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ABSTRACT 
In this paper, we extend the framework introduced in [1], which proposed a 
two-dimensional model of time as a means to reconcile relativistic 
invariance with quantum discreteness. Building on this foundation, we 
derive key principles of quantum theory such as the uncertainty and 
exclusion principles and also introduce a fourth postulate: “The probability 
of an event is the same in all inertial frames of reference (IFR), independent 
of the observer's position in space.” This postulate enables us also to derive 
the probability amplitude interference from a purely relativistic time-phase 
geometry. We show that trajectories in the two-dimensional time plane, 
governed by relativistic constraints and discrete frequency-phase dynamics, 
naturally give rise to quantized measurements and path-based 
superposition. Using the Mach-Zehnder interferometer as an illustrative 
case, we demonstrate that the square of the proper time trajectory 
corresponds to quantum probability and interference phenomena emerge 
from the structure of phase evolution in time. Our formulation also aligns 
with Feynman’s path integral framework, showing that quantum mechanics 
can be interpreted as a direct geometric consequence of extended relativistic 
principles. 
Keywords: interference, quantum principles, superposition, time-phase 
geometry, uncertainty 
1 INTRODUCTION 

Reconciling the deterministic geometry of relativity with the 
probabilistic nature of quantum mechanics remains one of the most 
profound challenges in theoretical physics. While both frameworks exhibit 
remarkable predictive power within their respective domains, they rely on 
fundamentally incompatible assumptions: spacetime symmetry and 
continuous trajectories in relativity versus discrete eigenstates and non-
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commuting observables in quantum theory. Recent research suggests that 
key quantum phenomena, including uncertainty, exclusion, and 
interference, may not be purely axiomatic but could instead emerge from 
deeper geometric or kinematic structures embedded in spacetime [2–7]. For 
instance, fidelity-based metrics and symplectic geometry have been 
employed to reformulate the uncertainty principle [2, 3], while curvature-
induced effects offer novel perspectives on quantum bounds [4, 5]. 
Additionally, interference has been interpreted through phase-space 
filtering mechanisms and geometric constraints in extended temporal 
dimensions [6, 7]. Building on these insights and extending the two-
dimensional time model introduced in [1], this work explores how quantum 
principles may arise as natural consequences of a relativistic theory 
augmented by a fourth postulate asserting the invariance of probability 
amplitude across IFR. This framework leads to a geometric derivation of 
uncertainty relations and quantum discreteness, independent of canonical 
quantization procedures. 

The foundational model introduced in [1] extended special relativity by 
positing a third postulate: “The magnitude of the velocity in time of any 
particle, regardless of its inertial frame or mass, is a universal constant.” 
This led to a reinterpretation of time as a two-dimensional complex plane, 
comprising a real (observable) and an orthogonal imaginary (hidden) 
component, and enabled the recovery of standard relativistic effects 
alongside insights into discrete phase intersections. Nonetheless, the initial 
framework did not encompass explicit derivations of core quantum 
mechanical principles such as uncertainty, exclusion, and interference. The 
present work introduces a Fourth Postulate, asserting that probability 
amplitudes associated with temporal trajectories remain invariant under 
inertial frame transformations. This principle parallels the norm-
preservation of state vectors in quantum theory but is grounded in the 
geometric invariance of complex temporal trajectories rather than Hilbert 
space formalism. Theoretical support for this approach is found in studies 
on Lorentz-invariant quantum amplitudes [8], complex-time structures in 
quantum cosmology [9], and the covariance of phase-space probability 
distributions [10, 11]. Additionally, geometric formulations of the 
uncertainty principle [2–4], exclusion mechanisms arising from temporal 
orthogonality [5, 7], and interference effects viewed through phase-space 
geometry [6, 12] provide compelling precedent for a geometric 
reinterpretation of quantum behaviour. Within this extended model, 
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uncertainty relations arise from phase–frequency complementarity, Pauli-
like exclusion follows from orthogonality in time-phase space, and 
interference patterns are seen as manifestations of coherent overlaps in 
complex time trajectories. 

