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ABSTRACT

In this paper, we extend the framework introduced in [1], which proposed a
two-dimensional model of time as a means to reconcile relativistic
invariance with quantum discreteness. Building on this foundation, we
derive key principles of quantum theory such as the uncertainty and
exclusion principles and also introduce a fourth postulate: “The probability
of an event is the same in all inertial frames of reference (IFR), independent
of the observer's position in space.” This postulate enables us also to derive
the probability amplitude interference from a purely relativistic time-phase
geometry. We show that trajectories in the two-dimensional time plane,
governed by relativistic constraints and discrete frequency-phase dynamics,
naturally give rise to quantized measurements and path-based
superposition. Using the Mach-Zehnder interferometer as an illustrative
case, we demonstrate that the square of the proper time trajectory
corresponds to quantum probability and interference phenomena emerge
from the structure of phase evolution in time. Our formulation also aligns
with Feynman’s path integral framework, showing that quantum mechanics
can be interpreted as a direct geometric consequence of extended relativistic
principles.

Keywords: interference, quantum principles, superposition, time-phase
geometry, uncertainty

1 INTRODUCTION

Reconciling the deterministic geometry of relativity with the
probabilistic nature of quantum mechanics remains one of the most
profound challenges in theoretical physics. While both frameworks exhibit
remarkable predictive power within their respective domains, they rely on
fundamentally incompatible assumptions: spacetime symmetry and
continuous trajectories in relativity versus discrete eigenstates and non-
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commuting observables in quantum theory. Recent research suggests that
key quantum phenomena, including uncertainty, exclusion, and
interference, may not be purely axiomatic but could instead emerge from
deeper geometric or kinematic structures embedded in spacetime [2—7]. For
instance, fidelity-based metrics and symplectic geometry have been
employed to reformulate the uncertainty principle [2, 3], while curvature-
induced effects offer novel perspectives on quantum bounds [4, 5].
Additionally, interference has been interpreted through phase-space
filtering mechanisms and geometric constraints in extended temporal
dimensions [6, 7]. Building on these insights and extending the two-
dimensional time model introduced in [1], this work explores how quantum
principles may arise as natural consequences of a relativistic theory
augmented by a fourth postulate asserting the invariance of probability
amplitude across IFR. This framework leads to a geometric derivation of
uncertainty relations and quantum discreteness, independent of canonical
quantization procedures.

The foundational model introduced in [1] extended special relativity by
positing a third postulate: “The magnitude of the velocity in time of any
particle, regardless of its inertial frame or mass, is a universal constant.”
This led to a reinterpretation of time as a two-dimensional complex plane,
comprising a real (observable) and an orthogonal imaginary (hidden)
component, and enabled the recovery of standard relativistic effects
alongside insights into discrete phase intersections. Nonetheless, the initial
framework did not encompass explicit derivations of core quantum
mechanical principles such as uncertainty, exclusion, and interference. The
present work introduces a Fourth Postulate, asserting that probability
amplitudes associated with temporal trajectories remain invariant under
inertial frame transformations. This principle parallels the norm-
preservation of state vectors in quantum theory but is grounded in the
geometric invariance of complex temporal trajectories rather than Hilbert
space formalism. Theoretical support for this approach is found in studies
on Lorentz-invariant quantum amplitudes [8], complex-time structures in
quantum cosmology [9], and the covariance of phase-space probability
distributions [10, 11]. Additionally, geometric formulations of the
uncertainty principle [2—4], exclusion mechanisms arising from temporal
orthogonality [5, 7], and interference effects viewed through phase-space
geometry [6, 12] provide compelling precedent for a geometric
reinterpretation of quantum behaviour. Within this extended model,
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uncertainty relations arise from phase—frequency complementarity, Pauli-
like exclusion follows from orthogonality in time-phase space, and
interference patterns are seen as manifestations of coherent overlaps in
complex time trajectories.

