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Stretching a Surface in a Rotating Fluid through Porous Medium    
Shafqat Ali1 , Muhammad Shahzad Shabbir1 , Sajid Hussain2∗ , Ayesha 
Mahmood1 , Samer Perveen1 , and Muhammad Sajid Rashid3  
1Department of Mathematics, The Islamia University of Bahawalpur, Pakistan 
2Department of Statistics, The Islamia University of Bahawalpur, Pakistan 
3Department of Computer Science, The Islamia University of Bahawalpur, Pakistan 

ABSTRACT 
This study examines the rotating fluid flow of a viscous fluid originated by 
the stretching of the surface over which the fluid exists. The study focuses 
on the effects of slip velocity and the porosity of the medium. The 
Homotopy Analysis Method (HAM) is utilized to obtain the analytical 
expressions of the flow variables. Similarity transformations are used to 
convert the involved partial differential equations into ordinary differential 
equations. The effect of porosity and slip velocity parameters are presented 
through graphs. It is found that the parameter of porosity increases the 
similarity velocity profiles of the rotating fluid.  

Keywords: homotopy analysis method, porosity parameter, rotating fluid 
flow, slip velocity 

Highlights 

• Analytical HAM (homotopy analysis method) solutions reveal porosity 
boosts velocity profiles in rotating fluid flow over stretching surfaces 

• Slip parameter reduces x-direction velocity but enhances y-direction 
velocity in porous medium flows 

• The current study advances low-Re laminar flow modeling for filtration 
and seepage applications 

1. INTRODUCTION 
 Flow through porous media is an important class of small Reynolds 

number (Re) laminar flow. This type of flow is found in the filtration of 
fluids and the seepage of water in canal and river banks. Some other 
examples of this flow are the movements of underground water and oils [1-
3]. 

The slip condition is also an important aspect which has not been given 
                                                 
∗Corresponding Author: sajidhussain060917@gmail.com  

mailto:sajidhussain060917@gmail.com
https://orcid.org/0000-0002-7233-2229
https://orcid.org/0000-0002-4497-7732
https://orcid.org/0000-0002-3848-0981
https://orcid.org/0009-0006-0005-6460
https://orcid.org/0009-0003-0201-879X
https://orcid.org/0009-0001-5109-1569


Stretching a Surface in a Rotating… 

62 
Scientific Inquiry and Review 

Volume 9 Issue 3, 2025 
 

proper attention in the study of fluid dynamics. Navier [4] described shear 
stress-based slip boundary condition. Saqib et al. [5] used fractional 
derivatives in Caputo sense. In another paper, Saqib et al. [6] discussed Cu 
– Al2O3 – H2O hybrid nanofluid. Hussan et al. [7] investigated  a 
viscoplastic Casson fluid in a two dimension flow, with a stretching surface  
taken into account. Some of the recent advancements regarding flow over a 
stretching sheet and slip effects have been referenced in the literatue [8-14]. 
Nadeem et al. [15] developed the Caputo fractional model for Casson fluid 
with the help of  Flick’s and Fourier’s laws. Farhad et al. [16] analyzed 
blood flow using Casson fluid model through a horizontal cylinder in the 
presence of magnetic particles. Nadeem et al. [17] discussed the  Brinkman 
type fluid flow in a channel. 

We used the Homotopy Analysis Method (HAM) [18-22] to obtain the 
analytic series outcomes in this paper. Crane [23] explored the stretching of 
a surface. Brady and Acrivos [24] and Wang [25] provided deep insight into 
axisymmetric and three-dimensional cases. They expressed the effects of 
different parameters in to and three dimensional flows. Wang [26]  
discussed the case of stretching a surface in rotating fluid.  

Keeping all the above-mentioned ponts, the arrangement  of the  paper 
is as fallows. 

Section 1 includes introduction, section 2 includes mathematical 
formulation equations and Homotopy Analysis Method, section 3 includes 
discussion, and finally, section 4 includes graphical representation. 

