
UMT Artificial Intelligence Review (UMT-AIR)
Volume 1 Issue 1, Spring 2021

ISSN(P): 2791-1276 ISSN(E): 2791-1268
Journal DOI: https://doi.org/10.32350/UMT-AIR

Issue DOI: https://doi.org/10.32350/UMT-AIR/0101
Homepage: https://journals.umt.edu.pk/index.php/UMT-AIR

Journal QR Code:

A publication of the
Dr Hasan Murad School of Management

University of Management and Technology, Lahore, Pakistan

Article: Self-Operating Stock Exchange – A Deep Reinforcement
Learning Approach

Author(s): Hammad Ghulam Mustafa

Affiliation: Bahria University, Lahore, Pakistan

Article QR:

Citation:

G. M. Hammad, “Self-operating stock exchange – a deep
reinforcement learning approach,” UMT Artificial Intelligence
Review, vol. 1, pp. 28–43, 2021. https://doi.org/10.32350/UMT-
AIR/0101/02

Copyright
Information:

This article is open access and is distributed under the terms of
Creative Commons Attribution 4.0 International License

https://doi.org/10.32350/UMT-AIR/0101
https://journals.umt.edu.pk/index.php/UMT-AIR
https://doi.org/10.32350/UMT-AIR/0101/02
https://doi.org/10.32350/UMT-AIR/0101/02
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/4.0/

Self-Operating Stock Exchange: A Deep Reinforcement
Learning Approach

Hammad Ghulam Mustafa1*

ABSTRACT: Stock trading
approaches play an important role in
equity. However, it is a difficult task
to create a financially beneficial
approach due to the complicated and
ever-evolving nature of the stock
market. In this study, we employed an
Epsilon Greedy policy on our Deep
Q-Learning (DQN) prototype that
enable effective policy for the agent.
This could optimize the predicted
values of the total reward across any
sequential steps. It also helps to
maximize the state-action-value
function by engaging with the
environment q (s, a) to recommend
when to buy, sell or hold. In this
prototype, the state depends on
routine principles of buying, selling
or holding the existing data. The state
alters as the buying and selling
session alters. The prototype is able to
grow rapidly with respect to the
responses to market made by agents
based on reward signals. It enhances
the users’ understanding about the
holding and buying of stocks.

1Department of Computer Science, Bahria University , Lahore, Pakistan
*Corresponding Author: hammadgm2008@gmail.com

KEYWORDS: Deep Reinforcement
Learning (DLR), Deep Q-Learning
(DQL), Deep Q-Network (DQN),
self-operating stock exchange, stock
trading

I. INTRODUCTION

 Stock trading has always been a
controversial topic in the financial
market due to the continuously
changing nature of the stock trend.
Now a days developing intelligent
system to make strategies for stock
trading is very challenging. With
regards to the exponential increase in
the application of artificial
intelligence in the field of financial
markets, particularly stock trading,
reinforcement learning (RL) has been
found to be most effective.
Reinforcement learning is considered
one of the most powerful AI
technology used by financial traders
ever since the program AlphaGo
defeated the strongest human
contemporary Go board game player
Lee Sedol in 2016 [1]. Profitable
trading strategies are of great
importance not only for organizations
but also for the individuals who wants
to invest in it. The decisios related to

29 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

Self-Operating Stock Exchange: A Deep…

trading are easy for the successful
traders who possess fundamental as
well as technological expertise .
However, it has been unappropriate
for the normal investors due to lack of
technological assistance, knowledge
and trading experience [2]. In this
study, we explored and optimized a
reinforcement learning algorithm,
that is, Deep Q-learning (DQN).
DQN is already being effectively
used in the stock trading system.
Different studies produced optimal
solutions. Therefore, we took 3 years
of stock market data of three
competitive companies, namely
Apple Inc., UBER and Infosys Ltd,
from the “Yahoo Finance” website.
The data was collected through the
Yahoo Finance library in order to get
LiveData. The data consists of
columns, such as “Open” which

refers to the starting price, “High”
which refers to the most expensive
price, "low" which refers to the
cheapest price, "close" which refers to
the "ending price" of the day,
“Volume” which refers to the
number of shares traded, and “Adj
Close” which refers to the close price
adjusted for both dividends and splits.
We have explored the DQN model
through two different approaches;
first, we updated the
discount factor, epochs and reward
window and second, in the next
strategy, we added two and three
dense layers. We performed a series
of experiments to find the best
possible way to optimize the
accumulative profit of the companies
and then selected the most optimized
solution. The findings of the analysis
showed that DQN can make