The extension of relativistic frameworks to include quantum like
features has long motivated reinterpretations of spacetime structure,
particularly in the presence of quantum interference and discreteness.
Within the present model, the emergence of phenomena such as quantum
interference, uncertainty, and exclusion are attributed not to axiomatic
quantization procedures but to geometric features of complexified time
trajectories. Specifically, the temporal evolution of particles along complex
valued paths on the time plane introduces inherent phase relationships that
naturally give rise to discrete observational effects. Such interpretations
resonate with experimental findings in single photon interferometry [13],
relativistic time dilation in quantum interference visibility [14], and atom
interferometry in curved spacetime [ 15]. Furthermore, geometric treatments
of quantum phases such as Berry's phase and its generalizations support the
notion that underlying spacetime curvature or rotation in the phase domain
can manifest in measurable probability amplitudes [16, 17]. Recent
advances in covariant formulations of path superpositions [18], as well as
interference-based violations of classical assumptions [19], also suggest a
deep connection between the topology of temporal evolution and the
probabilistic features of quantum mechanics. Within this context, the
proposed fourth postulate asserting that probability amplitudes derived from
complex time trajectories are invariant under inertial frame transformations
acts as a geometric analogue of quantum norm preservation. This
perspective is reinforced by the decoherent histories approach to quantum
probabilities [20], where the role of complex structure and temporal
ordering becomes essential. Additionally, phase space formulations of the
uncertainty principle and arguments linking gravitational fields to the
emergence of classicality further highlight the physical relevance of
geometric and relativistic effects in interpreting quantum behaviour [21,
22]. Thus, rather than importing quantum postulates a priori, the present
framework suggests that quantization may arise as a necessary condition
from deeper geometric and relativistic symmetries in a two-dimensional
time manifold.
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A deeper geometrical understanding of quantum theory necessitates
unifying amplitude and phase within a consistent spatiotemporal
framework. Foundational analyses of phase and angle variables in quantum
mechanics revealed structural complications in operator definitions due to
their inherent non-commutativity and boundary conditions on Hilbert
spaces [23, 24]. Advancements in noncommutative geometry and quantum
field theory have since indicated that at Planckian scales, the very structure
of spacetime becomes quantized, with phase-space exhibiting curvature and
discreteness that influence quantum fields and their propagation [25-27].
This reinforces the interpretation of phase not as an arbitrary gauge artifact
but as a physical observable linked to geometric holonomies and topological
features, as established in the general formulation of Berry’s phase [28]. In
real-time stochastic quantization, maintaining a restricted yet coherent
evolution in phase space has been shown to preserve causality and replicate
quantum correlations, affirming the physical significance of structured
phase-space trajectories [29]. Additionally, Shannon’s foundational theory
of information [30] has inspired interpretations wherein complex
amplitudes and interference patterns emerge from information theoretic
constraints, particularly when extended to algebraic foundations involving
division algebras and categorical quantum structures [31]. Decoherence
theory further supports this view by showing that suppression of phase
coherence via environmental entanglement leads to classicality, making the
persistence of phase relationships critical for retaining quantum behaviour
[32, 33]. Recent attempts to derive Feynman’s path integral formalism from
symmetry and information principles [34] also converge on the idea that
complex amplitudes and their geometric underpinnings are not optional
constructs but foundational consequences of a deeper temporal and phase-
oriented structure of quantum theory.

Building on these insights, the present study advances a geometric
reformulation of core quantum principles within the two-dimensional time
framework established in [1]. Central to this effort is the articulation of a
Fourth Postulate, which posits that probability amplitudes defined over
complex temporal trajectories are invariant under inertial transformations.
This postulate provides a natural bridge between relativistic invariance and
quantum discreteness, offering a unified geometric foundation for
phenomena traditionally introduced axiomatically. Specifically, we
demonstrate that the Heisenberg uncertainty relation emerges from the
phase frequency complementarity inherent in complex time; the Pauli
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exclusion principle arises from orthogonality in the time-phase plane; and
quantum interference manifests through the coherent superposition of
complex temporal paths. In contrast to conventional quantum theory, which
encodes these principles within Hilbert space formalism, our approach
reveals them as emergent properties of geometric symmetries and observer
invariant temporal structure.

The structure of this paper is as follows. Section 2 derives a geometric
analogue of the Heisenberg uncertainty principle from orthogonal
components of time and phase. Section 3 presents a reformulation of the
Pauli exclusion principle based on orthogonality in complex time space.
Section 4 explores interference phenomena as arising from the coherent
overlap of time-phase trajectories. Section 5 addresses the invariance of
probability amplitudes under Lorentz transformations and derives
conditions for amplitude preservation across reference frames. We conclude
with a discussion of broader implications for quantum foundations, the role
of complex time in quantum gravity, and directions for future research.