The extension of relativistic frameworks to include quantum like 
features has long motivated reinterpretations of spacetime structure, 
particularly in the presence of quantum interference and discreteness. 
Within the present model, the emergence of phenomena such as quantum 
interference, uncertainty, and exclusion are attributed not to axiomatic 
quantization procedures but to geometric features of complexified time 
trajectories. Specifically, the temporal evolution of particles along complex 
valued paths on the time plane introduces inherent phase relationships that 
naturally give rise to discrete observational effects. Such interpretations 
resonate with experimental findings in single photon interferometry [13], 
relativistic time dilation in quantum interference visibility [14], and atom 
interferometry in curved spacetime [15]. Furthermore, geometric treatments 
of quantum phases such as Berry's phase and its generalizations support the 
notion that underlying spacetime curvature or rotation in the phase domain 
can manifest in measurable probability amplitudes [16, 17]. Recent 
advances in covariant formulations of path superpositions [18], as well as 
interference-based violations of classical assumptions [19], also suggest a 
deep connection between the topology of temporal evolution and the 
probabilistic features of quantum mechanics. Within this context, the 
proposed fourth postulate asserting that probability amplitudes derived from 
complex time trajectories are invariant under inertial frame transformations 
acts as a geometric analogue of quantum norm preservation. This 
perspective is reinforced by the decoherent histories approach to quantum 
probabilities [20], where the role of complex structure and temporal 
ordering becomes essential. Additionally, phase space formulations of the 
uncertainty principle and arguments linking gravitational fields to the 
emergence of classicality further highlight the physical relevance of 
geometric and relativistic effects in interpreting quantum behaviour [21, 
22]. Thus, rather than importing quantum postulates a priori, the present 
framework suggests that quantization may arise as a necessary condition 
from deeper geometric and relativistic symmetries in a two-dimensional 
time manifold. 
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A deeper geometrical understanding of quantum theory necessitates 
unifying amplitude and phase within a consistent spatiotemporal 
framework. Foundational analyses of phase and angle variables in quantum 
mechanics revealed structural complications in operator definitions due to 
their inherent non-commutativity and boundary conditions on Hilbert 
spaces [23, 24]. Advancements in noncommutative geometry and quantum 
field theory have since indicated that at Planckian scales, the very structure 
of spacetime becomes quantized, with phase-space exhibiting curvature and 
discreteness that influence quantum fields and their propagation [25–27]. 
This reinforces the interpretation of phase not as an arbitrary gauge artifact 
but as a physical observable linked to geometric holonomies and topological 
features, as established in the general formulation of Berry’s phase [28]. In 
real-time stochastic quantization, maintaining a restricted yet coherent 
evolution in phase space has been shown to preserve causality and replicate 
quantum correlations, affirming the physical significance of structured 
phase-space trajectories [29]. Additionally, Shannon’s foundational theory 
of information [30] has inspired interpretations wherein complex 
amplitudes and interference patterns emerge from information theoretic 
constraints, particularly when extended to algebraic foundations involving 
division algebras and categorical quantum structures [31]. Decoherence 
theory further supports this view by showing that suppression of phase 
coherence via environmental entanglement leads to classicality, making the 
persistence of phase relationships critical for retaining quantum behaviour 
[32, 33]. Recent attempts to derive Feynman’s path integral formalism from 
symmetry and information principles [34] also converge on the idea that 
complex amplitudes and their geometric underpinnings are not optional 
constructs but foundational consequences of a deeper temporal and phase-
oriented structure of quantum theory. 

Building on these insights, the present study advances a geometric 
reformulation of core quantum principles within the two-dimensional time 
framework established in [1]. Central to this effort is the articulation of a 
Fourth Postulate, which posits that probability amplitudes defined over 
complex temporal trajectories are invariant under inertial transformations. 
This postulate provides a natural bridge between relativistic invariance and 
quantum discreteness, offering a unified geometric foundation for 
phenomena traditionally introduced axiomatically. Specifically, we 
demonstrate that the Heisenberg uncertainty relation emerges from the 
phase frequency complementarity inherent in complex time; the Pauli 
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exclusion principle arises from orthogonality in the time-phase plane; and 
quantum interference manifests through the coherent superposition of 
complex temporal paths. In contrast to conventional quantum theory, which 
encodes these principles within Hilbert space formalism, our approach 
reveals them as emergent properties of geometric symmetries and observer 
invariant temporal structure. 

The structure of this paper is as follows. Section 2 derives a geometric 
analogue of the Heisenberg uncertainty principle from orthogonal 
components of time and phase. Section 3 presents a reformulation of the 
Pauli exclusion principle based on orthogonality in complex time space. 
Section 4 explores interference phenomena as arising from the coherent 
overlap of time-phase trajectories. Section 5 addresses the invariance of 
probability amplitudes under Lorentz transformations and derives 
conditions for amplitude preservation across reference frames. We conclude 
with a discussion of broader implications for quantum foundations, the role 
of complex time in quantum gravity, and directions for future research. 
2 THE UNCERTAINTY PRINCIPLE AND THE EXCLUSION 
PRINCIPLE 

The foundational structure of quantum mechanics is deeply rooted in 
two seemingly distinct yet fundamentally related principles: Heisenberg 
uncertainty principle and Pauli exclusion principle. In the present 
framework, we revisit these principles through the lens of the two-
dimensional time model proposed in [1]. We begin with the derivation of 
an uncertainty-like inequality that arises from the orthogonal 
complementarity of time and frequency within the two-dimensional time 
manifold. Subsequently, we reinterpret the exclusion principle as a 
geometric constraint, arising from the requirement that no two particles may 
share identical temporal trajectories in the time-phase plane if their 
trajectories are not orthogonal.  