Fig. 1. Illustration of Map Functions
30 UMT Ar tificial Intelligence

Volume 1 Issue 1, Spring 2021

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Hammad Ghulam Mustafa

profitable patterns in the next
strategy, we added two and three
dense layers. We performed a series
of experiments to find the best
possible way to optimize the
accumulative profits.

II. RELATED WORK

 The previous approaches were not
contain exterior knowledge, rather,
researcher only used past data of
stock prices for the trading. Deep Q
Learning was utilized in the study,
which utilize the trading activities
related to buying, holding, or selling
In this wok, the dataset is based on US
stock with the total of 504 samples for
training and 218 samples for testing
[3]. Intially, few of data preprocessing
techniques are utilized that involves
normalization and tensor packaging.
Standardized training data was used
as data tensor (categories) for the
reinforcement learning (RL) module.
Subsequently, the testing data was
used to check the execution of the
portfolio management system (PMS)
and to produce stock weights for the
testing phase. Whereas the other part
of the study, is related to RL module
which includes long and short RL
models. The RL module becomes
familiar with the portfolio weighting
plan through communication between
the situation and the agent to decide
long and short stock management
independently. The last module is
equity market neutral (EMN) which

consolidates long and short stock
weights to forestall long and short

equivalent stock from spending
exchanging costs. Simultaneously,
the EMN module builds up the last
EMN stock weight [4]. This study
utilised the Deep Q learning (DQL)
approach for portfolio trading
strategy. Due to action space having a
few issues DQL agent may not
determine a wise trading technique.
The mapping function involves two
planning rules, every one of which is
needed for planning impracticable
actions and is separated into two
cases. Mainly, the measure of money
is not enough to make a move which
only includes purchasing resources.
In this case, a comparative action set
is inferred by holding instead of
buying a
Visualization of our Trading Model
division of the resource gathering to
be purchased in the first action. From
that point, impracticable actions are
planned to the most significant
possible actions in the comparable
action set. Let us suppose, due to the
shortage of money, the system is
unable to execute the act of buying

Fig. 2. Life Cycle of our Trading Model

15 31 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

Self-Operating Stock Exchange: A Deep…

both assets (1 and 2). In this case,
mapping is done on a most feasible
actions within the same action states.
This involves the action of holding
and buying of both the asset 1 and
2.Conversely, due to shortage of
assets, if the system cannot execute
the selling of the assets, then it would
simply map to an original action
when assets are not enough In such a
case, it holds. This map function is
shown in Figure 1[5].
Further, utilizing Neural Network to
inexact state is not a smart approach
since the preparation cycle is
unappropriate. This issue is resolved
by utilizing Deep Q Network (DQN)
which executes experience replay to
overcome the shakiness. Experience
replay is an approach used to
diminish the connection between A.
preparation information by randomly
clump examining N information
focuses or preparing encounters.
These calculation stores the most
recent N information focuses on the
memory
support. Further its randomly gets
Batch size number which focuses
each progression/emphasis to fit the
model. It is computationally not
plausible to assemble an ideal Q-table
when the state space and activity
space are huge. The computational
issue of huge state-activity space is
mitigated by utilizing a capacity
approximator for state-activity
compromise choice [6].