2. MATHEMATICAL FORMULATION 
The velocity field is defined as  

( ) ( ) ( ) , , ,  , , ,  , ,u x y z v x y z w x y z  =V   (1) 

The Navier-Stokes equation in this frame is [26] 

( ) ( )   2    –    ² –   /d p k
dt

ρ µ µ + × + × × = ∇ + ∇  
ΦV Ω V Ω Ω r V V   (2) 

The Navier-Stokes equations in component form when the flow is 
steady, incompressible, and in rotating frame through porous media are  
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     –  2  – ²  

 

1 ² ² ²                             –      –  
² ² ²x

u u uu v w v x
x y z

u u uP u
x y z k

µν
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂ Φ
+ +

    
    

    

 
 
 

+
∂ ∂ ∂

Ω Ω
 (3) 

     + 2  – ²  

 

1 ² ² ²                             –      –  
² ² ²y

v v vu v w u y
x y z

v v vP v
x y z k

µν
ρ

∂ ∂
=

 ∂
+ +

∂ ∂ ∂

∂ ∂ ∂ Φ
+ + +

   
    

    

 


∂ ∂ ∂

Ω Ω
 (4) 

1 ² ² ²         
² ² ²z

w w w w w wu v w P
x y z x y z

ν
ρ

      
     

    

∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +

∂ ∂ ∂ ∂∂ ∂ 
 (5) 

Using 

1*     –  ² ²
2

p p rρ= Ω  (6) 

we get 

*1 ² ² ²     –  2  –      –  
² ² ²x

u u u u u uu v w v P u
x y z x y z k

µν
ρ

∂ ∂ ∂ ∂ ∂ ∂ Φ
+ + =

      
     

   
+ + +

∂ ∂ ∂ ∂ ∂  ∂
Ω  (7) 

*1 ² ² ²       +2   –      –  
² ² ²y

v v v v v vu v w u P v
x y z x y z k

µν
ρ

∂ ∂ ∂ ∂ ∂ ∂ Φ
+ + = + + +

∂
      

     
      ∂ ∂ ∂ ∂ ∂

Ω  (8) 

*1 ² ² ²          
² ² ²z

w w w w w wu v w P
x y z x y z

ν
ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +

∂ ∂ ∂ ∂ ∂
     

     
  ∂    

 (9) 

The continuity equation  is  

    0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

  (10) 

with boundary conditions  

 –    ,      –     0,       0      0,

   0,   0     ,

du dvu ax v w at z
dz dz

u v as z

γ γ= = = =

→ → → ∞
  (11) 
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where γ is the slip parameter.  
Suppose the surface is expanded in a horizontal line, then the 

components of velocity are 

   ,      0u ax v w= = =   (12) 

 In the above equation, the dimensions of  'a' show the rate of stretch. 
Using the dimensionless quantities 

      ,     ( ) ( ),   (   )– ,      au ax f v axh w a f zη η ν η η
ν

= ′ = = =  (13) 

With the help of eq. (13), eqs. (7) to (10) are reduced to 

 ( )2 –   –  2    –  f f f h f Rfλ′ ′′ = ′′′ ′   (14) 

 –    2    –  f h f h f h Rhλ′ ′ + ′ = ′′   (15) 

 and BCs are reduced to 

( ) ( ) ( ) ( )0 0,  0   1  0 ,    0,f f f fβ= ′ = + ′′ ′ ∞ =  (16) 

( ) ( ) ( )0  –  0   0,    0h h hβ ′ = ∞ =   (17) 

2

 a
v

β γ
=  (18) 

where β is a dimensionless slip parameter, while  λ is a dimensionless 
parameter given by   / aλ =Ω , and ( )  /R kµ= Φ  is a porosity parameter. 

2.1. Solution of the Considred Problem by HAM 
In this method, we use the initial guesses, satisfying the given boundary 

conditions as 

0 ( ) ( )   1 –  
2

f e
η
ββη
−

=  (19) 

and   

2

0  ( )  h e eη

β

η

β
η

− −

= − , (20) 
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while the corresponding auxiliary linear operators are 

( )      –   f f f= ′′′ ′′L ₁     (21) 

and   

( )       h h h= ′′ + ′L ₂ ,  (22) 

possessing  the conditions 

1 2 3    0,( )c c c e ηη −+ + =L ₁    (23) 
–

4 5 )   0,(c c e η+ =L ₂   (24)  

and ci,(, i from 1 to 5)  are the constants. 

