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Self-Operating Stock Exchange:  A Deep Reinforcement 
Learning Approach 

Hammad Ghulam Mustafa1* 

ABSTRACT: Stock trading 
approaches play an important role in 
equity. However, it is a difficult task 
to create a financially beneficial 
approach due to the complicated and 
ever-evolving nature of the stock 
market. In this study, we employed an 
Epsilon Greedy policy on our Deep 
Q-Learning (DQN) prototype that
enable effective policy for the agent.
This could optimize the predicted
values of the total reward across any
sequential steps. It also helps to
maximize the state-action-value
function by engaging with the
environment q (s, a) to recommend
when to buy, sell or hold. In this
prototype, the state depends on
routine principles of buying, selling
or holding the existing data. The state
alters as the buying and selling
session alters. The prototype is able to
grow rapidly with respect to the
responses to market made by agents
based on reward signals. It enhances
the users’ understanding about the
holding and buying of stocks.
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I. INTRODUCTION

    Stock trading has always been a 
controversial topic in the financial 
market due to the continuously 
changing nature of the stock trend. 
Now a days developing intelligent 
system to make strategies for stock 
trading is very challenging. With 
regards to the exponential increase in 
the application of artificial 
intelligence in the field of financial 
markets, particularly stock trading, 
reinforcement learning (RL) has been 
found to be most effective. 
Reinforcement learning is considered 
one of the most powerful AI 
technology used by financial traders 
ever since the program AlphaGo 
defeated the strongest human 
contemporary Go board game player 
Lee Sedol in 2016 [1]. Profitable 
trading strategies are of great 
importance not only for organizations 
but also for the individuals who wants 
to invest in it. The decisios related to 
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trading are easy for the successful 
traders who possess fundamental as 
well as technological expertise . 
However, it has been unappropriate 
for the normal investors due to lack of 
technological assistance, knowledge 
and trading experience [2]. In this 
study, we explored and optimized a 
reinforcement learning algorithm, 
that is, Deep Q-learning (DQN). 
DQN is already being effectively 
used in the stock trading system. 
Different studies produced optimal 
solutions. Therefore,  we took 3 years 
of stock market data of three 
competitive companies, namely 
Apple Inc., UBER and Infosys Ltd, 
from the “Yahoo Finance” website. 
The data was collected through the 
Yahoo Finance library in order to get  
LiveData. The data consists of 
columns, such as “Open” which 

refers to the starting price, “High” 
which refers to the most expensive 
price, "low" which refers to the 
cheapest price, "close" which refers to 
the "ending price" of the day, 
“Volume”  which refers to the 
number of shares traded, and “Adj 
Close” which refers to the close price 
adjusted for both dividends and splits. 
We have explored the DQN model 
through two different approaches; 
first, we updated the  
discount factor, epochs and reward 
window and second, in the next 
strategy, we added two and three 
dense layers. We performed a series 
of experiments to find the best 
possible way to optimize the 
accumulative profit of the companies 
and then selected the most optimized  
solution. The findings of the analysis 
showed that DQN can make 

Fig. 1. Illustration of Map Functions 
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profitable patterns in the next 
strategy, we added two and three 
dense layers. We performed a series 
of experiments to find the best 
possible way to optimize the 
accumulative profits. 

II. RELATED WORK

   The previous approaches were not 
contain exterior knowledge, rather, 
researcher only used past data of 
stock prices for the trading. Deep Q 
Learning was utilized in the study, 
which utilize the trading activities 
related to buying, holding, or selling 
In this wok, the dataset is based on US 
stock with the total of 504 samples for 
training and 218 samples for testing 
[3]. Intially, few of data preprocessing 
techniques are utilized that involves 
normalization and tensor packaging. 
Standardized training data was used 
as data tensor (categories) for the 
reinforcement learning (RL) module. 
Subsequently, the testing data was 
used to check the execution of the 
portfolio management system (PMS) 
and to produce stock weights for the 
testing phase. Whereas the other part 
of the study, is related to RL module 
which includes long and short RL 
models. The RL module becomes 
familiar with the portfolio weighting 
plan through communication between 
the situation and the agent to decide 
long and short stock management 
independently. The last module is 
equity market neutral (EMN) which 

consolidates long and short stock 
weights to forestall long and short  

equivalent stock from spending 
exchanging costs. Simultaneously, 
the EMN module builds up the last 
EMN stock weight [4]. This study 
utilised the Deep Q learning (DQL) 
approach for portfolio trading 
strategy. Due to action space having a 
few issues DQL agent may not 
determine a wise trading technique. 
The mapping function involves two 
planning rules, every one of which is 
needed for planning impracticable 
actions and is separated into two 
cases. Mainly, the measure of money 
is not enough to make a move which 
only includes purchasing resources. 
In this case, a comparative action set 
is inferred by holding instead of 
buying a 
Visualization of our Trading Model 
division of the resource gathering to 
be purchased in the first action. From 
that point, impracticable actions are 
planned to the most significant 
possible actions in the comparable 
action set. Let us suppose, due to the 
shortage of money, the system is 
unable to execute the act of buying 