2 THE UNCERTAINTY PRINCIPLE AND THE EXCLUSION
PRINCIPLE

The foundational structure of quantum mechanics is deeply rooted in
two seemingly distinct yet fundamentally related principles: Heisenberg
uncertainty principle and Pauli exclusion principle. In the present
framework, we revisit these principles through the lens of the two-
dimensional time model proposed in [1]. We begin with the derivation of
an uncertainty-like inequality that arises from the orthogonal
complementarity of time and frequency within the two-dimensional time
manifold. Subsequently, we reinterpret the exclusion principle as a
geometric constraint, arising from the requirement that no two particles may
share identical temporal trajectories in the time-phase plane if their
trajectories are not orthogonal.

To develop the uncertainty principle within the two-dimensional time
framework, we begin by recalling the form of a particle’s temporal
trajectory as perceived by an inertial observer O. For a particle moving with
constant velocity or, equivalently, with a constant frequency in time, the
trajectory in the complex time plane is expressed as follows:

S' = pte'?™vt (for matter),
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S’ = pte~2™@t (for photons),
where

p = —1 for a particle moving closer to the observer, otherwise p = 1,

w € {%,%, } is the frequency of a photon (For simplicity, ignore the
phase shift when p changes sign),

and w,, € { O,?l,?z, } is the frequency of a matter particle.

The condition that observer-particle intersections occur only at real
values imposes phase-frequency quantization and reveals a geometric trade-
off: precise localization in frequency corresponds to temporal
indeterminacy. This yields a natural analogy of the uncertainty relation,
aligned with prior work on time-energy duality and phase-space geometry
[35-39].

Furthermore, when two particles share identical complex-time
trajectories, their intersection points with the observer become
indistinguishable. Distinguishability thus requires orthogonality in their
time-phase paths, offering a geometric counterpart to the Pauli exclusion
principle [36, 40]. In this setting, uncertainty and exclusion emerge not as
axioms but as consequences of the geometry of time, reinforcing the view
that quantum discreteness may be rooted in relativistic temporal structure.

2.1 The Trajectory in time for Photons and the Uncertainty Principle
(AEAY)

Within the two-dimensional time framework proposed in [1], trajectory
of a photon in the complex time plane, as perceived by an inertial observer
O, is described by

S = pte—iZmut (1)
Here, p = —1, for a photon moving toward the observer and p =1

otherwise. The variable w € {%,%, }, denotes the discrete frequency of

the photon, interpreted as the number of complete cycles the photon
executes in the 8-dimension per unit of observer time t. Given the quantized
energy of a photon as
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The Planck’s constant is the energy that is needed to rotate a photon one
cycle (2m) in the 8-dimension. A photon that has a frequency of 1 will turn

once in the 8-dimension in one unit of time and will have an energy equal
to h. We can think of this in the following Figure 1.

E =

h
— = 1 turn
2

Figure 1. Photon with Frequency of 1 will Turn Once in the 8-dimension
in One Unit of Time and Will Have an Energy Equal to h.

Since an observer is in an IFR, only moving in the t-dimension at a rate
of 1 and the photon touches the t-axis every turn. This formulation implies
that interactions between the observer and the photon observable events
occur only when the photon's trajectory intersects the observer's time axis.
Consequently, the observer is constrained to perceive information from the
photon only once per cycle, establishing a lower bound on temporal
resolution. That is, no temporal information can be extracted with a
resolution finer than one full oscillation

1
At = —
w

At the same time the minimum energy for a photon with frequency w is
given by the energy formula, and therefore, the energy for photons of that
given frequency comes in steps of wh:

AE > wh
T 2m
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Multiplying these bounds and recognizing that uncertainty is defined
as half the minimum measurable unit due to discrete intersections, we
recover a geometric derivation of the time-energy uncertainty relation:

AEAt > h
T 4r

This result signifies that the uncertainty principle is not an abstract
postulate but a direct geometric consequence of how photonic trajectories
evolve in the two-dimensional time manifold. It also reframes Planck's
constant as the minimal quantum of temporal resolution, reinforcing its
interpretation as the fundamental action associated with phase evolution in
time. In other words, an observer needs a higher energy photon to achieve
a higher resolution in time. The #-dimension in time is the cause for the
quantum of energy. This is an amazing result: we have derived the
uncertainty principle from the completed time equation for Special
Relativity.