To develop the uncertainty principle within the two-dimensional time 
framework, we begin by recalling the form of a particle’s temporal 
trajectory as perceived by an inertial observer O. For a particle moving with 
constant velocity or, equivalently, with a constant frequency in time, the 
trajectory in the complex time plane is expressed as follows: 

𝑆𝑆′ = 𝜌𝜌𝜌𝜌𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝑣𝑣𝑡𝑡 (for matter), 
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𝑆𝑆′ = 𝜌𝜌𝜌𝜌𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋 (for photons), 
where  

𝜌𝜌 = −1 for a particle moving closer to the observer, otherwise 𝜌𝜌 = 1, 

𝜔𝜔 ∈  � 1
𝑡𝑡

, 2
𝑡𝑡

, … �  is the frequency of a photon (For simplicity, ignore the 
phase shift when ρ changes sign),  

and 𝜔𝜔𝑣𝑣 ∈  � 0,  1
𝑡𝑡

,  2
𝑡𝑡

, … �  is the frequency of a matter particle.  

The condition that observer-particle intersections occur only at real 
values imposes phase-frequency quantization and reveals a geometric trade-
off: precise localization in frequency corresponds to temporal 
indeterminacy. This yields a natural analogy of the uncertainty relation, 
aligned with prior work on time-energy duality and phase-space geometry 
[35–39].  

Furthermore, when two particles share identical complex-time 
trajectories, their intersection points with the observer become 
indistinguishable. Distinguishability thus requires orthogonality in their 
time-phase paths, offering a geometric counterpart to the Pauli exclusion 
principle [36, 40]. In this setting, uncertainty and exclusion emerge not as 
axioms but as consequences of the geometry of time, reinforcing the view 
that quantum discreteness may be rooted in relativistic temporal structure. 
2.1 The Trajectory in time for Photons and the Uncertainty Principle 
(∆𝑬𝑬∆𝒕𝒕) 

Within the two-dimensional time framework proposed in [1], trajectory 
of a photon in the complex time plane, as perceived by an inertial observer 
O, is described by 

𝑆𝑆′ = 𝜌𝜌𝜌𝜌𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋 (1) 

Here, 𝜌𝜌 = −1, for a photon moving toward the observer and 𝜌𝜌 = 1 
otherwise. The variable 𝜔𝜔 ∈  � 1

𝑡𝑡
, 2
𝑡𝑡

, … �,  denotes the discrete frequency of 
the photon, interpreted as the number of complete cycles the photon 
executes in the 𝜃𝜃-dimension per unit of observer time t. Given the quantized 
energy of a photon as 
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𝐸𝐸 =  
 𝜔𝜔ℎ
2𝜋𝜋

,    

The Planck’s constant is the energy that is needed to rotate a photon one 
cycle (2𝜋𝜋) in the 𝜃𝜃-dimension.  A photon that has a frequency of 1 will turn 
once in the 𝜃𝜃-dimension in one unit of time and will have an energy equal 
to ℎ.  We can think of this in the following Figure 1. 

 
Figure 1. Photon with Frequency of 1 will Turn Once in the 𝜃𝜃-dimension 
in One Unit of Time and Will Have an Energy Equal to ℎ. 

Since an observer is in an IFR, only moving in the t-dimension at a rate 
of 1 and the photon touches the t-axis every turn. This formulation implies 
that interactions between the observer and the photon observable events 
occur only when the photon's trajectory intersects the observer's time axis. 
Consequently, the observer is constrained to perceive information from the 
photon only once per cycle, establishing a lower bound on temporal 
resolution. That is, no temporal information can be extracted with a 
resolution finer than one full oscillation 

Δ𝑡𝑡 ≥
1
𝜔𝜔

 

At the same time the minimum energy for a photon with frequency 𝜔𝜔 is 
given by the energy formula, and therefore, the energy for photons of that 
given frequency comes in steps of 𝜔𝜔ℎ: 

∆𝐸𝐸 ≥  
𝜔𝜔ℎ
2𝜋𝜋
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Multiplying these bounds and recognizing that uncertainty is defined 
as half the minimum measurable unit due to discrete intersections, we 
recover a geometric derivation of the time-energy uncertainty relation: 

∆𝐸𝐸∆𝑡𝑡 ≥
ℎ

4𝜋𝜋
 

This result signifies that the uncertainty principle is not an abstract 
postulate but a direct geometric consequence of how photonic trajectories 
evolve in the two-dimensional time manifold. It also reframes Planck's 
constant as the minimal quantum of temporal resolution, reinforcing its 
interpretation as the fundamental action associated with phase evolution in 
time. In other words, an observer needs a higher energy photon to achieve 
a higher resolution in time.  The 𝜃𝜃-dimension in time is the cause for the 
quantum of energy.  This is an amazing result: we have derived the 
uncertainty principle from the completed time equation for Special 
Relativity. 
2.2 The Path in time for Matter and the Uncertainty Principle, 
(∆𝒙𝒙∆𝒑𝒑) 

Since photons and matter particles are governed by structurally 
symmetric temporal equations, it is natural to anticipate an analogous 
uncertainty principle for massive particles in spatial dimensions. In this 
framework, the frequency 𝜔𝜔𝑣𝑣 of a matter particle's temporal evolution is 
related to its velocity 𝑣𝑣 in space. As shown in Figure 1, the velocity of a 
particle is proportional to 𝜃̇𝜃.  As �𝜃̇𝜃  →  𝜋𝜋 4⁄ � then (𝑣𝑣 → 1) and as 
�𝜃̇𝜃  →  0+� then (𝑣𝑣 → 0).  We also know that at 𝑣𝑣 = 0, the IFR of the 
observer, particles are not moving in the 𝜃𝜃 dimension and therefore 𝜔𝜔𝑣𝑣 =
0.  Therefore, we can assume that when (𝑣𝑣 → 1) then (𝜔𝜔𝑣𝑣 →  ∞).  

