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ABSTRACT

This study examines the rotating fluid flow of a viscous fluid originated by
the stretching of the surface over which the fluid exists. The study focuses
on the effects of slip velocity and the porosity of the medium. The
Homotopy Analysis Method (HAM) is utilized to obtain the analytical
expressions of the flow variables. Similarity transformations are used to
convert the involved partial differential equations into ordinary differential
equations. The effect of porosity and slip velocity parameters are presented
through graphs. It is found that the parameter of porosity increases the
similarity velocity profiles of the rotating fluid.

Keywords: homotopy analysis method, porosity parameter, rotating fluid
flow, slip velocity

Highlights

e Analytical HAM (homotopy analysis method) solutions reveal porosity
boosts velocity profiles in rotating fluid flow over stretching surfaces

e Slip parameter reduces x-direction velocity but enhances y-direction
velocity in porous medium flows

e The current study advances low-Re laminar flow modeling for filtration
and seepage applications

1. INTRODUCTION

Flow through porous media is an important class of small Reynolds
number (Re) laminar flow. This type of flow is found in the filtration of
fluids and the seepage of water in canal and river banks. Some other
examples of this flow are the movements of underground water and oils [1-
31

The slip condition is also an important aspect which has not been given
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proper attention in the study of fluid dynamics. Navier [4] described shear
stress-based slip boundary condition. Saqib et al. [5] used fractional
derivatives in Caputo sense. In another paper, Saqib et al. [6] discussed Cu
— AI203 — H20 hybrid nanofluid. Hussan et al. [7] investigated a
viscoplastic Casson fluid in a two dimension flow, with a stretching surface
taken into account. Some of the recent advancements regarding flow over a
stretching sheet and slip effects have been referenced in the literatue [8-14].
Nadeem et al. [15] developed the Caputo fractional model for Casson fluid
with the help of Flick’s and Fourier’s laws. Farhad et al. [16] analyzed
blood flow using Casson fluid model through a horizontal cylinder in the
presence of magnetic particles. Nadeem et al. [17] discussed the Brinkman
type fluid flow in a channel.

We used the Homotopy Analysis Method (HAM) [18-22] to obtain the
analytic series outcomes in this paper. Crane [23] explored the stretching of
a surface. Brady and Acrivos [24] and Wang [25] provided deep insight into
axisymmetric and three-dimensional cases. They expressed the effects of
different parameters in to and three dimensional flows. Wang [26]
discussed the case of stretching a surface in rotating fluid.

Keeping all the above-mentioned ponts, the arrangement of the paper
is as fallows.

Section 1 includes introduction, section 2 includes mathematical
formulation equations and Homotopy Analysis Method, section 3 includes
discussion, and finally, section 4 includes graphical representation.

2. MATHEMATICAL FORMULATION
The velocity field is defined as

V= [u(x,y,z), v(x,»,2), w(x,y,z)} (1)
The Navier-Stokes equation in this frame is [26]
0 [div + 2QxV +Qx (er)} = —-Vp +uV?V— (u®/k)V (2
t
The Navier-Stokes equations in component form when the flow is

steady, incompressible, and in rotating frame through porous media are
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The continuity equation is

u v oy (10)
ox oy oz
with boundary conditions
du dv
u—-—y— =ax, v—y— =0, w=0atz =0,
"z 7z (11)

u—> 0, v—> 0asz—> o,
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where v is the slip parameter.

Suppose the surface is expanded in a horizontal line, then the
components of velocity are

u=ax,v=w=20 (12)

In the above equation, the dimensions of 'a' show the rate of stretch.
Using the dimensionless quantities

u=axf'(),v = ah@),w=—avf(), n= \/g (13)

With the help of eq. (13), egs. (7) to (10) are reduced to

(fr)z_ffn_ 2Uh =fnr _ Rfr (14)

f'h — fh +21f = h' — Rh (15)

and BCs are reduced to

£(0)=0,7"(0) =1+ Bf"(0), /() =0, (16)

h(0) — BH'(0) = 0, h(0) = 0 (17)
= ﬁ (18)

v

where B is a dimensionless slip parameter, while A4 is a dimensionless
parameter givenby A =Q/a,and R= u (CD/ k) 1S a porosity parameter.
2.1. Solution of the Considred Problem by HAM

In this method, we use the initial guesses, satisfying the given boundary
conditions as

B

Jom) =24 =) (19)
and
4 oe
hy(n) =e” - 5 (20)
= Scientific Inquiry and Review
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while the corresponding auxiliary linear operators are

Li(f)=1" = 1" 1)
and

Lo(h) =h" + I, (22)
possessing the conditions

Li(c, +c,p +ce”) = 0, (23)
La(c, +ce™)= 0, (24)

and ci i from I to 5) are the constants.
2.2. The Problem of Zero-Order

The equations of zeroth order are defined below,

(1-p)Lilf (2, p) — £,(0) 1= ph,N,Lf (1. p). k(7. p) ] (25)
(1= p)Lalh(n, p) —hy(n)] = pha N,[f (1, p).h(n, p)] (26)

where N and N are non-linear auxiliary operators defined below as

NF 1), BGLP)] = 52 (0p)-GeF (1. P))° + FO1 D)o ) +

2Ah(n,p) - Rf, (27)