2.2. The Problem of Zero-Order 
The equations of zeroth order are defined below, 

( ) 0 1 1 ]1  [  ( )– ,  ) ]  –  ( ) ,  ,  ,  [ ( ( )p p f p N ff p h pη η η η= L ₁   (25) 

( )0 2 ] ( ) [ ( )  ] [ ( )1–   ,  – ,   ), ,(p h p h p N p h pfη η η η= L ₂ ₂   (26) 

where N1 and N2 are non-linear auxiliary operators defined below as 

𝑁𝑁1[𝑓𝑓(𝜂𝜂,𝑝𝑝),  ℎ(𝜂𝜂, 𝑝𝑝)] =  𝜕𝜕³ 𝑓𝑓
𝜕𝜕𝜕𝜕³

(𝜂𝜂,𝑝𝑝)– ( 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑓𝑓(𝜂𝜂,𝑝𝑝))² +  𝑓𝑓(𝜂𝜂,𝑝𝑝)( 𝜕𝜕²

𝜕𝜕𝜕𝜕²
𝑓𝑓(𝜂𝜂,𝑝𝑝)) +

2𝜆𝜆ℎ(𝜂𝜂,𝑝𝑝) –𝑅𝑅𝑅𝑅′,  (27) 

𝑁𝑁2[𝑓𝑓(𝜂𝜂,𝑝𝑝),  ℎ(𝜂𝜂,𝑝𝑝)] =
 𝜕𝜕2

𝜕𝜕𝜂𝜂2
 ℎ(𝜂𝜂,𝑝𝑝)– ℎ(𝜂𝜂,𝑝𝑝) 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑓𝑓(𝜂𝜂,𝑝𝑝) +  𝑓𝑓(𝜂𝜂,𝑝𝑝) 𝜕𝜕

𝜕𝜕𝜕𝜕
ℎ(𝜂𝜂,𝑝𝑝) − 2𝜆𝜆 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑓𝑓(𝜂𝜂, 𝑝𝑝)–𝑅𝑅ℎ,  

 (28) 

where ( ),f pη  and  ( ),h pη  are functions of η and p. Putting   0p =  and 
  1p = , we have 

( ) ( ) ( ) ( )0 0  , 0  ,          , 0  f f h hη η η η= =  (29) 

( ) ( ) ( ) ( )  ,1   ,          ,1   f f h hη η η η= =  (30) 

provided conditions  
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( ) ( ) ( ) ( )0   0,  0   1  0 ,           0,f f f fβ= ′ = + ′′ ′ ∞ =   (31) 

( ) ( ) ( )0  –  0   0,               0h h hβ ′ = ∞ = .  (32) 

We note that deformation equations of the zero-order contain the 
auxiliary parameters ℏ1, ℏ₂. Note that ℏ1 and ℏ₂ are assumed, so that the 
problem of zero-order may have a solution for all [ ]  0,  1p∈  

 Expand ( ), f pη  and ( ), h pη in the following power series,  

( ) ( )0
1

,       ,( ) m
m

m
p f f pf η η η

∞

=

= +∑  (33) 

( ) ( )0
1

,       ,( ) m
m

m
h phph η η η

∞

=

= +∑   (34) 

where 

  0
1   ,( ) ( ) | 

!

m

m pmf f p
m p

η η =
∂

=
∂

 (35) 

and   0( ) (1   ,  
!

) |
m

m pm h p
m p

h η η =
∂

=
∂

 (36) 

The series (33) and (34) converge upon ℏ₁ and  ℏ₂. We choose ℏ₁ and 
ℏ₂ so that these series may converge at p = 1, so the above equations 
become 

0
1

     ,( ) ( ) ( )m
m

f f fη η η
∞

=

= +∑   (37) 

0
1

     ,( ) ( ) ( )m
m

h hhη η η
∞

=

= +∑  (38) 

2.3. Deformation Equations of Higher Order 
Now taking mth derivative of zero order deformation equations with 

respect to p, then putting p = 0 and dividing it by m!, we get  

( ) ( ) ( )1
1 1 1  [  –    ] m m m mL f f Rη η η− =χ    (39) 
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( ) ( ) ( )21
2

2  [ ] –     m mm mh hL Rη η η− =χ    (40) 

and the given conditions are  

( ) ( ) ( ) ( )  0   0,   0   1  0 ,         0,m m m mf f f fβ= ′ = + ′′ ′ ∞ =  (41) 