2.2 The Path in time for Matter and the Uncertainty Principle,
(AxAp)

Since photons and matter particles are governed by structurally
symmetric temporal equations, it is natural to anticipate an analogous
uncertainty principle for massive particles in spatial dimensions. In this
framework, the frequency w, of a matter particle's temporal evolution is
related to its velocity v in space. As shown in Figure 1, the velocity of a
particle is proportional to 6. As (0 — m/4) then (v > 1) and as
(9 - 0+) then (v - 0). We also know that at v = 0, the IFR of the
observer, particles are not moving in the 6 dimension and therefore w, =

0. Therefore, we can assume that when (v — 1) then (w, > ).
The relativistic momentum for a particle with a mass m is
. mv
e
According to Einstein, energy and matter are the same and the time

equation for photons and matter is symmetrical, therefore, the smallest
possible mass of a particle is also Planck’s constant:

hv
Vi—v?
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As mentioned earlier, momentum for photons depends on the frequency
and Planck’s constant, having units of mass. Therefore, we can determine
an equivalent to frequency for matter as

B hv v
wWyh = — = w, = ——.
v V1 —v? "oNI=2

Since velocity in space plays a role analogous to frequency in time, the
minimum resolvable distance in space (Ax) for a matter particle is governed
by the same inverse-frequency relation that constrains temporal resolution
for photons. Accordingly, the smallest spatial resolution achievable for a
particle at a given velocity is

1 V1 —v?
Ax > = .
2w, 2y

Hence, multiplying spatial uncertainty with momentum uncertainty and
recognizing that uncertainty is defined as half the minimum measurable unit
due to discrete intersections yields

AxA >h
xP_47T

This result mirrors the earlier derivation for photons and reinforces the
view that uncertainty in position and momentum is not a fundamental axiom
but a natural consequence of the structure of time-phase trajectories for
matter. Together with the AEAt relation, it highlights a deeper duality
between spatial and temporal observables, where wave-like behavior arises
from the finite resolution imposed by the geometry of complex time. In this
framework, the wave—particle duality is not an added feature but an intrinsic
outcome of how matter and energy propagate through a two-dimensional
temporal manifold.

2.3 The Exclusion Principle

The two-dimensional time framework introduced in this study allows us
to geometrically reinterpret classical principles of quantum mechanics. In
particular, we now formulate a generalized exclusion principle as a
constraint on trajectory overlap in extended time.

Consider the time manifold as a cylindrical surface, where the linear
dimension t represents the temporal axis of the observer O, and the angular
coordinate 8 corresponds to the internal phase rotation of a particles-

Scientific Inquiry and Review

46—

T
[==t=si]
e

Volume 9 Issue 1, 2025



Steinvorth and Mardan

trajectory in time. As illustrated in Figure 2, a photon traveling at the speed
of light ¢ = 1 advances along the time cylinder at an angle of /4, returning
to the same point on the t-axis every full cycle in 8. In this picture, a photon
completes one full turn in the curled 8-dimension while progressing by one
unit along t, establishing a periodic, observer-invariant trajectory.

8 (If a massive particle
moves at v = 1, it would
return to the same place -,
in t every cycle)

t (for his perspective
O moves only in
this direction)

A matter particle with

0 <vmovesinbotht nd 6
dimensions forward in
time). Photons move
prior to t=0.

Figure 2. Movment of Massive Particle

Matter particles with 0 < v < 1, by contrast, move in both t and 6,
tracing helical paths along the surface of the time cylinder. Particles at rest
in the IFR of the observer O follow trajectories purely along t, with no phase
rotation in 6, while photons (with v = 1) travel entirely along the 6-
dimension in the time manifold.

