UMT Artificial Intelligence Review (UMT-AIR) Volume 2 Issue 2, Fall 2022 ISSN_(P): 2791-1276 ISSN_(E): 2791-1268

Homepage: https://journals.umt.edu.pk/index.php/UMT-AIR

Article QR

Title:	A SIR Model for Viral Growth of Coronavirus in Pakistan: A System Dynamics Approach				
Author (s):	Ijaz Yusuf ¹ , Kishmala Ijaz ² , Hassan Qudrat Ullah ³				
Affiliation (s):	¹ University of Management and Technology, Lahore, Pakistan ² CMH Medical College Lahore, Pakistan ³ School of Administrative Studies, University of York, England				
DOI:	https://doi.org/10.32350.umt-air.22.01				
History:	Received: October 10, 2022, Revised: November 16, 2022, Accepted: December 12, 2022				
Citation:	I. Yusuf, K. Ijaz, and H. Q. Ullah, "A SIR model for viral growth of coronavirus in Pakistan: A system dynamics approach," <i>UMT Artif. Intell. Rev.</i> , vol. 2, no. 2, pp. 00–00, 2022, doi: <u>https://doi.org/10.32350.umt-air.22.01</u>				
Copyright:	© The Authors				
Licensing:	Creative Commons Attribution 4.0 International License				
Conflict of Interest:	Author(s) declared no conflict of interest				

A publication of

Department of Information System, Dr. Hasan Murad School of Management University of Management and Technology, Lahore, Pakistan

Analyzing the Application of SIR Model to Study the Outbreak of COVID-19: A Case Study in Pakistan

Ijaz Yusuf^{1*}, Kishmala Ijaz², and Hassan Qudrat Ullah³

¹Department of Operations and Supply Chain, School of Business and Economics, University of Management and Technology, Lahore, Pakistan ² CMH Medical College, Lahore, Pakistan ³School of Administrative Studies, University of York, Canada

Abstract- The current study aims to examine the exponential rate of the spread of COVID-19 by employing a dynamic model. system The outbreak of COVID-19 was first evidenced on Feb 26, 2020 in Pakistan. The local bodies and law enforcing agencies took the initial preventive measures to restrict COVID-19 to a particular locality but all in vain. A large number of people were infected by this virus which increased the death rate countrywide. The numbers of infected people were alarming and a need was felt to develop the model to calculate the existing reproduction number and transmission rate and highlight its varied values in the coming davs. **People-friendly** measures and government-based policies must be explored to fight against this deadly disease. This paper aims to develop an epidemic model using the system dynamic framework on simulation software STELLA. Additionally, the current study's purpose is to experiment with the system dynamic model to replicate the progression of the

communicable disease and probe multiple combinations of peoplebased and government-based measures to reduce the spread of pandemic. COVID-19 These containment measures are of two types; people-based measures and government-based measures which directly affect the reproduction number and infection growth rate of the mitigating circumstances due to **COVID-19.** Combined efforts of the public and government can combat this global pandemic. The reduced number reproduction of number/recurring cases and infection growth rate are the key metrics to judge and evaluate the effectiveness of containment/ control measures. Therefore, this research holistic points to a more combination of public and government-oriented measures that play a vital role in reducing the increasing infection rate of **COVID-19.** Simulation results were traced to replicate the reallife settings against four combinations of containment

^{*} Corresponding Author: <u>ijaz.yusuf@umt.edu.pk</u>

measures in tabular form and graphical form.

Index Terms- COVID-19, containment measures, epidemic model, Pakistan, system dynamics

I. Introduction

COVID-19 is an emerging biohazard which has drastically impacted millions of people globally, causing many deaths with its exponential transmission rate.

In current study, a system dynamic model has been devised [1] implement а well-known to (Susceptible-Infected-Recovered) SIR model [2] which is an epidemiological model that consists of three coupled non-linear equations [3] that represent the reallife setting and grounded in the data gathered from the secondary source for instance, a government website. this research. the system In dynamics model is developed in computer-based simulation software STELLA professional version 1.1.2 using the system dynamics modelling framework [4]. Simulated SIR model replicates the real-life data gathered over the of 55 days period and experimentation with the model helped to explore the possibilities of containment measures which would reduce the increased help to infection rate. It also predicts that to

draw a comparison between people vs government-based measures.