No[f (n.p), h(n,p)] = B ) B

50z h0.p)=h(m.p)5-70.p) + F(0.p) 5-h(n,p) = 2A5-F (m.p)- Rh,

(28)

where f(,p) and &(n, p) are functions of 1) and p. Putting p =0 and

p = 1, we have

£(m.0) =f(n),  h(n.0) =h(n) (29)

f(m1) =f(m),  h(m1) =h(n) (30)

provided conditions

School of Science
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£(0) =0,77(0) =1+ Bf"(0),  f(») =0, (31)
h(0) — BH'(0) =0,  h(x)= 0. (32)

We note that deformation equations of the zero-order contain the
auxiliary parameters /1, #2. Note that 41 and %» are assumed, so that the

problem of zero-order may have a solution for all p e[O, 1]

Expand f(17,p) and /(n,p)in the following power series,

o0

S0.p)=15(n) + 21, ()", (33)
hr.py=h(n) + 21, (1) " (34)
where
fum= T P, (39)
m! Op
1 0" —
and h, ()= ———"h(, p)|,_, (36)
m! Op

The series (33) and (34) converge upon /1 and 2. We choose /1 and
h2 so that these series may converge at p = 1, so the above equations
become

F=fom + 3 1.0, (37)
h()=ho(7) +3 b (). (38)

m=1
2.3. Deformation Equations of Higher Order

Now taking mth derivative of zero order deformation equations with
respect to p, then putting p = 0 and dividing it by m!, we get

L, (1) =%utes (n) 1=0,R, (1) (39)
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Ly[h, (1) =Luhi (1) 1=0,R, (1) (40)
and the given conditions are

£,(0) =0, £.'(0) =1+ B,/(0), f, (o) =0, (41)
h,(0) = Bh,(0) =0, A, (o) =0 (42)
where

3 m—1
R, (p) =T —de'"-l-" A
dn i dn d77 k=0 dn

N < i o A
Ryln) == Zh : Zf,,, gy A g R 9)
0 ifm <1,
and 1y, —{1 ifm 1 (46)
Put m =1 in equation (39), we get

Ll[fl (77) _leo (77) ]:th11 (77) (47)
Since y, =0

LA (m)1=n,R (). (48)
where

R —M Py fodf° + 2, R, (49)

So the problem is

fll"+f;”:h1[ﬁ)'”_(ﬁ)')2+f;)”f;)"i_zﬂvho_Rf;)] (50)

Substituting ho, fo, and their derivatives, the following equation is obtained
" " % e

f fr= 2anh, "~ ) (51)

The complementary solution of equation (51) is

School of Science
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fio.= ¢+ N+ ce’” (52)
and the particular solution is
6 - -1 3 =
fo= 2aan et gy Lo L LR sy
1+ p? yij -1+ 2B° 42
So, the general solution is
flz 1c+ 1p (54)
6 -n -n 3 o
flzcl+(:277+c3e”7+2/1/‘11[ﬁ—2e‘*2 —e—n]+ p hl[%—l—ﬁ—]e/} (55)
-1+ ) -1+p 267 4 2
- B2 1 1
fi= ¢ —cze = 145 [ﬁ‘;‘
R -n —,84 _77
2167 + 2[5 e -S2 (1 - )] (56)
" 2 zn _n2? - -n
f =c3e*"+ﬂ—hl[%—l—5—]e” +2,1h1[izeﬁz—e n-2)].
-5 28 4 2 -1+ p yij
(57)
Using the boundary conditions
£(0) =0, £/(0) =1+ B£7(0), f'(x) =0, (58)
we get
_ L2 1 R, -p 1, B2
“= g MG e ) P e T T ,6')}+ (59)
iz B, 1 1 R
2/1711(_1+ﬂ2) 1 h 25 a 5)
¢, =0 (60)
1 2 -pt 1 ?
T e Y SeCANL R )
1+p 1-8 28 4 2 1+p° B -1+8 p

Putting the values of c1, c2, and c3 in equation (55), we get
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_ 1 ., 2 1 1R
h= gt g 172
22y (2 B 291 4 20—
v g Yo TR ST
g, 1 1R 1, 2 1 1R
PG et TG 17D
2an( —E- 1 L 2 1e
+_ 1(1+ﬁ2—E+_1+ﬁ +E)}e
+ 2 e S0 + g bl
Bes (62)
Therefore,
fo= S + £i(m) (63)
B -n 252 1 1R
fr= 3Q-el gt mGmE- 779
22h (2 K 291 4 2y (2
tAnGE g T o T G
g, 1 1R 1,2 1 1R
torphGeE e et TG 17D
2an( —L- 1 L 2 1e
YT g o R
B° 1oem B3 1 1 R =1
+2&h1[_1+ﬁ2e - ; n]+_1+ﬁh1[2ﬁ2—z—5]eﬁ (64)
Now, to solve equation (14) put m = 1 in equation (40), we get
LT (1) —xhe(17) 1 =0,R* (n) (65)
Since % =0,
Lk (n) 1 =n,R’(n) (66)
where

