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ABSTRACT

The current study presented a new proposition, named as ‘Log-Logistic
(LogLogi) family’. Furthermore, the study offered notable features,
statistical and reliability properties, as well as expansions of densities of the
proposed family of distributions and estimation techniques for its
parameters. Seven classical estimation approaches were discussed for
parameter estimation of the proposed scheme. The simulation was
conducted to assess the accuracy of model parameters using seven different
estimation methodologies. Moreover, the applicability of the proposed
family of distribution was established considering two sub-models by
applying different goodness of fit tests on two datasets. The newly proposed
model proved to be highly-adaptable and demonstrated superior
performance compared to other models.

Keywords: Anderson-Darling, least square, Log-Logistic distribution,
maximum likelihood, Monte Carlo simulation

1.INTRODUCTION

Over the past decade, research on data modeling has surged across
numerous scientific fields, including reliability theory, life insurance, health
surveillance, sports analysis, and more. This rapid growth in data modeling
interest is largely due to the vast amounts of information now observed,
collected, and processed, driven by the rise of big data and data analytics.
Additionally, access to advanced computational platforms has significantly
contributed to this trend. As the volume of information continues to
increase, the need to develop more robust models in order to interpret the
complex dimensions of data becomes ever more essential. The method of
differential equation given by Pearson [1] was the most significant
development in statistical literature. Hastings, Mosteller and Winsor [2],
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and Tukey [3] proposed another way of introducing new distribution by
using quantile function. Azzalini [4] proposed a family of skewed
distributions. The well-known beta distribution was used by Eugene, Lee,
and Famoye [5] to generate new distribution. Zografos and Balakrishnan
[6] forged a handy and flexible class named as gamma-G distributions. The
Transformed-transformer (T-X family) method, proposed by Alzaatreh et
al. [7], is widely recognized and highly regarded as a method to generate
new distributions.

The current study aligns with the above-stated need to introduce more
advanced models capable of capturing complex data structures while
preserving parsimony. Furthermore, the study presented a new, flexible
family of distributions, namely, Log-Logistic (LogLogi) family as well as
explored the diverse estimation methods.

This study proposed a new family of distributions and highlighted the
diverse estimation technique in classical paradigm. Additionally, the study
also discussed important theoretical properties along with seven different
frequentist estimators for the proposed family. The performance of
proposed family of distributions was further evaluated by simulation study
for varying sample sizes along with variation in parameter values.
Furthermore, the study also provided two applications to real data.

A number of studies have been published to compare the classical
estimation methods in order to estimate the parameters of recognized
distributions. Some of the studies are included here, firstly, Nassar et al. [8]
for transmuted exponentiated Pareto, Shakhatreh et al. [9] for the
generalized extended exponential-Weibull, Sen et al. [10] for the quasi
Xgamma-geometric, Afify et al. [11] for the Weibull Marshall-Olkin
Lindley, Nassar et al. [12] for Alpha Power Exponential distribution, and
Hassan et al. [ 13] for power Lomax distribution.

Section 2 of the study outlines the Cumulative Distribution Function
(CDF) and Probability Distribution Function (PDF) of the proposed
scheme. Section 2.1 and its subsections provide a comprehensive overview
of reliability and statistical properties along with two sub-models. The
subsection 2.3 concentrates on estimating the parameters using the
Maximum Likelihood Method (ML), Ordinary Least Squares (OLS),
Weighted Least Squares (wLS), Method of Percentile (PCE), Maximum
Product of Spacing Method (MPS), Method of Cram’er-von-Mises
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(CV M), and Method of Anderson-Darling (AD). In section 3, a simulation
study and real data analysis for one of the sub-models has been presented to
further demonstrate the utility of the proposed family. The findings are
summarized in Section 4.