The outbreak of COVID-19 was reported in the end of December in 2019 in Wuhan, China. It is a highly contagious disease with an expeditious transmission rate and because of this, the WHO has Public announced Health а Emergency of International Concern on 31st January 2020 [5]. On the account of its accelerated global spread, it was declared a pandemic, by World Health Organization on 11th March 2020. due to thirteen-fold increase in cases in two weeks. The basic recurring cases of COVID-19were estimated around 2.2 (range 1.4-6.5) [5]. In Pakistan the very first case of COVID-19 was reported on 26th February, 2020 owing to its geographical association with China and Iran with continuous immigration of people [6]. Unluckily, the first immigrant was from Iran in Sind province. In order to combat COVID-19, preventive measures were enforced by the government provincial and unprecedented measures were taken to control the pandemic. Till March 26, 2020, 1197 cases of COVID-19 were reported with 9 deaths. Significantly, an immediate lockdown was imposed on March 2020, and it was gradually eased till 9th May, 2020 to shore up the

economy. Over the period of 55 days till April 20, 2020 the total number of infected cases in Pakistan reached to 8418 with 1970 recoveries and 176 deaths.

Pakistan is currently fighting two battles; one against corona virus/COVID-19 and the other one against poverty. This economic meltdown is due to the disruption of chains, supply lockdown, and sudden closure of businesses leading to decreased livelihood opportunities (Narmeen et al., 2022). Additionally, a huge amount of money was consumed for the implication of safety measures, PPEs, testing kits, and increasing health care facilities. Favero, et al. categorized [7] have the effectiveness of strategic policies for COVID-19 on the basis of their costs and fatalities in their research article "Restarting the economy while saying lives under COVID-19" on 8th May, 2020 to optimize the management strategies from the ecological viewpoint.

In another research article " Why is it difficult to accurately predict the COVID-19 epidemic" Roda et al. [8] have mentioned that detected cases are only a fraction of total infected people using the metaphor of an iceberg since many asymptomatic patients are not even tested making it difficult to predict the disease course. In this research study, Roda and others emphasized the significance of SIR model which is better in predicting the disease progression than SEIR and other complex models. SIR model provides clear theoretical а verification of the effectiveness of the mitigating strategies. This strict implication of this model can halt the epidemic surge and it can be used to address the risk of second peak if occupational S activities are started during the disease course.

The objective of the current research is to understand the containment measures, their need, and significance to push down the infection rate of COVID-19.

II. Research Methodology

System dynamic model is a versatile methodology/ framework which deals with the non-linear. dynamic, and complex problems [9] in industrial, social, and medical sciences. System dynamic masterly attempts to combine the key concepts like feedback controls, mutual causality, non-linearity in the functions. cybernetics, counterintuitive complexity, behaviour, deviation correcting, and deviation amplifying processes to the organizational systems [10].

COVID-19 has enhanced the importance of disease

4 -

Yusuf et al.

epidemiological modelling. A wellknown epidemiological model SIR (Susceptible, infected, and resolved) is a recent development [2]. Even the common man is interested to know about the infection rate and resolution rate. There is a need to develop the SIR model using system dynamics modelling framework to determine containment the measures to control the governing factors BETA (Infection rate) and GAMMA (Resolution rate) which is a reason for the wide spread this disease.

A. Research Questions

- 1. Is the SIR model using the system dynamics modelling framework truly represent the viral growth of the COVID-19 in Pakistan?
- 2. Which of the containment measures are more effective in COVID-19(governmentoriented or people-oriented)?

B. Model Structure

Figure 1.indicates the simplified representation of the SIR epidemic model. Saturation loop (S), reinforcing loop (R), and balancing loops (B) exist in the model to generate the model behaviour. The loop dominance may change over the period of time and creates various modes of behaviour as the time passes. As the transmission rate increases due to the increase in the infected people, there is a decline in the susceptible people (people who are healthy but are at risk) and it is going to saturate till all the susceptible persons become infected. Model structure represents the stock and flow diagram and the symbols used in this model are shown in Appendix A.

The value of the gamma recovery rate give strength to the balancing loop. No doubt the constant value of gamma does not bring significance effect of the resolved people. Changing values of the BETA (infection rate) keep on increasing the stock of infected people and susceptible people becomes the infected at exponential rate, if there is no vaccine for susceptible [11]. The spread of COVID-19 is with a jet speed. Limited testing and screening facilities, non-availability of the testing kits, poor quality of kits, and low quality personal protective equipment which are the hurdles to catch the viral growth of COVID-19

Fig. 1. Stock and flow diagram of SIR epidemic model

Table I Anatomy of SIR Model

Symbol	Nomenclature	Description
S	Susceptible	How many available for infection
Ι	Infected	How many are infected
R	Resolved	How many are resolved either recovered or
		died (no longer part of total population)
В	Beta	Number of contacts per infected person per
		day
G	Gamma	Number of recoveries per person per day
R0	Reproduction	Reproduction number is used to measure the
	Number	transmission potential of a disease. It is the
		average number of secondary infections
		produced by a typical case of an infection in
		a population where everyone is susceptible.
Ν	Ν	Total Population i.e N=S+I+R