( ) ( ) ( )0  –   0   0,            0m m mh h hβ ′ = ∞ =  (42) 

where 

2

3
1 1

21 1
1 1

1
0 0

13    –    ( ) .   2 –
m m

m km
m m m

k m

k k
k

k

d
d fR df df d f df

d d
f h R

d dη η η η
η λ

η

− −
−− − −

=
− −

=
−= + +∑ ∑  (43) 

0

2
2 1 1

1 1
0

2

1 1

1    –  .     2 –( ) m m
m m

m m
k k

m k
k

k m
k

df dhh
d

d h dfR f Rh
dd d

η
ηη η η

λ− −
− −

− −

− −
= =

−−= +∑ ∑  (45) 

 and      
0               1,

 
1               1.       m

if m
if m

≤
=  >

χ  (46) 

Put  m = 1 in equation (39), we get  

( ) ( ) ( )1
1 1 1 0 1 1   –      .[ ]L f f Rη η η=χ   (47) 

Since  1 0=χ  

( ) ( )1
1 1 1 1      .[ ]L f Rη η=  (48) 

where  
3 2

0 0 0
3 02

1 2
1 0 0( ) ( )    –      2 –  d f dR f f hd f

d
f

d
R

dη η
η λ

η
= + +  (49) 

So the problem is 

( )2   
1 1 1 0 0 0 0 0 0  ] –     2 –  [f f f f f f h R fλ′′′ + ′′ = ′′′ ′ + ′′ +   (50) 

Substituting  h0, f0, and their derivatives, the following equation is obtained 

2

1 1 1  2   ) –(    ef f e
η

β
η

βηλ
− −

′′′ + ′′ =   (51) 

The complementary solution of equation (51) is  
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–
1 1 2 3       cf c c c e ηη= + +   (52) 

and the particular solution is  

2

1

6 3

2 1 21
1 1[ ] [ ]   2    –    –

11 4 2
–

2pf e e eR ηη
β

β

ηβ β
β β

λ η
β β

−− −

− + −
=

+
+   (53) 

So, the general solution is  

1 1 1c pf f f= +   (54) 

2–
1 1 2 1

6 3

23 1 2      2     1 1[ ] [
2

–  –
1 2 4

–]
1

 f c c c e e ee R ηη
β

βη
ηβ β

β
η

β β
λ

β
η

−− −

−
−

= + + + +
+ − +

   (55) 

𝑓𝑓1′ =   𝑐𝑐2 − 𝑐𝑐3𝑒𝑒–𝜂𝜂 − 𝛽𝛽2

−1+𝛽𝛽
 ℏ1[ 1

2𝛽𝛽2
– 1
4
−

𝑅𝑅
2

– ]𝑒𝑒
−𝜂𝜂
𝛽𝛽 +  2𝜆𝜆ℏ1[ −𝛽𝛽4

−1+𝛽𝛽2
 𝑒𝑒

−𝜂𝜂
𝛽𝛽2  – 𝑒𝑒−𝜂𝜂

𝛽𝛽
(1 − 𝜂𝜂)]  (56) 

2

2
–

3

2 2

1 21 1     – –  2    – 2)  1 1[ ] [ ( ].
1 2 4 2 1

f eR ec e e
η η
β

β

η
η β β

β β β
λ η

β

− − −−
+ −

− −
′

+
′ = + − 

 (57) 
Using  the boundary conditions  

( ) ( ) ( ) ( )1 1 1 10   0,   0   1  0 ,         0,f f f fβ= ′ = + ′′ ′ ∞ =  (58) 

we get 

 1  1 1

1

2 4 2

2 2

6 3

2 21

1 2 1 1 1 – –1–   –  –  2  –      

2 – –

2{ ( ) ( )}
1 1 2 4 2 1 1

1 1( ) ( )
1 1 2 4 2

Rc

R

β β β
β β β β β β β

β βλ
β

λ

β β

= + + + +
−

+ − + − +

− + − +
+

 

 

 (59) 

2   0c =   (60) 

2 4 2

23 1 1 2–1–  –  –  2   –      .1 2 1 1 1 2{ ( ) ( )}
1 1 2 4 2 1 1

c Rβ β β
β β β β β β β

λ −
+ − + −

= +
+

+ +   (61) 

 Putting the values of c1, c2, and c3 in equation (55), we get 
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𝑓𝑓1 =  –
1