In this extended view of spacetime, each physical event is represented by a
point in a five-dimensional manifold,

Xt =(t,0,x,y,2)

Hypothesis: “The trajectory of two particles cannot overlap in
spacetime.” In other words, the trajectories of two particles cannot intersect
in extended spacetime unless their worldlines are distinguishable in the full
five-dimensional manifold. We will call this hypothesis “Exclusion
Principle”.

This postulate yields the following implications:
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Two massive particles cannot occupy the same position in space,
(%1, V1, 21) # (x3,¥,,2,), if they have the same velocity and direction,
because their trajectories in time would overlap.

Two or more photons can occupy the same position in space and t-
dimension in time,(t;, X1, ¥1,21) = (t3, X3, Y2, Z2) provided they have a
different frequency: 6; # 0, as they will have non-overlapping
trajectories in time. [ believe this is the reason white light is always white
because the frequency of the photons composing it is always balanced
(no duplicate frequencies).

Photons (assuming 2 is given) can occupy the same position in space as
massive particles at a certain point in time because matter and photons
move in opposite directions in time (the phase 8 of matter and photons
does not overlap). This explains for example how an electron can
“absorb” and “emit” a photon.

This geometric interpretation provides a deeper understanding of the

foundational structure of quantum behavior. We highlight three key insights
emerging from this reformulation:

Unlike in classical special relativity, where motion is observer-
dependent, the magnitude of velocity in the two-dimensional time
manifold becomes an absolute quantity. This resolves a longstanding
tension between quantum discreteness and relativistic invariance.

The geometric duality between photons and massive particles
manifested in their symmetric time trajectories offers a more unified
treatment of wave-particle duality within the relativistic framework.

The exclusion principle emerges not as an abstract postulate of Hilbert
space, but as a natural consequence of geometric non-overlap in
extended spacetime.

In the next section, we further advance this geometric framework to

show that the inclusion of the 6 dimension gives rise to quantum
superposition. This sets the stage for deriving quantum amplitudes and
interference phenomena directly from relativistic postulates, offering a
unified foundation for quantum theory and relativity.

£
[}
i
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3 EQUATIONS OF QUANTUM MECHANICS: PROBABILITY
AND SUPERPOSITION

In the two-dimensional time framework, quantum probability and
superposition emerge naturally from the geometry of complex temporal
trajectories. Probability amplitudes correspond to invariant quantities
derived from phase evolution in the (¢, 8) plane, while superposition arises
from the coexistence of multiple, distinguishable paths in time. This
geometric interpretation offers a coherent foundation for quantum
mechanics, rooted in time-phase structure rather than abstract postulates.

3.1 Postulate 4 and Probability Amplitude

We now introduce a fourth postulate, aimed at unifying relativistic
invariance with the statistical predictions of quantum mechanics:

Postulate 4: It is a law of nature that the probability of an event is the
same in all frames of reference regardless of an observer’s position in space.

To explore the implications of this postulate, we analyze a canonical
quantum-optical experiment, the Mach—Zehnder interferometer, commonly
used to probe the quantum nature of light and interference. As depicted in
Figure 3, the interferometer permits a single photon to travel along two
spatially distinct paths before reaching one of two detectors. We consider
two observers at rest but located at different positions relative to the
interferometer.

<> <>

Observeray

= =
A= > g T
%. ‘=’ ___________________ -—-d-_cﬁi\{fé— —————— [ Detector 2 J
<F
Observe r= [ Detector 1 J

Figure 3. Two Observer Framwork

Empirical results demonstrate that the detector activation probabilities
depend on the set of paths accessible to the photon [41]. However, within

UMT— 4

School of Science e
i@
Volume 9 Issue 1, 2025 o




Quantum Principles from Time-Phase Geometry...

the two-dimensional time framework, the trajectory in time governed by
phase evolution and encoded in the factor p varies with the observers
position. For Observer 1, the photon is always moving away, so p = +
1 (always positive). For Observer 2, the photon reverses direction in
some segments, resulting in alternating values of p = £1 (positive and
negative). This raises a conflict: if probability depends on the complex time
trajectory S’ = pte @t then it would appear to be frame-dependent,
violating Postulate 4.