The model consists of three nonlinear differential equations based on Euler method where 't' is the time, Beta is the infection rate, and gamma are the resolution rate.

$$dS/dt = -Beta * S* I$$
(1)
$$dI/dt = Beta * S* I - Gamma * I$$

UMT Artificial Intelligence Review

7

dR/dt = Gamma * I (3)

$$N = S + I + R \tag{4}$$

Beta is the infection rate that is a controlling variable that transmission from susceptible to infected and ratio of Beta to Gamma is called reproduction number (RO), which determine the spread of COVID-19 pandemic [12]. It is interesting to note that infection rate (Beta) and reproduction number (RO) both exponentially raised together. The model is calibrated fifty-five (55) days for the value of infection rate (Beta) and resolution rate (gamma) as shown in the Figure 2 and Figure 3.

Fig. 2. Actual infected vs simulated infected

Fig. 3. Actual resolved vs simulated resolved

The days to resolve either recovered or died usually it takes around 23 days. The model is the third order differential equation with associated flows [13]. The order of the model depends upon the number of levels and the number of delays [14]. The details of the model variables are highlighted in Appendix B.

C. Base Line Model Equations

SIR model based on Euler integration are as under:

Susceptible = INTEGRAL (-Transmission rate) * dt (1)Transmission rate = Infection growth (1.1)Infection growth = Infection reproduction fraction * susceptible contract with infected (1.2)

Susceptible contact with infected = probe of contact with susceptible * infected contact (1.3)

Infected contact = Contact rate * Infected (1.4)

Probe of contact with susceptible = Susceptible / population (1.5)

B = Infection growth (Beta represents infection rate) (1.6)

Infected = INTEGRAL (Transmission rate – infection rate + outsider inflow) * dt (2) Infection Infected = rate **Resolution time** (2.1)Outsider Inflow = One person per day (Constant) (2.2)Resolved = INTEGRAL (Infection rate) * dt (3) Herd Immunity = Resolved / Population (3.1)G = 1/resolution time (Gamma

represents the resolution rate) (3.2)

$$RO = B/G \tag{3.3}$$

D. Model Assumptions

The summation of all the stocks and rates are equal to the total population that depicts the dynamic balance [15]. The system dynamic model has following assumptions:

- 1) There is a fixed recovery time in COVID-19
- 2) People are well mixed and cannot segregate the asymptomatic with people with healthy people
- 3) There is no information about the immunity loss period
- 4) Infected person would not get infected again

E. Model Behaviour

On the basis of the actual time series data, the system dynamics model was calibrated for fifty-five days and the data is highlighted in Figure 2 and Figure 3, representing the true picture of COVID-19 and its spread in Pakistan. Considering the people-oriented measures and government-based measures it was observed that model behaviour is an essential measure for the containment of COVID-19. A detail of model equations has been shown in Appendix C. The value of Beta (infection rate) and Gamma (resolution rate) was derived from the time series data of Pakistan and world statistics on COVID-19 [16] to trace of the behavioural patterns of various simulation periods for the validated estimations. The various containment measures as shown in the Table 2 have been proposed for experimentation. The only fifty-five days had passed so far and level of awareness was minimal. If we project the model behaviour for next 365 days the results are shown in Figure 4 which indicate the peak would appear after 146 days and by that time 80 million people would be infected and around 120 million people would be resolved. These figures were so alarming that compelled the researcher to investigate and explore the effectiveness of the containment measures to reduce the infection rate. The model consists of positive and negative loops [17] and dominance of the polarity and its shift from positive to negative and negative positive adds to complexity [18]

Containment Weasures I copie based Versus Government based				
People-Based Measures	Government-Based Measures			
Hand washing	Lock down duration			
Social distancing	Lock down effectiveness			
Avoid meetings, get-togethers,	Contact trancing and quarantine			
parties, festivals	people on quarantine centers			
	Smart Lock Down-Open up with			
	Standard Operating Procedures			
Self-isolation and quarantine	(SOPs) like temperature gun,			
	PPEs, Face mask, and frequent			
	medical checkup			
Maintaining the 6 feet distance	Usage of facemasks are			
between two individuals	mandatory for visiting the shops			
between two marviduais	and all public places			
Using the hand sonitizers	Walk through Dis-infected tunnels			
Using the hand sanitizers	for company employees and			