1 + 𝛽𝛽
{– 1–

2𝛽𝛽2

1 − 𝛽𝛽
 ℏ1(

1
2𝛽𝛽2

–  
1
4

–
𝑅𝑅
2

)

+ 2𝜆𝜆ℏ1(
−𝛽𝛽4

1 + 𝛽𝛽2
 –

1
𝛽𝛽

 +
𝛽𝛽2

−1 + 𝛽𝛽
 +

2
𝛽𝛽

)} + 2𝜆𝜆ℏ1(
𝛽𝛽6

−1 + 𝛽𝛽2
) 

+
𝛽𝛽3

−1 + 𝛽𝛽
ℏ1(

1
2𝛽𝛽2

–
1
4

–
𝑅𝑅
2

) +
1

1 + 𝛽𝛽
{– 1–  

2𝛽𝛽2

1 − 𝛽𝛽
ℏ1(

1
2𝛽𝛽2

–  
1
4

–
𝑅𝑅
2

)

+ 2𝜆𝜆ℏ1( 
−𝛽𝛽4

1 + 𝛽𝛽2
–  

1
𝛽𝛽

 +
𝛽𝛽2

−1 + 𝛽𝛽
 +

2
𝛽𝛽

)}𝑒𝑒–𝜂𝜂 

+ 2𝜆𝜆ℏ1[ 𝛽𝛽6

−1+𝛽𝛽2
 𝑒𝑒

−𝜂𝜂
𝛽𝛽2  – 𝑒𝑒−𝜂𝜂

𝛽𝛽
𝜂𝜂]  + 𝛽𝛽3

−1+𝛽𝛽
 ℏ1[ 1

2𝛽𝛽2
– 1
4
−

𝑅𝑅
2

]𝑒𝑒
−𝜂𝜂
𝛽𝛽                                                                                                        (62)  

Therefore,  

0 1( ) ( )        f f fη η= +  (63) 

𝑓𝑓 =     
𝛽𝛽
2

(1 – 𝑒𝑒
−𝜂𝜂
𝛽𝛽 )–

1
1 + 𝛽𝛽

{– 1–
2𝛽𝛽2

1 − 𝛽𝛽
 ℏ1(

1
2𝛽𝛽2

–  
1
4

–
𝑅𝑅
2

)

+ 2𝜆𝜆ℏ1(
−𝛽𝛽4

1 + 𝛽𝛽2
 –

1
𝛽𝛽

 +
𝛽𝛽2

−1 + 𝛽𝛽
 +

2
𝛽𝛽

)} + 2𝜆𝜆ℏ1(
𝛽𝛽6

−1 + 𝛽𝛽2
) 

+
𝛽𝛽3

−1 + 𝛽𝛽
ℏ1(

1
2𝛽𝛽2

–
1
4

–
𝑅𝑅
2

) +
1

1 + 𝛽𝛽
{– 1–  

2𝛽𝛽2

1 − 𝛽𝛽
ℏ1(

1
2𝛽𝛽2

–  
1
4

–
𝑅𝑅
2

)

+ 2𝜆𝜆ℏ1( 
−𝛽𝛽4

1 + 𝛽𝛽2
–  

1
𝛽𝛽

 +
𝛽𝛽2

−1 + 𝛽𝛽
 +

2
𝛽𝛽

)}𝑒𝑒–𝜂𝜂 

+ 2𝜆𝜆ℏ1[
𝛽𝛽6

−1 + 𝛽𝛽2
 𝑒𝑒
−𝜂𝜂
𝛽𝛽2  –

𝑒𝑒−𝜂𝜂

𝛽𝛽
𝜂𝜂]  +

𝛽𝛽3

−1 + 𝛽𝛽
 ℏ1[

1
2𝛽𝛽2

–
1
4
−
𝑅𝑅
2

]𝑒𝑒
−𝜂𝜂
𝛽𝛽           (64) 

 Now, to solve equation (14) put m = 1 in equation (40), we get 

( ) ( ) ( )2
2 1 1 0 2 1   –    [ ]L h h Rη η η=χ    (65) 

Since                   1  0,=χ  

( ) ( )2
2 1 2 1    ]  [L h Rη η=   (66) 

where  
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1

2

0 0 0
2 0 0 0 0

2   (     –     – 2  –  ) md h df dhh df
d d d

f R h
d

R
η η η

λ
η

η = +  (67) 