III. METHODOLOGY
 We modelled our stock market
trading process via Deep Q-learning
(DQN) by using two different
approaches. First, we updated the
discount factor, epochs and reward
window. Subsequently, in the next
strategy, we added two and three
dense layers. We applied this
method because it is infinitely
discrete when dealing with the
continuous type of state space and
action space. Furthermore, DQN
works best for such type of large
data where the system needs to
perform a lot of iteration to get the
values for states and actions based
on the Q-table where q-learning
fails to handle such complex
samples [7]. DQN have a neural
network-based structure where the
computation of the Q-values is
performed by taking states as input
and actions as output for the given
state [state, action] through the
network.
Subsequently, we applied the
Epsilon Greedy policy in our DQN
model in order to get an optimal
policy for the agent. This was done
to maximize the expected value of
the total reward over the successive
steps starting from the current state.
For examole to optimize the state-
action-value function by interacting
with the environment Q(s,a) to

32 UMT Ar tificial Intelligence

Volume 1 Issue 1, Spring 2021

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Hammad Ghulam Mustafa

suggest when to buy, sell or hold.
Here, the agent interacts with the
environment in two ways:
exploration and – regardless of the
maximum future reward –
exploitation. After considering all
the actions, it takes the optimal to
interact in the most optimal manner
[8]. In this model, the state depends
on the daily values of buy, sell or
hold of 3 years of stock data. The
state changes as the trading session
(the day) change.

A. Parameters for Stock Trading
Model

By keeping in mind the stochastic
and interactive nature of the stock
trading market, we implemented the
DQN model considering the
following parameters:
1. Here, Q (s, a) satisfies the

Bellman equation when an
action is performed in a state s in
a given action a.

2. ε represents the greedy action
selection. ε represents the
greedy action selection.

3. γ max Q*(s’,a’)|s,a) represents
the maximum expected
accumulative reward. Hence,
the above-defined function will
provide the maximum reward at

the end of the n number of
training cycles/iterations.

B. Setting up our stock trading
environment

In order to develop the environment
in which the agent can explore and
exploit, we first installed the
required following libraries:
1. NumPy
2. Pandas
3. Matplotlib
4. Seaborn
5. TensorFlow
6. Yahoo
7. Finance
8. Libraries
D Our, Strategies
In our project, we worked on 3
different stock market data, namely
Uber, Infosys, and Apple, by
applying the DQN model. The data
was fetched through the Yahoo
Finance website. We first
performed some exploratory data
analysis in order to make logics for
our agent to explore and learn in
order to maximize the reward. We
worked on 2 different strategies.
First, we changed the value of the
discount factor (γ) with different
window sizes. Subsequently, in the
next strategy, we added two and

15 33 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

Self-Operating Stock Exchange: A Deep…

three dense layers. Moreover, our
framework is capable enough to
work also on year by year and for
number of years as well. The results
will also upgrade whenever new
data for the above-mentioned
companies is available on Yahoo
Finance. Furthermore we are using
a model-free strategy, the agent is
going to explore and exploit the
environment (using Epsilon Greedy
policy).
We have defined the agent class
with simulations using different
functions to make our agent learn.
For example, “Get state” prompts
the agent to analyze the state of the
environment, “Action” function
prompts the agent to randomly
select its first action by exploring
the environment, “Replay”
function prompts it to store the past
experience, “Buy_Sell” function
prompts it to take decisions, and
“Train” function prompts it to train
our agents.
In addition to the functions
mentioned above, we have defined
different important functionalities
during simulations, such as “batch
size”, since DQN uses experience
replay to learn in small batches in
order to avoid skewing the dataset

distribution of different states,
actions, rewards, and next states,
“window_size” to cutout the time

sequence of the data, and “deque”
to handle the memory used by
adding and removing elements from
either end. Moreover, we have also
defined a few static functions, such
as “Epsilon Greedy”, “Decay” and
“Gamma”.

C. Experiment and
Simultaneous

In this study, we performed two
iterations with different
simulations. The purpose of these
iterations was to analyze the impact
of changing the parameters and
dense layer of our DQN model so
that agents can have a learning
process and take better decisions to
buy, sell or hold.