Fig. 2.  Life Cycle of our Trading Model 
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both assets (1 and 2). In this case, 
mapping is done on a most feasible 
actions within the same action states. 
This involves the action of holding 
and buying of both the asset 1 and 
2.Conversely, due to shortage of 
assets, if the system cannot execute 
the selling of the assets, then it would 
simply map to an original action 
when assets are not enough In such a 
case, it holds. This map function is 
shown in Figure 1[5]. 
Further, utilizing Neural Network to 
inexact state is not a smart approach 
since the preparation cycle is 
unappropriate. This issue is resolved 
by utilizing Deep Q Network (DQN) 
which executes experience replay to 
overcome the shakiness. Experience 
replay is an approach used to 
diminish the connection between A. 
preparation information by randomly 
clump examining N information 
focuses or preparing encounters. 
These calculation stores the most 
recent N information focuses on the 
memory  
support. Further its randomly gets 
Batch size number which focuses 
each progression/emphasis to fit the 
model. It is computationally not 
plausible to assemble an ideal Q-table 
when the state space and activity 
space are huge. The computational 
issue of huge state-activity space is 
mitigated by utilizing a capacity 
approximator for state-activity 
compromise choice  [6]. 

III. METHODOLOGY
   We modelled our stock market 
trading process via Deep Q-learning 
(DQN) by using two different 
approaches. First, we updated the 
discount factor, epochs and reward 
window. Subsequently, in the next 
strategy, we added two and three 
dense layers. We applied this 
method because it is infinitely 
discrete when dealing with the 
continuous type of state space and 
action space. Furthermore, DQN 
works best for such type of large 
data where the system needs to 
perform a lot of iteration to get the 
values for states and actions based 
on the Q-table where q-learning 
fails to handle such complex 
samples [7]. DQN have a neural 
network-based structure where the 
computation of the Q-values is 
performed by taking states as input 
and actions as output for the given 
state [state, action] through the 
network. 
Subsequently, we applied the 
Epsilon Greedy policy in our DQN 
model in order to get an optimal 
policy for the agent. This was done 
to maximize the expected value of 
the total reward over the successive 
steps starting from the current state. 
For examole to optimize the state-
action-value function by interacting 
with the environment Q(s,a) to 
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suggest when to buy, sell or hold. 
Here, the agent interacts with the 
environment in two ways: 
exploration and – regardless of the 
maximum future reward –
exploitation. After considering all 
the actions, it takes the optimal to 
interact in the most optimal manner 
[8]. In this model, the state depends 
on the daily values of buy, sell or 
hold of 3 years of stock data. The 
state changes as the trading session 
(the day) change. 

A. Parameters for Stock Trading
Model

By keeping in mind the stochastic 
and interactive nature of the stock 
trading market, we implemented the 
DQN model considering the 
following parameters: 
1. Here, Q (s, a) satisfies the

Bellman equation when an
action is performed in a state s in
a given action a.

2. ε represents the greedy action
selection. ε represents the
greedy action selection.

3. γ max Q*(s’,a’)|s,a) represents
the maximum expected
accumulative reward. Hence,
the above-defined function will
provide the maximum reward at

the end of the n number of 
training cycles/iterations. 

B. Setting up our stock trading
environment

In order to develop the environment 
in which the agent can explore and 
exploit, we first installed the 
required following libraries: 
1. NumPy
2. Pandas
3. Matplotlib
4. Seaborn
5. TensorFlow
6. Yahoo
7. Finance
8. Libraries
D Our, Strategies
In our project, we worked on 3
different stock market data, namely
Uber, Infosys, and Apple, by
applying the DQN model. The data
was fetched through the Yahoo
Finance website. We first
performed some exploratory data
analysis in order to make logics for
our agent to explore and learn in
order to maximize the reward. We
worked on 2 different strategies.
First, we changed the value of the
discount factor (γ) with different
window sizes. Subsequently, in the
next strategy, we added two and
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three dense layers. Moreover, our 
framework is capable enough to 
work also on year by year and for 
number of years as well. The results 
will also upgrade whenever new 
data for the above-mentioned 
companies is available on Yahoo 
Finance. Furthermore we are using 
a model-free strategy, the agent is 
going to explore and exploit the 
environment (using Epsilon Greedy 
policy). 
We have defined the agent class 
with simulations using different 
functions to make our agent learn. 
For example, “Get state” prompts 
the agent to analyze the state of the 
environment, “Action” function 
prompts the agent to randomly 
select its first action by exploring 
the environment, “Replay”  
function prompts it to store the past 
experience, “Buy_Sell” function 
prompts it to take decisions, and 
“Train” function prompts it to train  
our agents.  
In addition to the functions 
mentioned above, we have defined 
different important functionalities 
during simulations, such as “batch 
size”, since DQN uses experience 
replay to learn in small batches in 
order to avoid skewing the dataset 