Table II
Containment Measures People based Versus Government based

Department of Information Systems

Volume 2 Issue 2, Fall 2022

0.0

Fig. 4. Susceptibles, infected, and resolved during the simulation period 365 days

Days

219

292

146

Graphical functions based on people oriented measures and government oriented measures have been introduced in the Appendix D, and was designed to understand the behavioural patterns arising from the model structure rather than point prediction of the future deaths and recoveries [15]

73

III. Results and Discussion

People based measures like distancing social is а nonpharmaceutical prevention containment measure that is the outcome of people behaviour and their attitude [19]. Knowledge, understanding. and attitude of medical students [20] contributed productively to run the awareness campaigns about wearing face mask, proper hand-wash, strict usage of sanitizers, maintaining social distance, avoid parties, social get together, festivals, and funerals. All the above mentioned actives highly rely on people attitude and their behaviours, and are often associated with people-friendly measures. However, government based measures are associated with lock down duration, lock down effectiveness. contract tracing. enhancing health care capacity, smart lock down with the effective implementation of standard operating procedures (SOPs), and protective personal equipment

0.0

365

UMT Artificial Intelligence Review

10 -

11

(PPEs). Lock down duration during day time stopped everything and other government-oriented initiatives are very much impeded in it as highlighted in Table II.

The model was calibrated for initial 55 days and then under the

government-based measures and people-based measures the actual data was replicated till July 10, 2020 with the simulation numbers indicating the reduced reproduction number. The details are shown in Table III given below.

Table III Lowering Reproduction Number Shows Effectiveness of the Containment Measures

Period	Days	Actual Infected	Simulated Infected	Actual Resolved	Simulated Resolved	Reproduction Number	Measures Reference	People Based Measures (%)	Governme nt Based Measures Days
Ist Period	55	8418	8400	2146	2800	3.97	Base Case No. 1	15	30
2 nd Period	85	45898	44000	14086	19000	3.29	Measure No 2	17	55
3 rd Period	116	171666	171000	66886	89000	2.92	Measure No. 3	21.5	62
4rth Period	136	243599	255000	154151	152000	2.68	Measure No. 4	24.5	65

Ge⁴ erntment & People Oriented Measures at 136 Days

Fig. 5. Affect of containment measures on infected people at varied time intervals

Fig. 6. Affect of containment measures on resolved people at varied time intervals

The effectiveness of the containments of people-based and government-based preventive measures are equally important and reduce significant to the reproduction number shown in Figure 7. This number lead to the lowered infected rate among people as highlighted in Figure 5 due to reduced level of beta-infection fraction as shown in Figure 8. This diversity in patterns of behaviour is under the influence of multiple combinations of people based and government based containment measures [21]. Measure reference indicates the set of combination (people-based and governmentbased) of containment measures. The number 1 measure represents

the base value and that was the source of model calibration after passing fifty-five (55) days. Reproduction number has gone down from 3.97-2.68 that shows the government effective strategy, which is at the right track as shown in Table III

Number of recurring COVID-19 cases have gone down due to the decrease in infected people as highlighted in Figure 6. Betainfection fraction has declined from 0.18-0.11 as shown in Figure 8. This is the average result of people's attitude and fear aroused due to the increased deaths reported on daily basis.

Fig. 7. Affect of containment measures on reproducton numbers at varied time intervals

Fig. 8. Affect of containment measures on beta-infection fraction at varied time intervals

IV Conclusion

System dynamics model is used to be explored and experimented with

various combinations of containment measures [22] and determining the various levels of

Department of Information Systems

Volume 2 Issue 2, Fall 2022

reproduction number and betainfection fraction to mitigate the infectious spread of disease COVID-19. The current study concluded that system dynamic model was effectual in preventing COVID-19 and its outbreak. Thereby, the government-oriented measures were more effective than people-oriented measures. People oriented measures are primarily, based on education, effectiveness of the awareness campaigns, attitude, and the mind-set of the social fabric. While measures based on attitude are mostly time dependent and be achieved cannot quickly. However. government has the power to establish and implement the policies using stick or carrot approach for the proper of implementation control The immediate measures. lockdown not only controlled the increasing infection rate but also restricted the spread of COVID-19 pandemic. This was made possible only by arranging emergency medical caps and health care centers to reduce the increased death rate. Hence, the effective contact tracing and lock down can contribute in the reduction of beta-infection fraction which helped in opening industries with SOPs during the pandemic.