Fig. 3.Working Flow of our

34 UMT Ar tificial Intelligence

Volume 1 Issue 1, Spring 2021

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Hammad Ghulam Mustafa

D. First Iteration
In the first iteration, we used a two-
layered neural network to make
decisions for the buy, hold, and sell
call. Here “get_state” function and
“Action” function takes up the
value of the next state generated by
the Neural network (action, q-
value). Hence, the rewards are
calculated by adding and
subtracting the value that is
generated by the execution of calls.
Additionally, the action taken in
the next state is determined by the

action taken in the previous state,
while accumulative rewards are
saved in the variable named “Total
Profit”. During this iteration, we
have changed three parameters:
‘discount factor’, which will be
determined between immediate
reward or the future reward,
‘epochs’, to train the agent by
moving forward pass and back pass
through the stock data, and
‘window size’, to train the agent
for accurate decisions.

TABLE I. LENGTHS OF REWARD WINDOW CORRESPONDING TO DIFFERENT
DISCOUNT FACTORS

Discount Factor (γ) 0.46 0.63 0.79

Epochs 100 200 300

Reward Window 10 20 30
If we take discount factor as 0.46, window size as 10, and epochs as 100,
then the accumulative results by the three companies are as follows:

Fig. 4. Total Gains over investments by

35 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

Self-Operating Stock Exchange: A Deep…

UBER, APPLE and INFO SYS
Companies If we take the discount
factor as 0.63, window size as 20
and epochs as 200, then the
accumulative results by the three
companies are as follows:

By change/ if we take the discount
factor as 0.79, window size as 20
and epochs as 300, then the
accumulative results by the three
companies are as follows:

Fig. 5. Total Gains over investments by UBER, APPLE and INFO SYS

Fig. 6. Total Gains over investments by UBER, APPLE and INFO SYS Companies

36 UMT Ar tificial Intelligence

Volume 1 Issue 1, Spring 2021

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Hammad Ghulam Mustafa

E. Second Iteration
To overcome the above issue in the
first iteration, we added a third
dense layer in the network with the
same values as shown:
From the above-given results in
Figure 4, 5 and 6, it can be seen from
the trends that when the discount
factor is close to zero and the
number of epochs are less than the

model provide better results.
However, we increase the discount
factor and epochs size, model goes
into overfitting on the training
agent.
In the second iteration, we added
additional dense, with the same
discount factors, epochs, and
window size as mentioned in Table

1

Fig. 8. Total Gains over investments by UBER, APPLE and INFO SYS companies

Fig. 7. Total Gains over investments by UBER, APPLE and INFO SYS companies

37 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

Self-Operating Stock Exchange: A Deep…

By taking the same values for
parameters, that is, discount factor =
0.46, window size = 10 and epochs=
100, the accumulative results by the
three companies are as follows
If we take the discount factor as
0.76, window size as 20, and epochs
as 200, the accumulative results by
the three companies are as follows:
Finally, if we take discount factor as
0.79, window size as 30, and epochs
as 300, the accumulative results by
the three companies are as follows:
From the above two iterations, we
observed following points:
1. By increasing epochs, the

model goes into overfitting.
2. As we increase the discount

factor from 0.46 to 0.76, the
chance of increasing future
reward is increased, but action
values may diverge as a result.

3. For reward window size, we
observed that when the size
increases from 10 to 30, the
model's performance gets better.

Considering the above set of
observations, we concluded that for
our stock trading data, discount
factor 0.76, window size 30, and
epochs 200 is most appropriate.

IV. RESULTS

In this project, we explored the
performance of DQN at different
parameters’ values (Table 1) by
adding dense layers. To analyze
data from three different stocks,
namely Apple Inc., UBER, and
Infosys, the DQN with multi agents
along with added dense layers out
performed and gave profitable
patterns for all mentioned
companies. In order to optimize our
DQN model, we performed multiple
simulations by adding dense layers
in the DQN model with different
values of gamma in each iteration.
The results of the study are given as
follows:
By applying three dense layers with
a discount factor of 0.67, our DQN
model outperformed and gave
realistic trend signalling for buying
and selling. In the above-given
Table 1, our model produced
negative values for investment as
well as for profit, but when we
introduced another dense layer, the
model optimized gradually and
started producing better trends. This
is because, our algorithm consists of
three important components: Deep
Q-Network to compute Q-value
function, ‘Epsilon Greedy’ to