2.PROPOSED TECHNIQUE FRAMEWORK

Start with the CDF of the proposed family, for a positive random variable
v, the expression is

H(v;¢)
G(v;¢)=

(v:¢) \/H(U;§)+\/1—H(U;§)
The PDF derived from (1) is

(1)

g(u;§)=0.5h(u;é’)(H(u;é’)) (1 H( u( [\/H v;¢) +\/1 H( 04’}
2)

where 71(0;¢) is a baseline PDF of n observations v;,0,,...,0,, ¢ is a

parameter vector of baseline distribution and ¢ is a parameter vector of the
proposed distribution family . The proposed family is called as LogLogi
family. The LogLogi family is new in the literature.

2.1 Reliability Metrices and Distribution Quantile

The reliability metrices of the proposed family are conferred in this
subsection. The survival and hazard functions are derived by using (1) and
(2) and written as:

l—H(U;é’)

S(:)= \/H(v;§)+\/l—H(u;§) ’

h(0:€) =0.5n(v:8)(H(0:¢)) " (1-H(0:¢)) [ JH(03¢) + I-H (3¢ }

By using (1) and (2), other characteristics can also be readily derived, such
as reversed hazard and cumulative hazard functions for the LogLogi family.
The analytically-solvable proposed CDF offers an additional advantage for
random number generation. The distribution quantile function of the
LogLogi family can be derived as Q(v)=F"'(v), v:0 to 1. The explicit
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formula of v" quantile is obtained as:

_yg-! v?
v=H [vz —I—(lvz)’gJ

2.2 Submodels of the LogLogi Family

This section presents two submodels of the proposed LogLogi tamily by
considering the exponential and log-logistic distribution. Both the CDF and
PDF of the proposed submodels along with PDF plots are also presented in
Figures 1 and 2.

2.2.1 The LogLogi-Exponential Distribution. Both the CDF and PDF
of one parameter (A4) exponential distribution has H(v)=1-e* and
h(v) = Ale ™, respectively. The CDF and PDF of the submodel denoted by
LogLogi-Exponential (LogLogi-E), respectively, can be derived as

-Av

l1-e
G(v;¢)= — — , and
\/l—e +\/e
B N2 N-12 - —— 2
g(v;6)=0.57e )”“(l—e i“) (e i“) [\/l—e w4 e AUJ ) where
v>0and A >0 isascale
parameter.
0
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Figure 1. PDF Plots of LogLogi-Exponential Distribution

2.2.2 The LogLogi-Logistic Distribution. The Log-Logistic
distribution has CDF and PDF as H(v) = (1+(/10)’ﬁ )71 and

h(v) = AB(Av)"" (1+(/11))” )72, respectively, with parameters 4 and f. The

CDF and PDF of the submodel denoted by LogLogi-Logistic (LogLogi-L)
can be derived as

(1+(20)?)
\/(1+(zu)-ﬁ )’ +\/1—(1+(xu)-ﬁ )

9(ui§) = 0528G)P (1 + W)  (Fui0) ™ (1
-(1+ (Av)—ﬁ)—l)—l/z [\/(1 + (A)~F)~1 + \/1 — 4+ Q)

G(v;¢)=

, and

-2

where v>0. The pg>0 is a shape parameter and A >0 1is a scale
parameter.
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Figure 2. PDF Plots of LogLogi-Logistic Distribution

2.3 Estimation Methods

This section considers seven methods of estimation to estimate the
unknown parameters of the LogLogi family of distributions. The estimation
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methods applied are (i) ML, (i1) LS, (iii) wLS, (iv) PCE, (v) MPS, (vi)
CVM, and (vii) AD.

2.3.1 Maximum Likelihood Estimation (M LE). Let v,,v,,...,u, be
the observed sample values from the LogLogi family of distributions having
PDF g(u;( ) and then the log-likelihood function is denoted by L(é’ | Q)

and written as

L(Zlg) =nlog(0.5) + Z logh(; Q) — O.SZ log H (v; Q)
i=1 i=1

—O.SZlog(l —H(v;{))—ZZlog (\/H(v;() +\/1—H(v;{))

By differentiating the log-likelihood function L({ | Q) with respect to

parameter (s) ¢ , we will get the normal equations. By solving these normal

equations analytically or numerically, ML estimates of the proposed
LoglLogi family can be obtained.

