 
Additionally, the proposed work can be extended for bivariate version. 
Moreover, the proposed study has some limitations. In particular, repeating 
the simulation study across a wider range of parameter combinations could 
provide deeper insights into estimator robustness. Furthermore, the 
Bayesian estimation can provide the better efficiency of the results.  
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