38 UMT Ar tificial Intelligence

Volume 1 Issue 1, Spring 2021

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Hammad Ghulam Mustafa

optimize the accumulative reward
function (total profit), and ‘replay
function’ to remove the correlation.
Vanilla DQN is found to be an
efficient model in stock decisions. It
is even better than its improved
versions, such as Double DQN.
Conversely, some studies showed
that Deep Q-learning performed
worse when there are drastic
changes in the pattern of price.
Resultantly, the trained and the test
systems collapsed [9]. To overcome
this issue, we performed simulations
on 3 datasets and trained the agents
to make better patterns. Moreover,
we trained the agents to find per day
rewards in order to analyze when
companies need to invest in the
stock, when they should buy when
they should sell or hold. With this
knowledge, agents are capable of
learning the stock trend and take
appropriate decisions. Figure 10
shows that the agent is capable of
learning data each day by stating (a)
with number of units sell with how
much opening balance, (b) how
much unit need buy or sell and how
much to invest. All these decisions
are taken by the agents through the
rewards it gets during each state as
shown in Figure 11. We also

compared the proposed model with
a baseline model. In the baseline
models, trends of the graphs are
given more focus to train the agents
and the agent gets reward based on
the trading trends [10]. However, on
performing reversed opertation
agents trained to learn the stock
market data, perform 100 epochs to
explore the environment, and finally
make decisions based on the
rewards it gets in order to make
trend signals to buy, sell or hold.
Figure 12 shows the performance of
the Baseline model using DQN.
The model shows the trading trends
on the National Association of
Securities Dealers Automated
Quotations (NASDAQ) index stock
in terms of accumulative rewards.
The results are then tested on Dow
Jones Industrial Average (DJIA),
NASDAQ, National Stock
Exchange Fifty (NIFTY), and
SENSEX data set as well.
Figure 13 shows the performance of
our proposed model using three
different datasets. It can be seen in
Figure 4 that our model is capable
enough to get the accumulative
rewards individually for each
company as well as the performance
of overall model.

39 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

Self-Operating Stock Exchange: A Deep…

Fig. 10. Rewards over each iteration (epoch)

Fig. 11. Baseline model - Trend Following

40 UMT Ar tificial Intelligence

Volume 1 Issue 1, Spring 2021

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Hammad Ghulam Mustafa

Fig. 12.

Fig. 13.

Fig. 14. Making Trendz

15 School of Media and Communication Studies
Volume 1 Issue 1, Spring 2021

41 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

Self-Operating Stock Exchange: A Deep…

UMT Artificial Intelligence

Discussion and Conclusion
 We have explored the
performance of our trading model
by applying different strategies on
three different datasets. Our DQN
model with three layers
outperformed in making trends to
buy, sell, or hold signals, as shown
in the figure below.
The model is capable of generating
the trends based on reward signals
given by the agents, which helps to
understand when one should invest
in the stocks and when one should
hold. Other stock data can also be
adapted to our model. This may help
companies as well as individuals
with limited information of the
stock market and aid them in
deciding when and how much they
should invest in stocks. However,
we believe that there is always room
for improvement, which is why
future researchers should apply
other neural networks, such as RNN
in the Deep Q-learning model.
Since the trading data of RNN is
sequential and continuous, applying
QDN with RNN or any other neural
network may give promising results.
As the stock market is volatile and
unpredictable for which risk control
could be a significant factor.

Therefore it would also like to
explore other Reinforcement
Learning methods as well.