2.3.2 Ordinary Least Squares (OLS). Consider a random sample of
size n from the LogLogi family of distribution, and let v, <v,, <...<v,, be

the order observations, then we can obtain the LS estimates of the
parameters of the LogLogi family of distributions by minimizing the
expression

n

. 2
S(¢)= Z[H(Ui:n;g)—%} , where H(v;¢) is a baseline CDF.
i1 n+
2.3.3 Weighted Least Squares (wLS). Following the same notations
as mentioned for OLS previously, the wLS estimates can also be obtained
by minimizing the expression.

w(g)=iM{H(%;g)—LT, where H(v;¢) is a

= i(n-i+1) n+l
baseline CDF.
2.3.4 Method of Percentile (PCE). To apply this method based on the

quantile function, the key idea is to minimize the difference between sample
percentiles and the theoretical percentiles derived from the distribution’s
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quantile function. Given the quantile function Q(v;¢) of the LoglLogi
distribution family with parameter (s) ¢, the PCE estimates can be
obtained by minimizing the following expression

2

2
P({)zz X, —H{%,é’} , where 0 <v <1.
i 1% +(1—v )

2.3.5 Maximum Product of Spacing Method (M PS). Consider an
order sample v, <v,, <..<v, and the CDF H(U;g“ )of the proposed
LogLogi distribution family with parameter (s) ¢ , the M'PS estimates of
¢ are obtained by maximizing the product of spacings between these
ordered sample points, defined as follows:

n+l

M(¢)=——S log,(¢), where D,(¢)=H(v, |£)~H(v_,, |£), where

n+13

H(v,,1¢)=0 and H(v,,,, [{)=1.

2.3.6 Method of Cram’er-von-Mises (CVM). The next two statistical
techniques are often used for parameter estimation and goodness-of-fit
testing. These quantify the difference between the sample data's empirical
distribution function and the theoretical model.

Firstly, CVMis defined, consider a sample observation
sorted in ascending order, with a CDF H(U;é’ ) with
parameter vector § , the CVM estimates for £ are obtained by minimizing

C (§ ) with respect to ¢

v, <U,, <..<U

2n nn?

1 1 2i-1

C¢) =23 Hl0,i6) 21

12n n‘5

h

2
} , Where v, denotes the /" order

statistic

in the sorted sample.

2.3.7 Method of Anderson-Darling (D). Following the mechanism
of minimization, consider a sample observation v,, <v,, <...<v,,, sorted in

Ln

ascending order, with a CDF H(U;C ) with parameter vector ¢, the AD
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estimates for £ are obtained by minimizing A(é’ ) with respect to ¢

——n——z 21 {IOgH | §)+10g(1_H(Un—i+l:n | é/))} ’ Where Uii’l
denotes

the i order statistic in the sorted sample.
3.SIMULATION STUDY OF THE LOGLOGI-E MODEL

The study undertook a M. Carlo simulation to evaluate the performance
of the ML, LS, wLS, PCE, MPS, CVM, and AD estimation methods for
the LogLogi-E distribution. For each parameter of the LogLogi-E model, the
mean, bias, and mean square error were computed across varying sample
sizes. These summaries measures were obtained by repeating the simulation
process multiple times for each selected sample size. The simulated results
of the LogLogi-E model at 4 =1.5,2,4 are given in Tables 1, 2, and 3.

As the sample sizes are increased, the mean simulated value tends to
original supposed values. Additionally, the bias obtained by each method
tends to zero as the sample sizes increase. Similar trends are also determined
for the MSE of each method. The simulated results of the LogLogi-E model
by each seven methods clearly show the consistency of the estimates and
asymptotically unbiased.