So, we have the problem  

1 1 2 0 0 0 0 0 0 0      –  .  – [   –  ]2h h h f h f h R h fλ′′+ ′ = ′′+ ′ ′ ′   (68) 

Substituting  h0, f0, and their derivatives, the following equation is 
obtained 

ℎ1′′ + ℎ1′ = ℏ2[( 1
𝛽𝛽4

– 1
2𝛽𝛽

–𝑅𝑅)𝑒𝑒
−𝜂𝜂
𝛽𝛽2 +  (1

2
–  1

𝛽𝛽
+ 𝑅𝑅

𝛽𝛽
)𝑒𝑒–𝜂𝜂 +  ( 1

2𝛽𝛽
–  1

2
)𝑒𝑒

−𝜂𝜂
𝛽𝛽2
−𝜂𝜂𝛽𝛽 +

 ( 1
2𝛽𝛽

– 1
2

 )𝑒𝑒–𝜂𝜂– 𝜂𝜂
𝛽𝛽

–  𝜆𝜆𝑒𝑒
−𝜂𝜂
𝛽𝛽 ]   (69) 

ℎ1(𝜂𝜂)  =   𝑐𝑐1 + 𝑐𝑐2𝑒𝑒–𝜂𝜂 +  ℏ2[(
2 − 𝛽𝛽2 − 2𝛽𝛽4𝑅𝑅

2(1 − 𝛽𝛽2)
)𝑒𝑒

−𝜂𝜂
𝛽𝛽2– (

𝛽𝛽 − 2 + 2𝑅𝑅
2𝛽𝛽

) 𝜂𝜂𝑒𝑒–𝜂𝜂 

             +  ( 𝛽𝛽3(1−𝛽𝛽)
2(1+𝛽𝛽)(1+𝛽𝛽−𝛽𝛽2)

)𝑒𝑒
−(1+𝛽𝛽)
𝛽𝛽2

𝜂𝜂 + 𝛽𝛽(1−𝛽𝛽)
2(1+𝛽𝛽)

𝑒𝑒−(1+𝛽𝛽𝛽𝛽 )𝜂𝜂– 𝛽𝛽2

1−𝛽𝛽
𝜆𝜆𝑒𝑒

−𝜂𝜂
𝛽𝛽  ]  (70) 

Now, using the boundary conditions  

( ) ( ) ( )0  –  0   0,              0h h hβ ′ = ∞ =  (71) 

we get the general solution  

ℎ1(𝜂𝜂) =
−1

1 + 𝛽𝛽
𝑒𝑒–𝜂𝜂ℏ2[ {

2 − 𝛽𝛽 − 2𝛽𝛽4𝑅𝑅
2(1 − 𝛽𝛽2)

+
𝛽𝛽3(1 − 𝛽𝛽)

2(1 + 𝛽𝛽)(1 + 𝛽𝛽 − 𝛽𝛽2)

+  
𝛽𝛽(1 − 𝛽𝛽)
2(1 + 𝛽𝛽)

–
𝛽𝛽3

1 − 𝛽𝛽
𝜆𝜆 }  

           + 𝛽𝛽{ 
−2 + 𝛽𝛽2 + 2𝛽𝛽4𝑅𝑅

2𝛽𝛽2(1 − 𝛽𝛽2)
–
𝛽𝛽 − 2 + 2𝑅𝑅

2𝛽𝛽
 –

(1 − 𝛽𝛽)𝛽𝛽
2(1 + 𝛽𝛽 − 𝛽𝛽2)

 −  
1 − 𝛽𝛽

2

−
𝛽𝛽𝛽𝛽

1 − 𝛽𝛽
} ] 

                    +  ℏ2[(
2 − 𝛽𝛽2 − 2𝛽𝛽4𝑅𝑅

2(1 − 𝛽𝛽2)
)𝑒𝑒

−𝜂𝜂
𝛽𝛽2– (

𝛽𝛽 − 2 + 2𝑅𝑅
2𝛽𝛽

) 𝜂𝜂𝑒𝑒–𝜂𝜂  

                +  ( 𝛽𝛽3(1−𝛽𝛽)
2(1+𝛽𝛽)(1+𝛽𝛽−𝛽𝛽2))𝑒𝑒

−(1+𝛽𝛽)
𝛽𝛽2

𝜂𝜂 + 𝛽𝛽(1−𝛽𝛽)
2(1+𝛽𝛽) 𝑒𝑒

−�1+𝛽𝛽𝛽𝛽 �𝜂𝜂– 𝛽𝛽2

1−𝛽𝛽
𝜆𝜆𝑒𝑒

−𝜂𝜂
𝛽𝛽 ].    (72) 