The relativistic momentum for a particle with a mass m is 

𝑝𝑝 =
𝑚𝑚𝑚𝑚

√1 − 𝑣𝑣2
. 

According to Einstein, energy and matter are the same and the time 
equation for photons and matter is symmetrical, therefore, the smallest 
possible mass of a particle is also Planck’s constant: 

∆𝑝𝑝 ≥
ℎ𝑣𝑣

√1 − 𝑣𝑣2
. 
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As mentioned earlier, momentum for photons depends on the frequency 
and Planck’s constant, having units of mass. Therefore, we can determine 
an equivalent to frequency for matter as 

𝜔𝜔𝑣𝑣ℎ =
ℎ𝑣𝑣

√1 − 𝑣𝑣2
 ⇒ 𝜔𝜔𝑣𝑣 =

𝑣𝑣
√1 − 𝑣𝑣2

. 

Since velocity in space plays a role analogous to frequency in time, the 
minimum resolvable distance in space (∆𝑥𝑥) for a matter particle is governed 
by the same inverse-frequency relation that constrains temporal resolution 
for photons. Accordingly, the smallest spatial resolution achievable for a 
particle at a given velocity is 

∆𝑥𝑥 ≥  
1

2𝜋𝜋𝜔𝜔𝑣𝑣
=  
√1 − 𝑣𝑣2

2𝜋𝜋𝜋𝜋
. 

Hence, multiplying spatial uncertainty with momentum uncertainty and 
recognizing that uncertainty is defined as half the minimum measurable unit 
due to discrete intersections yields 

∆𝑥𝑥∆𝑝𝑝 ≥  
ℎ

4𝜋𝜋
 

This result mirrors the earlier derivation for photons and reinforces the 
view that uncertainty in position and momentum is not a fundamental axiom 
but a natural consequence of the structure of time-phase trajectories for 
matter. Together with the ∆𝐸𝐸∆𝑡𝑡 relation, it highlights a deeper duality 
between spatial and temporal observables, where wave-like behavior arises 
from the finite resolution imposed by the geometry of complex time. In this 
framework, the wave–particle duality is not an added feature but an intrinsic 
outcome of how matter and energy propagate through a two-dimensional 
temporal manifold. 
2.3 The Exclusion Principle 

The two-dimensional time framework introduced in this study allows us 
to geometrically reinterpret classical principles of quantum mechanics. In 
particular, we now formulate a generalized exclusion principle as a 
constraint on trajectory overlap in extended time. 

Consider the time manifold as a cylindrical surface, where the linear 
dimension 𝑡𝑡 represents the temporal axis of the observer 𝑂𝑂, and the angular 
coordinate 𝜃𝜃 corresponds to the internal phase rotation of a particles-
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trajectory in time. As illustrated in Figure 2, a photon traveling at the speed 
of light 𝑐𝑐 = 1 advances along the time cylinder at an angle of 𝜋𝜋/4, returning 
to the same point on the 𝑡𝑡-axis every full cycle in 𝜃𝜃. In this picture, a photon 
completes one full turn in the curled 𝜃𝜃-dimension while progressing by one 
unit along t, establishing a periodic, observer-invariant trajectory.  

 
Figure 2. Movment of Massive Particle   

Matter particles with 0 < 𝑣𝑣 < 1, by contrast, move in both 𝑡𝑡 and 𝜃𝜃, 
tracing helical paths along the surface of the time cylinder. Particles at rest 
in the IFR of the observer 𝑂𝑂 follow trajectories purely along t, with no phase 
rotation in 𝜃𝜃, while photons (with 𝑣𝑣 = 1) travel entirely along the 𝜃𝜃-
dimension in the time manifold. 
In this extended view of spacetime, each physical event is represented by a 
point in a five-dimensional manifold, 

𝑋𝑋𝜇𝜇 = (𝑡𝑡,𝜃𝜃, 𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

Hypothesis: “The trajectory of two particles cannot overlap in 
spacetime.”  In other words, the trajectories of two particles cannot intersect 
in extended spacetime unless their worldlines are distinguishable in the full 
five-dimensional manifold. We will call this hypothesis “Exclusion 
Principle”.   

This postulate yields the following implications:  
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• Two massive particles cannot occupy the same position in space, 
(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) ≠ (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2),  if they have the same velocity and direction, 
because their trajectories in time would overlap.  