distribution of different states, 
actions, rewards, and next states, 
“window_size” to cutout the time  

sequence of the data, and “deque”  
to handle the memory used by 
adding and removing elements from 
either end. Moreover, we have also 
defined a few static functions, such 
as “Epsilon Greedy”, “Decay” and 
“Gamma”. 

C. Experiment and
Simultaneous

In this study, we performed two 
iterations with different 
simulations. The purpose of these 
iterations was to analyze the impact 
of changing the parameters and 
dense layer of our DQN model so 
that agents can have a learning 
process and take better decisions to 
buy, sell or hold. 

Fig. 3.Working Flow of our 
 

34 UMT Ar tificial Intelligence 

Volume 1 Issue 1, Spring 2021 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr


Hammad Ghulam Mustafa 

D. First Iteration
In the first iteration, we used a two-
layered neural network to make
decisions for the buy, hold, and sell
call. Here “get_state” function and
“Action” function takes up the
value of the next state generated by
the Neural network (action, q-
value). Hence, the rewards are
calculated by adding and 
subtracting the value that is
generated by the execution of calls.
Additionally, the action taken in
the next state is determined by the

action taken in the previous state, 
while accumulative rewards are 
saved in the variable named “Total 
Profit”. During this iteration, we 
have changed three parameters: 
‘discount factor’, which will be 
determined between immediate 
reward or the future reward, 
‘epochs’, to train the agent by 
moving forward pass and back pass 
through the stock data, and 
‘window size’,  to train the agent 
for accurate decisions.

TABLE I. LENGTHS OF REWARD WINDOW CORRESPONDING TO DIFFERENT 
DISCOUNT FACTORS 

Discount Factor (γ) 0.46 0.63 0.79 

Epochs 100 200 300 

Reward Window 10 20 30 
If we take discount factor as 0.46, window size as 10, and epochs as 100, 
then the accumulative results by the three companies are as follows: 

Fig. 4.  Total Gains over investments by 
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UBER, APPLE and INFO SYS 
Companies If we take the discount 
factor as 0.63, window size as 20 
and epochs as 200, then the 
accumulative results by the three 
companies are as follows: 

 

By change/ if we take the discount 
factor as 0.79, window size as 20  
and epochs as 300, then the 
accumulative results by the three 
companies are as follows: 

Fig. 5.  Total Gains over investments by UBER, APPLE and INFO SYS 
 

Fig. 6.  Total Gains over investments by UBER, APPLE and INFO SYS Companies 
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E. Second Iteration
To overcome the above issue in the 
first iteration, we added a third  
dense layer in the network with the 
same values as shown: 
From the above-given results in 
Figure 4, 5 and 6, it can be seen from 
the trends that when the discount  
factor is close to zero and the 
number of epochs are less than the  

model provide better results. 
However, we increase the discount 
factor and epochs size, model goes 
into overfitting on the training 
agent. 
In the second iteration, we added 
additional dense, with the same 
discount factors, epochs, and 
window size as mentioned in Table  

1

Fig. 8.  Total Gains over investments by UBER, APPLE and INFO SYS companies 

Fig. 7.  Total Gains over investments by UBER, APPLE and INFO SYS companies 

37 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021 



Self-Operating Stock Exchange:  A Deep… 

By taking the same values for 
parameters, that is, discount factor = 
0.46, window size = 10 and epochs= 
100, the accumulative results by the 
three companies are as follows 
If we take the discount factor as 
0.76, window size as 20, and epochs 
as 200, the accumulative results by 
the three companies are as follows: 
Finally, if we take discount factor as 
0.79, window size as 30, and epochs 
as 300, the accumulative results by 
the three companies are as follows: 
From the above two iterations, we 
observed following points: 
1. By increasing epochs, the

model goes into overfitting.
2. As we increase the discount

factor from 0.46 to 0.76, the
chance of increasing future
reward is increased, but action
values may diverge as a result.