Yet, quantum theory maintains that all observers must agree on the
probability of an event. Since probability is computed as the modulus
squared of a complex amplitude, the amplitude itself must be invariant
under inertial transformations. We propose that this invariant quantity is the
square of the proper time separation T3, between events in the time-phase
plane. So

2 = (e )" = (lo"ee”” )’ = cr?

This formulation ensures that and remains consistent for all inertial
observers. The invariance across IFRs supports its interpretation as a natural
candidate for the square of the probability amplitude. Consequently, the
trajectory in time plays the role of the probability amplitude, and its squared
magnitude yields the observer-independent probability. This interpretation
is compatible with Feynman's path integral approach, where the total
probability amplitude is determined by summing over all possible quantum
paths, and the probability of an event is given by the square of this amplitude
[13]. In our framework, each complex trajectory in time contributes a unit
amplitude determined by its proper time structure, and invariance is
preserved geometrically rather than axiomatically. Thus, Postulate 4
enforces consistency between relativistic time symmetry and quantum
probability, revealing that observer-invariant trajectories in complex time
serve as the geometric basis for probability amplitudes in quantum
mechanics [41, 42].

3.2 Trajectory in Time and the Definitions of Probability and
Superposition

Building on our postulate that all observers must agree on the
probability of an event, we hypothesize that the probability of a particle
following a specific trajectory is a function of the square of its proper

50 —
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distance in time, Tczl, measured within the extended two-dimensional
temporal framework.

From the perspective of any inertial observer at rest, all potential
trajectories available to a particle within a quantum system such as an
interferometer exist within the observer’s temporal past. This is because the
observer’s frame advances through the t-dimension at maximal velocity
relative to any massive or massless particle. As a result, from the observer’s
viewpoint, all trajectories are encoded within the past light cone and remain
in superposition until measurement. In the absence of external constraints
or biases, there is no a priori reason to favor one trajectory over another.
Therefore, all possible paths are assumed to be equally probable, consistent
with Feynman's path integral formulation of quantum mechanics [1].

For a quantum system with n equally likely trajectories, the probability
of the particle taking trajectory i is defined as follows:

1 .
P, = - fori=1ton

n
P,=1
i=1
where, P; is Probability of trajectory i occuring and n represents is
number of different trajectories the particle can take.

2 ¥ &
e t::::::::::::'—'—'—'—'—'—;"Ej%ﬁ::::::;
< =

Path 1 There are 4
possible paths

Path 3 " the photon can
Detector 1 Path 4 take.

Figure 4. Phonton Detector Framework

-
= .
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Figure 4 illustrates a simplified Mach—Zehnder interferometer in
which a photon has four distinct trajectories, two leading to detector 1 and
two to detector 2. With 50/50 beam splitters, each path is equally likely,

. 1
Le., P; = T

To introduce the concept of probability amplitude, we define the
complex-valued amplitude associated with the it trajectory as follows:

A; = |\/Fl| e~ where ¢ = 2nwt;
Here,

A —
Amplitude of the i trajectory (probability weighted trajectory S),

t; — Time relative to the observer of the i trajectory ,

a) —
Frequency of the photon (wt; number of cycles in the i*" trajectory) ,

¢; — represents the phase accumulated along the trajectory.

The reason we work with amplitudes A;, rather than direct probabilities
P;, is because the underlying dynamics are governed by complex trajectories
in time, not by their squared magnitudes alone. The square of modulus of
A; yields the observable probability, but it is S’, the trajectory itself, that
carries the physically meaningful content of the quantum state [2].

Now consider a quantum event that can occur through multiple
indistinguishable paths. For instance, detector 1 may light up if the photon
follows trajectory 1 or 2, while detector 2 corresponds to trajectories 3 or 4.
The total amplitude for a possible event j is then the superposition of the
amplitudes of its contributing trajectories

nj
i=1
where

S; — Superpostion for each event ,
Jj — Each possible event ,

n; — Number of possible trajectories for each possible event ,

Scientific Inquiry and Review
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Aj; — Time amplitudes of possible trajectories for each event.

The probability of event j occurring is given by the squared modulus
of its net amplitude:

2
P =[S}

The total probability across all mutually exclusive events j =1, ... ,]
must satisfy the normalization condition:

J
Dlsl =1
j=1

This framework is general and applies to any quantum system with
multiple trajectory possibilities not just the simplified case of a Mach—
Zehnder interferometer. As the number of possible paths increases, the
resulting quantum interference patterns and probability calculations become
more intricate, but the principle remains grounded in the superposition of
phase-weighted time trajectories.