• Two or more photons can occupy the same position in space and t-
dimension in time,(𝑡𝑡1,𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1) = (𝑡𝑡2, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2)  provided they have a 
different frequency: 𝜃𝜃1 ≠ 𝜃𝜃2    as they will have non-overlapping 
trajectories in time.  I believe this is the reason white light is always white 
because the frequency of the photons composing it is always balanced 
(no duplicate frequencies). 

• Photons (assuming 2 is given) can occupy the same position in space as 
massive particles at a certain point in time because matter and photons 
move in opposite directions in time (the phase 𝜃𝜃 of matter and photons 
does not overlap).  This explains for example how an electron can 
“absorb” and “emit” a photon. 
This geometric interpretation provides a deeper understanding of the 

foundational structure of quantum behavior. We highlight three key insights 
emerging from this reformulation: 

• Unlike in classical special relativity, where motion is observer-
dependent, the magnitude of velocity in the two-dimensional time 
manifold becomes an absolute quantity. This resolves a longstanding 
tension between quantum discreteness and relativistic invariance. 

• The geometric duality between photons and massive particles 
manifested in their symmetric time trajectories offers a more unified 
treatment of wave-particle duality within the relativistic framework. 

• The exclusion principle emerges not as an abstract postulate of Hilbert 
space, but as a natural consequence of geometric non-overlap in 
extended spacetime. 

In the next section, we further advance this geometric framework to 
show that the inclusion of the 𝜃𝜃 dimension gives rise to quantum 
superposition. This sets the stage for deriving quantum amplitudes and 
interference phenomena directly from relativistic postulates, offering a 
unified foundation for quantum theory and relativity.  
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3 EQUATIONS OF QUANTUM MECHANICS: PROBABILITY 
AND SUPERPOSITION 

In the two-dimensional time framework, quantum probability and 
superposition emerge naturally from the geometry of complex temporal 
trajectories. Probability amplitudes correspond to invariant quantities 
derived from phase evolution in the (𝑡𝑡,𝜃𝜃) plane, while superposition arises 
from the coexistence of multiple, distinguishable paths in time. This 
geometric interpretation offers a coherent foundation for quantum 
mechanics, rooted in time-phase structure rather than abstract postulates. 
3.1 Postulate 4 and Probability Amplitude 

We now introduce a fourth postulate, aimed at unifying relativistic 
invariance with the statistical predictions of quantum mechanics: 

Postulate 4: It is a law of nature that the probability of an event is the 
same in all frames of reference regardless of an observer’s position in space. 

To explore the implications of this postulate, we analyze a canonical 
quantum-optical experiment, the Mach–Zehnder interferometer, commonly 
used to probe the quantum nature of light and interference. As depicted in 
Figure 3, the interferometer permits a single photon to travel along two 
spatially distinct paths before reaching one of two detectors. We consider 
two observers at rest but located at different positions relative to the 
interferometer. 

 
Figure 3. Two Observer Framwork  

Empirical results demonstrate that the detector activation probabilities 
depend on the set of paths accessible to the photon [41]. However, within 
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the two-dimensional time framework, the trajectory in time governed by 
phase evolution and encoded in the factor 𝜌𝜌 varies with the observers 
position. For Observer 1, the photon is always moving away, so 𝜌𝜌 = +
1 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). For Observer 2, the photon reverses direction in 
some segments, resulting in alternating values of 𝜌𝜌 = ±1 (positive and 
negative). This raises a conflict: if probability depends on the complex time 
trajectory 𝑆𝑆′ = 𝜌𝜌𝜌𝜌𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋, then it would appear to be frame-dependent, 
violating Postulate 4. 

Yet, quantum theory maintains that all observers must agree on the 
probability of an event. Since probability is computed as the modulus 
squared of a complex amplitude, the amplitude itself must be invariant 
under inertial transformations. We propose that this invariant quantity is the 
square of the proper time separation 𝜏𝜏𝑑𝑑2, between events in the time-phase 
plane. So  

(𝜏𝜏𝑑𝑑′ )2 = ��𝜌𝜌′𝑡𝑡𝑒𝑒𝜃𝜃′��
2

= ��𝜌𝜌′′𝑡𝑡𝑒𝑒𝜃𝜃′′��
2

= (𝜏𝜏𝑑𝑑′′)2 

This formulation ensures that and remains consistent for all inertial 
observers. The invariance across IFRs supports its interpretation as a natural 
candidate for the square of the probability amplitude. Consequently, the 
trajectory in time plays the role of the probability amplitude, and its squared 
magnitude yields the observer-independent probability. This interpretation 
is compatible with Feynman's path integral approach, where the total 
probability amplitude is determined by summing over all possible quantum 
paths, and the probability of an event is given by the square of this amplitude 
[13]. In our framework, each complex trajectory in time contributes a unit 
amplitude determined by its proper time structure, and invariance is 
preserved geometrically rather than axiomatically. Thus, Postulate 4 
enforces consistency between relativistic time symmetry and quantum 
probability, revealing that observer-invariant trajectories in complex time 
serve as the geometric basis for probability amplitudes in quantum 
mechanics [41, 42]. 
3.2 Trajectory in Time and the Definitions of Probability and 
Superposition 

Building on our postulate that all observers must agree on the 
probability of an event, we hypothesize that the probability of a particle 
following a specific trajectory is a function of the square of its proper 
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distance in time, 𝜏𝜏𝑑𝑑2, measured within the extended two-dimensional 
temporal framework. 