As                                 
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( ) ( )0 1  h h hη η= +   (73) 

Substituting the values of h0 (η) and  h1(η) in the above equation , we get 

2 –
2

       
2

4 3 3

2 2

2 4

2 2 2

2 4

1 2 2 (1 ) (      –   

              –  –      

             

1 )[ { }
1 2(1 ) 2(1 )(1 ) 2(1 ) 1

2 2 2 2 (1 ) 1{ } ]
2 (1 ) 2 2(1 ) 2 1

2 2[( 

h e ee R

R R

R

η

β

η
η β β β β β β β λ

β β β β β β β β

β β β β β β βλβ
β β β β β β

β β

− −

= − − + +

+ − −

+

− − − −
+ − + + − + −

− + + − + − −
− + − −

− −




2

2
–2 2) (–    )

2(1 ) 2
e R e

η

β ηβ
β β

η
−

− +
−

 

2
(1 ) 13 2( )

2

(1 ) (1 )( ) ]
2(1 )(1 ) 2

    – .               
(1 ) 1

  e e e
β β ηη η

β β ββ β β β β λ
β β β β β

− + + −
−− −

+
+

+
+

− + −
 (74) 

3. DISCUSSION 
In this study, the analytical solution for stretching a surface in a rotating 

fluid through a porous medium with partial slip is constructed. Figures (1) 
to (3) show the effect of the porosity parameter R, keeping slip parameter β 
and variation parameter λ fixed on the similarity velocity profile in the x-
direction. The effect of the porosity parameter remains negligible. Figures 
(1), (4), and (5) show the effect of the slip parameter β, keeping porosity 
parameter R and variation parameter λ fixed on the similarity velocity 
profile in the x-direction. Velocity decreases as the value of β increases. 
Figures (6) to (8) show the effect of slip parameter β, keeping porosity 
parameter R and variation parameter λ fixed on the similarity velocity 
profile in the y-direction. Velocity increases with an increase in β. Figures 
(9) and (10) show the effect of porosity parameter R, keeping slip 
parameters β and variation parameter λ fixed on the similarity velocity 
profile in the y-direction. Noticeably, an increase in R causes an increase in 
h. 
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Figure 1. Effects of R, β, and λ on f ′(η) taking ℏ1 =  0.7, β  =  0.1, and R = 
0.0. 

 
Figure 2. Effects of R, β, and λ on  f ′(η) taking ℏ1 =  0.7,  β  =  0.1, and R 
= 0.3. 
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Figure 3. Effects of R , β, and λ on f ′(η) when ℏ1 =  0.7,  β  =  0.1, and R 
= 0.5. 

 
Figure 4. Effects of  β, R, and λ on  f ′(η) when ℏ1 =  0.7,  β  =  0.3, and  R 
= 0.1. 
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Figure 5. Effects of  β, R, and λ on  f ′(η) when ℏ1 =  0.7,  β  =  0.5, and  R 
= 0.1. 

 
Figure 6. Effects of β, R, and λ on h(η) when ℏ2 = – 0.3,  β  =  0.1, and  R 
= 0.2. 
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Figure 7. Effects of β, R, and λ on h(η) when ℏ2 = – 0.3,  β  =  0.3, and R 
= 0.2. 

 
Figure 8. Effects of β, R, and λ on h(η) when ℏ2 = – 0.3,  β  =  0.6, and  R 
= 0.2. 
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Figure 9. Effects of  R, β, and λ on h(η) when ℏ2 = – 0.3,  β  =  0.3, and R 
= 0.4. 

 
Figure 10. Effects of R , β, and λ on h(η) when ℏ2 = – 0.3,  β  =  0.3, and 
R = 0.7. 
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In this study, the rotating flow of viscous fluid caused by the stretching 
of the surface is investigated. The governing equations after reducing into 
ODEs are solved by using HAM. The results are presented by employing 
graphs and the influence of the involved parameters is discussed in detail. 
It is noticed that the velocity of the rotating fluid increases with the 
corresponding increase in the porosity parameter.  
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