3.3 Application of the Equations to Obtain Probabilities of Events in
the Mach-Zender Interferometer

We now apply the formalism of probability amplitudes and time-phase
trajectories to calculate the probability of detection events in a standard
Mach—Zehnder interferometer setup. As previously established, for a
system with four equally probable paths, each trajectory has an amplitude
with magnitude \/Fl = % Therefore, the probability amplitude for each
trajectory can be expressed as follows:

1 g
Ai = Ee t

The superposition for Event 1 (paths 1 and 2) is
1 . 1 .
Sl S Al + AZ =§e_l<p1 + Ee_”pz

1 . .
S, =—etP1(1 i(=¢2t¢1)
1 2e ( + e )
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Defining the phase difference ¢ = @; — ¢, , and noting that the
modulus of the phase factor is unity (|e"i"’1| = 1), the modulus squared of
S1 becomes

1 . )
Sy = Ee“"’l(l + e'?)
1 _ 1
15,12 = Z(l + sing)? + ZCOSZ @

1
1S, 1% = Z(l + 2sin @ + sin® @ + cos? @)

1
P, = |52 =§(1 + sing)

This result expresses the probability P; of detection at detector 1 as a
function of the relative phase between the two interfering trajectories.

Similarly, for Event 2, detection via path 3 or 4, the total amplitude is
S, = A, + A, = le—iws + le—im
2 3 4+ =5 2
Again factoring yields
1 . .
S, =—e l¥3(1 i(=patg3)
255 e ( + e )

In this case, we assume a relative phase shift of ¢ + m between paths 3
and 4 due to experimental symmetry and detector exclusivity. Substituting
this relation, we find:

P3— P4 =@+ T
Therefore

1 . )

S, = Ee“%(l - el"’)

1S,]? = l(1 — sing)? + 1cos2 )
! 4

1
|S,]% = Z(l — 2sin@ + sin® @ + cos? @)
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1
P, = ISP =51~ sing)

Thus, the probability P, of detection at detector 2 depends
complementarily on the phase shift between the interfering trajectories. As
expected, the sum of the two detection probabilities satisfies normalization,

1 1
P1+P2=§(1+ sing ) + 5(1— singp) =1

This confirms the internal consistency of the formalism and reinforces
the principle that quantum probabilities emerge from the interference of
time-dependent probability amplitudes.

By adjusting the phase difference ¢ (e.g., via path length variations or
refractive index changes), one can control the relative intensities at the
detectors. In the limiting cases, constructive interference (¢ = 0) results in
full detection at one output port, while destructive interference (¢ = m)
results in complete suppression at that port. This phase sensitive behavior
illustrates how trajectories in time encode quantum interference, directly
linking the geometry of time with measurable probabilities in quantum
systems.

Ultimately, this section demonstrates that the quantum probability
amplitudes and their superpositions, when defined through trajectories in
extended time dimensions recover the expected outcomes of interference
experiments. This strengthens the claim that quantum mechanical behavior
can be derived from relativistic time-phase geometry without requiring
independent probabilistic axioms.

3.4 Equivalency to Feynman’s Sum of Paths Formalism for Quantum
Mechanics

The framework developed in this article aligns closely with Richard
Feynman’s sum over paths (or path integral) formalism for quantum
mechanics. In QED: The Strange Theory of Light and Matter [43], he
outlines the fundamental rules that govern this interpretation.

Feynman’s Grand Rule states, “The probability of an event is equal to
the square of the length of an arrow called the probability amplitude.” This
corresponds directly to the notion that the squared modulus of a probability
amplitude, derived from the trajectory in two-dimensional time, yields the
probability of an event. In our formalism, the amplitude represents the
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trajectory in complex time-space, and the squared amplitude captures its
physical manifestation as probability.

Feynman’s General Rule for alternative paths is as follows: “If an event
can occur in several different ways, draw an arrow (amplitude) for each
path. These arrows are then added head-to-tail. The final arrow from the tail
of the first to the head of the last gives the total amplitude. The square of its
length is the probability of the event.”