From the perspective of any inertial observer at rest, all potential 
trajectories available to a particle within a quantum system such as an 
interferometer exist within the observer’s temporal past. This is because the 
observer’s frame advances through the 𝑡𝑡-dimension at maximal velocity 
relative to any massive or massless particle. As a result, from the observer’s 
viewpoint, all trajectories are encoded within the past light cone and remain 
in superposition until measurement. In the absence of external constraints 
or biases, there is no a priori reason to favor one trajectory over another. 
Therefore, all possible paths are assumed to be equally probable, consistent 
with Feynman's path integral formulation of quantum mechanics [1]. 

For a quantum system with 𝑛𝑛 equally likely trajectories, the probability 
of the particle taking trajectory 𝑖𝑖 is defined as follows: 

𝑃𝑃𝑖𝑖 =  
1
𝑛𝑛

    𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛 

�𝑃𝑃𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

 

where, 𝑃𝑃𝑖𝑖  is Probability of trajectory i occuring and  𝑛𝑛 represents is 
number of different trajectories the particle can take. 

 
Figure 4. Phonton Detector Framework 
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Figure 4 illustrates a simplified Mach–Zehnder interferometer in 
which a photon has four distinct trajectories, two leading to detector 1 and 
two to detector 2. With 50/50 beam splitters, each path is equally likely, 
i.e., 𝑃𝑃𝑖𝑖 = 1

4
. 

To introduce the concept of probability amplitude, we define the 
complex-valued amplitude associated with the 𝑖𝑖𝑡𝑡ℎ trajectory as follows: 

𝐴𝐴𝑖𝑖 = ��𝑃𝑃𝑖𝑖�  𝑒𝑒−𝑖𝑖𝜙𝜙𝑖𝑖  where 𝜙𝜙 = 2𝜋𝜋𝜋𝜋𝑡𝑡𝑖𝑖 

Here, 

𝐴𝐴𝑖𝑖 −
Amplitude of the ith trajectory (probability weighted trajectory S),  

𝑡𝑡𝑖𝑖 − Time relative to the observer of the i trajectory , 

𝜔𝜔 −
Frequency of the photon (ωti number of cycles in the ith trajectory) , 

𝜙𝜙𝑖𝑖 − represents the phase accumulated along the trajectory. 

The reason we work with amplitudes 𝐴𝐴𝑖𝑖, rather than direct probabilities 
𝑃𝑃𝑖𝑖, is because the underlying dynamics are governed by complex trajectories 
in time, not by their squared magnitudes alone. The square of modulus of 
𝐴𝐴𝑖𝑖 yields the observable probability, but it is 𝑆𝑆′, the trajectory itself, that 
carries the physically meaningful content of the quantum state [2]. 

Now consider a quantum event that can occur through multiple 
indistinguishable paths. For instance, detector 1 may light up if the photon 
follows trajectory 1 or 2, while detector 2 corresponds to trajectories 3 or 4. 
The total amplitude for a possible event 𝑗𝑗 is then the superposition of the 
amplitudes of its contributing trajectories 

𝑆𝑆𝑗𝑗 =  �𝐴𝐴𝑗𝑗𝑗𝑗

𝑛𝑛𝑗𝑗

𝑖𝑖=1

 

where 

𝑆𝑆𝑗𝑗 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 

𝑗𝑗 − 𝐸𝐸𝐸𝐸𝐸𝐸ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 

𝑛𝑛𝑗𝑗 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 
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𝐴𝐴𝑗𝑗𝑗𝑗 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  

The probability of event 𝑗𝑗 occurring is given by the squared modulus 
of its net amplitude: 

𝑃𝑃𝑗𝑗 =  �𝑆𝑆𝑗𝑗�
2
 

The total probability across all mutually exclusive events 𝑗𝑗 = 1, … , 𝐽𝐽  
must satisfy the normalization condition: 

��𝑆𝑆𝑗𝑗�
2

𝐽𝐽

𝑗𝑗=1

= 1 

This framework is general and applies to any quantum system with 
multiple trajectory possibilities not just the simplified case of a Mach–
Zehnder interferometer. As the number of possible paths increases, the 
resulting quantum interference patterns and probability calculations become 
more intricate, but the principle remains grounded in the superposition of 
phase-weighted time trajectories. 
3.3 Application of the Equations to Obtain Probabilities of Events in 
the Mach-Zender Interferometer 

We now apply the formalism of probability amplitudes and time-phase 
trajectories to calculate the probability of detection events in a standard 
Mach–Zehnder interferometer setup. As previously established, for a 
system with four equally probable paths, each trajectory has an amplitude 
with magnitude �𝑃𝑃𝑖𝑖 = 1