3.1 Data Analysis

To further assess its utility, the LogLogi family is explored through the
LogLogi-L. model with two real life datasets. First dataset refers to time-to-
failure (in hours) of turbocharger used in a specific type of engine. Each
from total 40 observations, representing the operational lifetime of the
turbocharger until failure occur. It provides failure behavior and durability
characteristics, making it useful for lifetime modeling. This data set was
used by Xu et al. [14]. The second dataset comprises the survival times (in
months) of 20 patients who were diagnosed with acute myeloid leukemia.
Each observation represents the duration from diagnosis to either death or
the end of the study period, making it valuable for application in survival
analysis and time event modeling. This data set was used by Afify et al.
[15].
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Table 1. Mean, Bias, and MSE of the LogLogi-E Model for A =1.5

Method  Estimate n=10 n=20 n=30 n=50 n=100 n=200 n=300
ML Mean 1.88578 1.72263  1.608156 1.554885 1.532891 1.516067 1.508344
LS Mean 2.107319 1.686933 1.6181 1.561735 1.529782 1.518896 1.509292
WLS Mean 2.043634 1.656902 1.601244 1.552345 1.526236 1.516212 1.508554
CVM Mean 2.193216 1.731717 1.648066 1.579366 1.538522  1.52324 1.512184
PCE Mean 1.547705 1.44745 1.457001 1.44756 1.461672 1.473345 1.478725
MPS Mean 1.537071 1.4428 1.457499 1.451449 1.469011 1.480471 1.484921
AD Mean 1.803524 1.610383 1.581333 1.540953 1.521858 1.513609 1.506598
ML Bias 0.38578 0.28748 0.108156 0.054885 0.032891 0.016067 0.008344
LS Bias 0.607319 0.186933 0.1181 0.061735 0.029782 0.018896 0.009292
WLS Bias 0.543634 0.156902 0.101244 0.052345 0.026236 0.016212 0.008554
CVM Bias 0.693216 0.231717 0.148066 0.079366 0.038522  0.02324 0.012184
PCE Bias 0.047705 -0.05255 -0.043 -0.05244  -0.03833  -0.02665 -0.02128
MPS Bias 0.037071  -0.0572 -0.0425 -0.04855 -0.03099 -0.01953 -0.01508
AD Bias 0.303524 0.110383 0.081333 0.040953 0.021858 0.013609 0.006598
ML MSE 0.148827 0.102327 0.011698 0.003012 0.001082 0.000258  6.96E-05
LS MSE 0.368837 0.034944 0.013948 0.003811 0.000887 0.000357 8.63E-05
WLS MSE 0.295538 0.024618 0.01025 0.00274  0.000688 0.000263  7.32E-05
CVM MSE 0.480549 0.053693 0.021924 0.006299 0.001484  0.00054  0.000148
PCE MSE 0.002276 0.002761 0.001849  0.00275 0.001469  0.00071  0.000453
MPS MSE 0.001374 0.003272 0.001806 0.002357  0.00096  0.000381 0.000227
AD MSE 0.092127 0.012184 0.006615 0.001677 0.000478 0.000185 4.35E-05
School of Sciences ‘:@3 U MT 95
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Table 2. Mean, Bias, and MSE of the LogLogi-E Model for A =2