This rule is entirely consistent with our treatment of superposition: each
trajectory contributes a weighted amplitude based on its temporal phase,
and these amplitudes are summed to yield the total probability amplitude
for a given outcome. The probability is then obtained by squaring the
modulus of this combined amplitude.

Thus, our derivation based purely on geometric considerations of time
and motion reproduces the core rules of Feynman’s quantum theory.
Moreover, while Feynman’s approach typically invokes a continuous
summation over all possible paths (as n — ), our discrete formalism leads
to equivalent results when the number of paths becomes large. This suggests
that the probabilistic structure of quantum mechanics, as described by
Feynman, can be viewed as a natural consequence of the underlying time-
phase geometry established in the completed theory of Special Relativity.

3.5 Interference and the Exclusion Principle

A central feature of quantum behaviour is the phenomenon of
interference between alternative paths, a result that emerges naturally within
the trajectory based framework, we have proposed. However, the
underlying cause of interference remains open to deeper interpretation.

It is hypothesized here that interference arises fundamentally from an
exclusion principle rooted in the structure of extended spacetime.
Specifically, certain trajectories may interfere destructively because they
attempt to place the particle at the same point in five-dimensional
spacetime, a configuration that is not permitted. In this view, interference is
not merely a computational artifact of wave-like superposition, but a
geometric constraint imposed by the topology of space and time.

Although a rigorous mathematical proof of this hypothesis remains
beyond the scope of the current paper, it offers a compelling perspective:
that destructive interference is the manifestation of deeper incompatibilities
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in allowable configurations of physical reality. Exploring this conjecture
further may lead to a geometric derivation of Pauli’s exclusion principle and
other fundamental quantum rules from relativistic spacetime constraints.

4. CONCLUSION

In this work, we have proposed a novel framework that derives
foundational quantum mechanical principles from a two-dimensional time
construct embedded in a completed version of Special Relativity. By
introducing an additional temporal dimension denoted as 8, we showed that
the motion of particles in time acquires a directionality and curvature,
characterized by rotational dynamics in the (t,8)-plane. This approach
redefines frequency as a geometric property of time and establishes a direct
correspondence between a particle’s trajectory in time and quantum
uncertainty.

The Uncertainty Principle arises naturally within this model as a
consequence of phase resolution in the 6-dimension, wherein energy and
time (for photons) or momentum and position (for matter) are constrained
by geometric relationships on the curved temporal path. This derivation
avoids heuristic assumptions and instead grounds uncertainty in the
geometry of time itself.

The Exclusion Principle is likewise given a geometric reinterpretation.
We hypothesize that particle indistinguishability and exclusion are
consequences of the impossibility of overlapping identical trajectories in a
higher-dimensional spacetime framework. While a complete proof of this
geometric exclusion is left for future work, the foundational logic aligns
with observed quantum statistics and offers a promising route to unify
symmetry-based quantum rules with spacetime geometry.

Furthermore, we re-derived the formalism of quantum superposition
and interference by assigning probability amplitudes to trajectories in the
time-phase space. In this model, the probability of an event is proportional
to the square of the proper temporal distance associated with each possible
trajectory. Applied to the Mach—Zehnder interferometer, this approach
recovers Feynman’s path integral framework, showing that the interference
pattern emerges from the coherent sum of all geometrically permitted paths.
The invariant nature of probabilities across frames is ensured by defining
probability amplitudes as functions of proper time, a relativistic consistent
quantity.
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Collectively, these results suggest that quantum mechanics can be
viewed not as a separate probabilistic postulate driven framework, but as an
emergent description of the geometry of time itself. This geometric
reinterpretation not only reproduces established quantum predictions but
also reconciles relativistic invariance with quantum discreteness, thereby
narrowing the conceptual gap between the two pillars of modern physics.

Future work will explore the extension of this framework to entangled
systems, quantum field theory, and gravitational interactions. In particular,
the role of the #-dimension in describing quantum correlations across
spacetime could offer new insights into the structure of nonlocality and the
fabric of reality itself. The proposed time-phase geometry opens a
promising direction toward a unified description of quantum and relativistic
phenomena through the language of higher-dimensional geometry.
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