2
.  Therefore, the probability amplitude for each 

trajectory can be expressed as follows: 

𝐴𝐴𝑖𝑖 =  
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑𝑖𝑖 

The superposition for Event 1 (paths 1 and 2) is 

𝑆𝑆1 =  𝐴𝐴1 +  𝐴𝐴2 =
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑1 +  

1
2
𝑒𝑒−𝑖𝑖𝜑𝜑2 

𝑆𝑆1 =
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑1�1 +  𝑒𝑒𝑖𝑖(−𝜑𝜑2+𝜑𝜑1)� 



Quantum Principles from Time-Phase Geometry… 

54 
Scientific Inquiry and Review 

Volume 9 Issue 1, 2025 
 

Defining the phase difference 𝜑𝜑 = 𝜑𝜑1 −  𝜑𝜑2 , and noting that the 
modulus of the phase factor is unity ��𝑒𝑒−𝑖𝑖𝜑𝜑1� = 1�, the modulus squared of 
𝑆𝑆1 becomes 

𝑆𝑆1 =
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑1�1 +  𝑒𝑒𝑖𝑖𝑖𝑖� 

|𝑆𝑆1|2 =
1
4

(1 +  sin𝜑𝜑)2 +  
1
4

cos2 𝜑𝜑 

|𝑆𝑆1|2 =
1
4

(1 +  2sin𝜑𝜑 + 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜑𝜑 + cos2 𝜑𝜑) 

𝑃𝑃1 =  |𝑆𝑆1|2 =
1
2

(1 + sin𝜑𝜑 ) 

This result expresses the probability 𝑃𝑃1 of detection at detector 1 as a 
function of the relative phase between the two interfering trajectories. 
Similarly, for Event 2, detection via path 3 or 4, the total amplitude is 

𝑆𝑆2 =  𝐴𝐴3 +  𝐴𝐴4 =
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑3 +  

1
2
𝑒𝑒−𝑖𝑖𝜑𝜑4 

Again factoring yields 

𝑆𝑆2 =
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑3�1 +  𝑒𝑒𝑖𝑖(−𝜑𝜑4+𝜑𝜑3)� 

In this case, we assume a relative phase shift of 𝜑𝜑 + 𝜋𝜋 between paths 3 
and 4 due to experimental symmetry and detector exclusivity. Substituting 
this relation, we find: 

 𝜑𝜑3 −  𝜑𝜑4 =  𝜑𝜑 +  𝜋𝜋 

Therefore 

𝑆𝑆2 =
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑3�1 −  𝑒𝑒𝑖𝑖𝑖𝑖� 

|𝑆𝑆2|2 =
1
4

(1 −  sin𝜑𝜑)2 +  
1
4

cos2 𝜑𝜑 

|𝑆𝑆2|2 =
1
4

(1 −  2sin𝜑𝜑 + 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜑𝜑 + cos2 𝜑𝜑) 
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𝑃𝑃2 =  |𝑆𝑆2|2 =
1
2

(1 −  sin𝜑𝜑 ) 

Thus, the probability 𝑃𝑃2 of detection at detector 2 depends 
complementarily on the phase shift between the interfering trajectories. As 
expected, the sum of the two detection probabilities satisfies normalization, 

𝑃𝑃1 + 𝑃𝑃2 =
1
2

(1 +  sin𝜑𝜑 ) +  
1
2

(1 −  sin𝜑𝜑 ) = 1 

This confirms the internal consistency of the formalism and reinforces 
the principle that quantum probabilities emerge from the interference of 
time-dependent probability amplitudes. 

By adjusting the phase difference 𝜑𝜑 (e.g., via path length variations or 
refractive index changes), one can control the relative intensities at the 
detectors. In the limiting cases, constructive interference (𝜑𝜑 = 0) results in 
full detection at one output port, while destructive interference (𝜑𝜑 = 𝜋𝜋) 
results in complete suppression at that port. This phase sensitive behavior 
illustrates how trajectories in time encode quantum interference, directly 
linking the geometry of time with measurable probabilities in quantum 
systems. 

Ultimately, this section demonstrates that the quantum probability 
amplitudes and their superpositions, when defined through trajectories in 
extended time dimensions recover the expected outcomes of interference 
experiments. This strengthens the claim that quantum mechanical behavior 
can be derived from relativistic time-phase geometry without requiring 
independent probabilistic axioms. 
3.4 Equivalency to Feynman’s Sum of Paths Formalism for Quantum 
Mechanics 

The framework developed in this article aligns closely with Richard 
Feynman’s sum over paths (or path integral) formalism for quantum 
mechanics. In QED: The Strange Theory of Light and Matter [43], he 
outlines the fundamental rules that govern this interpretation. 

Feynman’s Grand Rule states, “The probability of an event is equal to 
the square of the length of an arrow called the probability amplitude.” This 
corresponds directly to the notion that the squared modulus of a probability 
amplitude, derived from the trajectory in two-dimensional time, yields the 
probability of an event. In our formalism, the amplitude represents the 
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trajectory in complex time-space, and the squared amplitude captures its 
physical manifestation as probability. 