Method  Estimate n=10 n=20 n=30 n=50 n=100 n=200 n=300

ML Mean 2.506317 2366311 2.147423 2.077875 2.036928 2.021717 2.013743
LS Mean 2.705231 2.249726 2.144788 2.073071 2.046248 2.025105 2.011243
WLS Mean 2.626977 2.209806 2.122652 2.062773 2.041037 2.022577 2.010888
CVM Mean 2.821682 2.310054 2.184035 2.096541 2.057951 2.030912 2.015082
PCE Mean 2.036854 1.924847 1931119 1.929103 1.949793 1.964953 1.970029
MPS Mean 2.022736 1918781 1.93136  1.934983 1.960314 1.975446 1.979414
AD Mean 2.367672 2.149176 2.094102 2.051806 2.034288 2.018975  2.00842
ML Bias 0.506318 0.250464 0.147424 0.077875 0.036928 0.021717 0.013743
LS Bias 0.705231 0.249726 0.144788 0.073071 0.046248 0.025105 0.011243
WLS Bias 0.626977 0.209806 0.122652 0.062773 0.041037 0.022577 0.010888
CVM Bias 0.821682 0.310054 0.184035 0.096541 0.057951 0.030912 0.015082
PCE Bias 0.036854 -0.07515  -0.06888  -0.0709  -0.05021 -0.03505 -0.02997
MPS Bias 0.022736  -0.08122 -0.06864 -0.06502 -0.03969 -0.02455 -0.02059
AD Bias 0.367672 0.149176 0.094102 0.051806 0.034288 0.018975  0.00842
ML MSE 0.256357 0.104558 0.021734 0.006064 0.001364 0.000472 0.000189
LS MSE 0.497351 0.062363  0.020964 0.005339 0.002139  0.00063  0.000126
WLS MSE 0.393101 0.044019 0.015043 0.00394 0.001684 0.00051 0.000119
CVM MSE 0.675161 0.096134 0.033869 0.00932  0.003358 0.000956 0.000227
PCE MSE 0.001358 0.005648 0.004745 0.005026 0.002521 0.001228 0.000898
MPS MSE 0.000517 0.006597 0.004711 0.004227 0.001575 0.000603 0.000424
AD MSE 0.135183  0.022254 0.008855 0.002684 0.001176  0.00036  7.09E-05
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Table 3. Mean, Bias, and MSE of the LogLogi-E Model for 4 =4

Method  Estimate n=10 n=20 n=30 n=50 n=100 n=200 n=300
ML Mean 5.059087 4.759021 4.274531 4.164586 4.075315 4.041302 4.021166
LS Mean 5.280128 4.533099 4.324273 4.142926 4.087729 4.044307 4.026456
WLS Mean 5.137602 4.443417 4.279244 4.123711 4.077618 4.040633  4.024467
CVM Mean 5.512552  4.652192 4.404179 4.190062 4.111037 4.055893 4.034232
PCE Mean 4.052084 3.878288 3.864438 3.857835 3.89457 3.931908 3.943802
MPS Mean 4.029397 3.865482 3.866626 3.870307 3.915234 3.951754 3.960795
AD Mean 4.67171 4317621 4.216967 4.099834 4.063382 4.033777 4.019242
ML Bias 1.059087  0.59034  0.274531 0.164586 0.075315 0.041302 0.021166
LS Bias 1.280128 0.533099 0.324273  0.142926 0.087729 0.044307 0.026456
WLS Bias 1.137602 0.443417 0.279244 0.123711 0.077618 0.040633  0.024467
CVM Bias 1.512552  0.652192 0.404179 0.190062 0.111037 0.055893 0.034232
PCE Bias 0.052084 -0.12171 -0.13556 -0.14217 -0.10543 -0.06809  -0.0562
MPS Bias 0.029397 -0.13452  -0.13337 -0.12969  -0.08477 -0.04825 -0.03921
AD Bias 0.67171 0317621 0.216967 0.099834 0.063382 0.033777 0.019242
ML MSE 1.121666 0.121666 0.075367 0.027089 0.005672 0.001706 0.000448
LS MSE 1.638727 0.284195 0.105153 0.020428 0.007696 0.001963 0.0007
WLS MSE 1.294139  0.196619 0.077977 0.015304 0.006025 0.001651 0.000599
CVM MSE 2287813 0.425355 0.163361 0.036124 0.012329 0.003124 0.001172
PCE MSE 0.002713 0.014814 0.018377 0.020211 0.011115 0.004637 0.003158
MPS MSE 0.000864 0.018095 0.017789  0.01682  0.007185 0.002328 0.001537
AD MSE 0.451194 0.100883 0.047074 0.009967 0.004017 0.001141  0.00037
School of Sciences ‘:@3 U MT 97
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The initial validation of the LogLogi-L model is to compare with
competitive model by using real data. The important Log-logistics
distribution is considered for comparison with the proposed LogLogi-L
model. This is because, logistic distribution is being used as a special case
in the LogLogi family. The following goodness-of-fit methods, namely,
Kolmogorov—Smirnov (KS), Akaike Information Criterion (4/C), Bayesian
Information Criterion (BIC), consistent Akaike Information Criterion
(CAIC), and Hannan-Quinn Information Criterion (HQIC) were used for
comparison. Model with smallest values of these statistics is deemed more
suitable for the data. All the computations and graphs were performed by
using the R software.