References

1. T. L. Meng and M. Khushi,
“Reinforcement learning in
financial markets,” Data, vol. 4,
no. 3, pp. 110, July. 2019.
https://doi.org/10.3390/data40
30110

2. H. Yang, X.-Y. Liu, S. Zhong,
and A. Walid, “Deep
reinforcement learning for
automated stock trading: An
ensemble strategy,” in Proc.
First ACM Int. Conf. AI in
Finan., Oct. 2020, pp. 1-8.
https://doi.org/10.1145/338345
5.3422540

3. Q. V. Dang, “Reinforcement
learning in stock trading,” in
Int. Conf. Comp. Sci, Appl.
Math. Applic., Dec. 2019, pp.
311–322.
https://doi.org/10.1007/978-3-
030-38364-0_28

4. M.-E. Wu, J.-H. Syu, J. C.-W.
Lin, and J.-M. Ho, “Portfolio
management system in equity
market neutral using
reinforcement learning,” Appl.
Intell., vol. 51, no. 11, pp. 8119-
8131, Mar. 2021.
https://doi.org/10.1007/s10489
-021-02262-0

5. H. Park, M. K. Sim, and D. G.
Choi, “An intelligent financial

42 UMT Ar tificial Intelligence

Volume 1 Issue 1, Spring 2021

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://doi.org/10.3390/data4030110
https://doi.org/10.3390/data4030110
https://doi.org/10.1145/3383455.3422540
https://doi.org/10.1145/3383455.3422540
https://doi.org/10.1007/978-3-030-38364-0_28
https://doi.org/10.1007/978-3-030-38364-0_28
https://doi.org/10.1007/s10489-021-02262-0
https://doi.org/10.1007/s10489-021-02262-0

Hammad Ghulam Mustafa

portfolio trading strategy using
deep Q-learning,” Expert Syst.
Appl., vol. 158, pp. 113-573,
Nov. 2020.
https://doi.org/10.1016/j.eswa.
2020.113573

6. J. Chakole and M. Kurhekar,
“Trend following deep Q-
Learning strategy for stock
trading,” Expert Syst., vol. 37,
no. 4, pp. e12-514, Dec. 2020.
https://doi.org/10.1111/exsy.12
514

7. L. Chen and Q. Gao,
“Application of deep
reinforcement learning on
automated stock trading,” in
2019 IEEE 10th Int. Conf. Soft.
Eng. Ser. Sci. (ICSESS),
Beijing, China, Oct, 18-20,
2019, pp. 29-30.
https://doi.org/10.1109/ICSESS
47205.2019.9040728

8. J. B. Chakole, M. S. Kolhe, G.
D. Mahapurush, A. Yadav, and
M. P. Kurhekar, “A Q-learning
agent for automated trading in
equity stock markets,” Expert
Syst. Appl., vol. 163, pp. 113-
761, Jan. 2021.
https://doi.org/10.1016/j.eswa.
2020.113761

9. K. Jakhar, “Reinforcement
Learning: Cart-pole, Deep Q
learning,” Oct. 2019 [Online].
Available:
https://medium.com/@karan_j
akhar/100-days-of-code-day-4-
6fbc672171e4

10. R. Purohit, “Simplified
Reinforcement Learning: Q
Learning,” Nov. 2020 [Online].
Available:
https://www.mygreatlearning.c
om/blog/simplified-
reinforcement-learning-q-
learning/

43 Dr Hasan Murad School of Management
Volume 1 Issue 1, Spring 2021

https://doi.org/10.1016/j.eswa.2020.113573
https://doi.org/10.1016/j.eswa.2020.113573
https://doi.org/10.1111/exsy.12514
https://doi.org/10.1111/exsy.12514
https://doi.org/10.1109/ICSESS47205.2019.9040728
https://doi.org/10.1109/ICSESS47205.2019.9040728
https://doi.org/10.1016/j.eswa.2020.113761
https://doi.org/10.1016/j.eswa.2020.113761
https://medium.com/@karan_jakhar/100-days-of-code-day-4-6fbc672171e4
https://medium.com/@karan_jakhar/100-days-of-code-day-4-6fbc672171e4
https://medium.com/@karan_jakhar/100-days-of-code-day-4-6fbc672171e4
https://www.mygreatlearning.com/blog/simplified-reinforcement-learning-q-learning/
https://www.mygreatlearning.com/blog/simplified-reinforcement-learning-q-learning/
https://www.mygreatlearning.com/blog/simplified-reinforcement-learning-q-learning/
https://www.mygreatlearning.com/blog/simplified-reinforcement-learning-q-learning/