School of Science
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2
Ay o e B o B gy (67)

R2
2 dn®  “dn dn dn

1

So, we have the problem
h'"'+h'=h,[h""+ foh, = 1"y — R hy =21 1,"] (68)

Substituting ho, fo, and their derivatives, the following equation is
obtained

" , 1 1 -n 1 1 R _ 1 1 n_n
hy" + hy =h2[(F—E—R)€BZ + (E_ E+E)e n 4+ (K— 5)632 B+
SRR B S
(Zﬁ > e 3 Ae B ] (69)

2-B2—2B*R_Z1 B—2+2R
ekt - (———
2(1-p%) 2p
pra-p 5 pa-p -EEm_ g2 o F
Camarss* * ¢ ptef 1 00

2(1+8)
Now, using the boundary conditions

hi(m) = c1+ce™ + hy[(

) ne™

h(0) — BH'(0) = 0, h()= 0 (71)
we get the general solution
-1 2—f—2B*R B*(1—p)
) =g e A Yaar par -6
paA-p) p°
t2a ) 1="
-2+ B%+2B*R B—2+2R aA-pp 1-p8
YR Spa—py T 28 20+8-pD 2
BA
—m}]
2—p%—2B*R_ " B—2+2R
Bt (————)pe"
+ [ ( 2(1 _ﬁ_z()lﬂg))e ( 2€+B ) ne _
G e et (02)
As
70— % l { Scientific Inquiry and Review
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h=hy(n) +h (1) (73)

Substituting the values of hg () and hi(n) in the above equation , we get

heor - ¢ Ly {2—ﬂ—2f“R+ F(1-p) 2+ﬂ(l—ﬂ)_ P .
p1+p 2147 20+pA+p-p) 20+p) 1-p
+ﬁ{—2+ﬂ2+2ﬂ4R_ﬂ—2+2R_ (-pp__1-p_ P,
26°(1- %) 26 21+B-5H 2 1-p
2-F 28R 7 B-2+2R
G i ey L
3 -=h, _ ~8y, 2 -1
P BUp S BAp) BT
20+ p)A+B-p7) 21+ p) 1-p
(74)
3. DISCUSSION

In this study, the analytical solution for stretching a surface in a rotating
fluid through a porous medium with partial slip is constructed. Figures (1)
to (3) show the effect of the porosity parameter R, keeping slip parameter 3
and variation parameter A fixed on the similarity velocity profile in the x-
direction. The effect of the porosity parameter remains negligible. Figures
(1), (4), and (5) show the effect of the slip parameter B, keeping porosity
parameter R and variation parameter A fixed on the similarity velocity
profile in the x-direction. Velocity decreases as the value of B increases.
Figures (6) to (8) show the effect of slip parameter P, keeping porosity
parameter R and variation parameter A fixed on the similarity velocity
profile in the y-direction. Velocity increases with an increase in 3. Figures
(9) and (10) show the effect of porosity parameter R, keeping slip
parameters 3 and variation parameter A fixed on the similarity velocity
profile in the y-direction. Noticeably, an increase in R causes an increase in
h.
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i

_4l
7

Figure 1. Effects of R, B, and A on f'(n) taking 71 = 0.7, = 0.1,and R =

0.0.
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!
0
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7
Figure 2. Effects of R, B, and A on f'(n) taking 721 = 0.7, B = 0.1, and R
=0.3.
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Figure 3. Effects of R, B, and A on f'(n) when 21 = 0.7, = 0.1, and R

=0.5.
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Figure 4. Effects of 8, R, and A on f'(n) when 21 = 0.7, B = 0.3,and R

=0.1.
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=
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Figure 5. Effects of B, R, and A on f'(n) when 41 = 0.7, p = 0.5,and R
=0.1.
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Figure 6. Effects of B, R, and A on h(n) when 2c=-0.3, B = 0.1,and R
=0.2.
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4
Figure 7. Effects of B, R, and A on h(n) when 2o =-0.3, B = 0.3, and R
=0.2.
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7
Figure 8. Effects of B, R, and A on h(n) when 22 =-0.3, B = 0.6, and R
=0.2.
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Figure 9. Effects of R, 3, and A on h(n) when 7, =—-0.3, f = 0.3, and R
=04.
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Figure 10. Effects of R , 8, and A on h(n) when 72 =—0.3, = 0.3, and
R=0.7.
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In this study, the rotating flow of viscous fluid caused by the stretching
of the surface is investigated. The governing equations after reducing into
ODEs are solved by using HAM. The results are presented by employing
graphs and the influence of the involved parameters is discussed in detail.
It is noticed that the velocity of the rotating fluid increases with the
corresponding increase in the porosity parameter.
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