All goodness-of-fit statistics for the LogLogi-L and log-logistic model
are summarized in Tables 4 and 5 for data 1 and 2. All four goodness-of-fit
statistics presented in Table 4 have less values for the proposed LogLogi-L
model than log-logistic distribution. Both datasets repeat the same results.
This means that the LogLogi-L model outperforms than log-logistics model
for both datasets 1 and 2. Hence, it can be inferred that the LogLogi-L model
is a healthier (better) choice than log-logistic model. The study also outlined
the Maximum Likelihood Estimates (MLEs) and their Standard Errors (SE)
for the parameters of the LogLogi-L and log-logistics model in Table 5.

Table 4. Comparative Goodness-of-fit Results for the LogLogi-Logistic and
Log-logistics Models

Data Models AIC CAIC HQIC BIC
1 LogLogi-Logistic  2.659868 2.984192 6.037626 3.881159
Log-logistic 3.84608 4.170404 7.223839 5.067371
2 Loglogi-Logistic 1.569319 2.275201 3.560784 1.958074
Log-logistic 2419614 3.125497 4.411079 2.808369

Table 5. The KS, MLEs, and Corresponding SE of the Models
Data  Models Parameters MLE SE KS

LogLogi- ) 0.060759  0.08543 0.50203

. Logistic Yi; 0.026936  0.08745  (3.50E-09)
Log- ) 0.361183  0.294903 0.45072

logistic Yi; 0.360601 0.294428  (1.75E-07)
2 LogLogi- ) 0.011799  0.048632 0.50496
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Logistic Yi; 0.012893  0.053186  (3.01E-05)
Log- y) 0.278363  0.211494 0.49398
S

logistic 0.280011 0.212759  (3.01E-05)

4. CONCLUSION

This study introduced a new and advanced flexible family of
distributions that extends the corresponding parent distribution. Key
features of the newly-developed family were derived. Furthermore,
parameter estimation for the Loglogi family was explored using the
familiar ML method along with six additional estimation methods. The
effectiveness of the LogLogi family is further demonstrated through the sub-
model LogLogi-L, applied to two real-life datasets. The simulation results
provided useful insights for the real-world applications where parameter
estimation accuracy directly effects decision-making and model
interpretation. Based on simulation results for three considered parameters,
it was concluded that the M'PS performed better than all other competitive
models for small sample size, making it more suitable for empirical studies
with limited or noisy data. Conversely, the AD would be a better choice for
large sample settings with well-behaved data distributions. These results
may help policymakers, researchers, and analysts choose the most suitable
estimation approach depending on data quality and study objects.

4.1. Future Research Directions

Future directions of the study should include the regression structure,
specifically for the proposed sub-model. This is because the regression
structure provides efficient results due to auxiliary information.
Additionally, the proposed work can be extended for bivariate version.
Moreover, the proposed study has some limitations. In particular, repeating
the simulation study across a wider range of parameter combinations could
provide deeper insights into estimator robustness. Furthermore, the
Bayesian estimation can provide the better efficiency of the results.
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