3. For reward window size, we
observed that when the size
increases from 10 to 30, the
model's performance gets better.

Considering the above set of 
observations, we concluded that for 
our stock trading data, discount 
factor 0.76, window size 30, and 
epochs 200 is most appropriate. 

IV. RESULTS

In this project, we explored the 
performance of DQN at different 
parameters’ values (Table 1) by 
adding dense layers. To analyze 
data from three different stocks, 
namely  Apple Inc., UBER, and 
Infosys, the DQN with multi agents 
along with added dense layers out 
performed and gave profitable 
patterns for all mentioned 
companies. In order to optimize our 
DQN model, we performed multiple 
simulations by adding dense layers 
in the DQN model with different 
values of gamma in each iteration. 
The results of the study are given as 
follows: 
By applying three dense layers with 
a discount factor of 0.67, our DQN 
model outperformed and gave 
realistic trend signalling for buying 
and selling. In the above-given 
Table 1, our model produced 
negative values for investment as 
well as for profit, but when we 
introduced another dense layer, the 
model optimized gradually and 
started producing better trends. This 
is because, our algorithm consists of 
three important components: Deep 
Q-Network to compute Q-value
function,  ‘Epsilon Greedy’ to
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optimize the accumulative reward 
function (total profit), and ‘replay 
function’ to remove the correlation. 
Vanilla DQN is found to be an 
efficient model in stock decisions. It 
is even better than its improved 
versions, such as Double DQN. 
Conversely,  some studies showed 
that Deep Q-learning performed 
worse when there are drastic 
changes in the pattern of price. 
Resultantly, the trained and the test 
systems collapsed [9]. To overcome 
this issue, we performed simulations 
on 3 datasets and trained the agents 
to make better patterns. Moreover, 
we trained the agents to find per day 
rewards in order to analyze when 
companies need to invest in the 
stock, when they should buy when 
they should sell or hold. With this 
knowledge, agents are capable of 
learning the stock trend and take 
appropriate decisions. Figure 10 
shows that the agent is capable of 
learning data each day by stating (a) 
with number of units sell with how 
much opening balance, (b) how 
much unit need buy or sell and how 
much to invest. All these decisions 
are taken by the agents through the 
rewards it gets during each state as 
shown in Figure 11. We also 

compared the proposed model with 
a baseline model. In the baseline 
models, trends of the graphs are 
given more focus to train the agents 
and the agent gets reward based on 
the trading trends [10]. However, on 
performing reversed opertation 
agents trained to learn the stock 
market data, perform 100 epochs to 
explore the environment, and finally 
make decisions based on the 
rewards it gets in order to make 
trend signals to buy, sell or hold. 
Figure 12 shows the performance of 
the Baseline model using DQN.  
The model shows the trading trends 
on the National Association of 
Securities Dealers Automated 
Quotations (NASDAQ) index stock 
in terms of accumulative rewards. 
The results are then tested on Dow 
Jones Industrial Average (DJIA), 
NASDAQ, National Stock 
Exchange Fifty (NIFTY), and 
SENSEX data set as well. 
Figure 13 shows the performance of 
our proposed model using three 
different datasets. It can be seen in 
Figure 4 that our model is capable 
enough to get the accumulative 
rewards individually for each 
company as well as the performance 
of overall model. 
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Fig. 10. Rewards over each iteration (epoch) 

Fig. 11. Baseline model - Trend Following 
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Fig. 12. 

Fig. 13. 

Fig. 14. Making Trendz 
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Discussion and Conclusion 
   We have explored the 
performance of our trading model 
by applying different strategies on 
three different datasets. Our DQN 
model with three layers 
outperformed in making trends to 
buy, sell, or hold signals, as shown 
in the figure below.  
The model is capable of generating 
the trends based on reward signals 
given by the agents, which helps to 
understand when one should invest 
in the stocks and when one should 
hold. Other stock data can also be 
adapted to our model. This may help 
companies as well as individuals 
with limited information of the 
stock market and aid them in 
deciding when and how much they 
should invest in stocks. However, 
we believe that there is always room 
for improvement, which is why 
future researchers should apply 
other neural networks, such as  RNN 
in the Deep Q-learning model.  
Since the trading data of RNN is 
sequential and continuous, applying 
QDN with RNN or any other neural 
network may give promising results. 
As the stock market is volatile and 
unpredictable for which risk control 
could be a significant factor. 

Therefore it  would also like to 
explore other Reinforcement 
Learning methods as well. 
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