Feynman’s General Rule for alternative paths is as follows: “If an event 
can occur in several different ways, draw an arrow (amplitude) for each 
path. These arrows are then added head-to-tail. The final arrow from the tail 
of the first to the head of the last gives the total amplitude. The square of its 
length is the probability of the event.” 

This rule is entirely consistent with our treatment of superposition: each 
trajectory contributes a weighted amplitude based on its temporal phase, 
and these amplitudes are summed to yield the total probability amplitude 
for a given outcome. The probability is then obtained by squaring the 
modulus of this combined amplitude. 

Thus, our derivation based purely on geometric considerations of time 
and motion reproduces the core rules of Feynman’s quantum theory. 
Moreover, while Feynman’s approach typically invokes a continuous 
summation over all possible paths (as 𝑛𝑛 → ∞), our discrete formalism leads 
to equivalent results when the number of paths becomes large. This suggests 
that the probabilistic structure of quantum mechanics, as described by 
Feynman, can be viewed as a natural consequence of the underlying time-
phase geometry established in the completed theory of Special Relativity. 
3.5 Interference and the Exclusion Principle 

A central feature of quantum behaviour is the phenomenon of 
interference between alternative paths, a result that emerges naturally within 
the trajectory based framework, we have proposed. However, the 
underlying cause of interference remains open to deeper interpretation. 

It is hypothesized here that interference arises fundamentally from an 
exclusion principle rooted in the structure of extended spacetime. 
Specifically, certain trajectories may interfere destructively because they 
attempt to place the particle at the same point in five-dimensional 
spacetime, a configuration that is not permitted. In this view, interference is 
not merely a computational artifact of wave-like superposition, but a 
geometric constraint imposed by the topology of space and time. 

Although a rigorous mathematical proof of this hypothesis remains 
beyond the scope of the current paper, it offers a compelling perspective: 
that destructive interference is the manifestation of deeper incompatibilities 



Steinvorth and Mardan 

57 School of Sciences 
Volume 9 Issue 1, 2025 

in allowable configurations of physical reality. Exploring this conjecture 
further may lead to a geometric derivation of Pauli’s exclusion principle and 
other fundamental quantum rules from relativistic spacetime constraints. 
4. CONCLUSION 

In this work, we have proposed a novel framework that derives 
foundational quantum mechanical principles from a two-dimensional time 
construct embedded in a completed version of Special Relativity. By 
introducing an additional temporal dimension denoted as 𝜃𝜃, we showed that 
the motion of particles in time acquires a directionality and curvature, 
characterized by rotational dynamics in the (𝑡𝑡,𝜃𝜃)-plane. This approach 
redefines frequency as a geometric property of time and establishes a direct 
correspondence between a particle’s trajectory in time and quantum 
uncertainty. 

The Uncertainty Principle arises naturally within this model as a 
consequence of phase resolution in the 𝜃𝜃-dimension, wherein energy and 
time (for photons) or momentum and position (for matter) are constrained 
by geometric relationships on the curved temporal path. This derivation 
avoids heuristic assumptions and instead grounds uncertainty in the 
geometry of time itself. 

The Exclusion Principle is likewise given a geometric reinterpretation. 
We hypothesize that particle indistinguishability and exclusion are 
consequences of the impossibility of overlapping identical trajectories in a 
higher-dimensional spacetime framework. While a complete proof of this 
geometric exclusion is left for future work, the foundational logic aligns 
with observed quantum statistics and offers a promising route to unify 
symmetry-based quantum rules with spacetime geometry. 

Furthermore, we re-derived the formalism of quantum superposition 
and interference by assigning probability amplitudes to trajectories in the 
time-phase space. In this model, the probability of an event is proportional 
to the square of the proper temporal distance associated with each possible 
trajectory. Applied to the Mach–Zehnder interferometer, this approach 
recovers Feynman’s path integral framework, showing that the interference 
pattern emerges from the coherent sum of all geometrically permitted paths. 
The invariant nature of probabilities across frames is ensured by defining 
probability amplitudes as functions of proper time, a relativistic consistent 
quantity. 
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Collectively, these results suggest that quantum mechanics can be 
viewed not as a separate probabilistic postulate driven framework, but as an 
emergent description of the geometry of time itself. This geometric 
reinterpretation not only reproduces established quantum predictions but 
also reconciles relativistic invariance with quantum discreteness, thereby 
narrowing the conceptual gap between the two pillars of modern physics.  

Future work will explore the extension of this framework to entangled 
systems, quantum field theory, and gravitational interactions. In particular, 
the role of the 𝜃𝜃-dimension in describing quantum correlations across 
spacetime could offer new insights into the structure of nonlocality and the 
fabric of reality itself. The proposed time-phase geometry opens a 
promising direction toward a unified description of quantum and relativistic 
phenomena through the language of higher-dimensional geometry. 

This work is a part of the series of articles [1, 44]. 
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