References

- J. Forrester, "Industrial dynamics: a major breakthrough for decision makers," *Harvard Bus. Rev.*, vol. 36, no. 4, pp. 37-65, 1958.
- [2] W. O. Kermack and A. G. McKendrick, "A contribution to the mathematical theory of epidemics," *Proc. Royal Soc. London. Series A, Contain. Paper. Mathemat Phys. Charac.*, vol. 115, no. 772, 1927, pp. 700-721, doi: <u>https://doi.org/10.1098/rspa.19</u> <u>27.0118</u>
- [3] J. D. Sterman, "System dynamics modeling: tools for learning in a complex world," *Califor. Manag. Rev.*, vol. 43, no. 4, pp. 8-25, July 2001. <u>https://doi.org/10.2307/411660</u> <u>98</u>
- [4] J. Sterman, Business dynamics: systems thinking and modeling for a complex world. Irwin McGraw-Hil, 2000.
- [5] Z. Wu and J. M. McGoogan, "Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19)outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention," Jama, vol. 323,

no. 13, pp. 1239-1242, 2020, doi: https://doi.org/10.1001/jama.2 020.2648

- [6] A. Waris, A. U. Khan, M. Ali, A. Ali, and A. Baset, "COVID-19 outbreak: current scenario of Pakistan," *New. Microb. New. Infect.*, vol. 35, p. e100681, May 2020, doi: <u>https://doi.org/10.1016/j.nmni.</u> 2020.100681
- [7] C. A. Favero, A. Ichino, and A. Rustichini, "Restarting the economy while saving lives under Covid-19," 2020.
- [8] W. C. Roda, M. B. Varughese, D. Han, and M. Y. Li, "Why is it difficult to accurately predict the COVID-19 epidemic?," *Infect. Dis. Modell.*, vol. 5, pp. 271-281, 2020, doi: <u>https://doi.org/10.1016/j.idm.2</u> 020.03.001
- [9] K. Saeed, "Jay Forrester's operational approach to economics," *Syst. Dynam. Rev.*, vol. 30, no. 4, pp. 233-261, Apr. 2015, doi: <u>https://doi.org/10.1002/sdr.152</u>
- [10] L. B. Sweeney and J. D. Sterman, "Thinking about systems: student and teacher conceptions of natural and social systems," *Syst. Dynamic.*

Rev. vol. 23, no. 2-3, pp. 285-311, Oct. 2007, doi: https://doi.org/10.1002/sdr.366

- [11] N. Ghaffarzadegan and H. Rahmandad, "Simulationbased Estimation of the Spread of COVID-19 in Iran: actual versus confirmed cases," *Syst. Dynamic. Rev.*, vol. 36, no. 1, pp. 101-129, July 2020, doi: <u>https://doi.org/10.1002/sdr.165</u> <u>5</u>
- [12] J. T. Wu, K. Leung, and G. M. "Nowcasting Leung, and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study," The Lancet, vol. 395, no. 10225, pp. 689-697, Mar. 2020, doi: https://doi.org/10.1016/S0140-6736(20)30260-9
- [13] J. W. Forrester, "Industrial dynamics—after the first decade," *Manag. Sci.*, vol. 14, no. 7, pp. 398-415, Mar. 1968, doi: <u>https://doi.org/10.1287/mnsc.1</u> <u>4.7.398</u>
- [14] Sushil, System dynamics: A practical approach for managerial problems. Wiley Eastern Limited, 1993.
- [15] K. Saeed, E. Ryder, and A. Manning, "Cancer as a system

dysfunction," *Systems*, vol. 9, no. 1, pp. e14, doi: https://doi.org/10.3390/system s9010014

- [16] A. Cori, N. M. Ferguson, C. Fraser, and S. Cauchemez, "A new framework and software to estimate time-varying reproduction numbers during epidemics," *American J. Epidemiol.*, vol. 178, no. 9, pp. 1505-1512, Sep. 2013, doi: <u>https://doi.org/10.1093/aje/kwt</u> <u>133</u>
- [17] D. C. Lane, "The power of the bond between cause and effect: Jay Wright Forrester and the field of system dynamics," *Syst. Dynamic. Rev.*, vol. 23, no. 2-3, pp. 95-118, Oct. 2007, doi:

https://doi.org/10.1002/sdr.370

[18] K. Saeed, "Slicing a complex problem for system dynamics modeling," Syst. Dynamic. *Rev.*, vol. 8, no. 3, pp. 251-261, 1992, doi: <u>https://doi.org/10.1002/sdr.426</u> 0080305

- [19] A. Raouf and I. Yusuf, *Quality* management: A customer driven approach. UMT, 2011.
- [20] M. F. Bostanudin, S. Al Atassi, and T. S. Fei, "Epidemiology of headache disorders among pharmacy students," *American J. Epidemiol. Public Health.*, 2020;4(1):1-5.
- [21] G. P. Richardson and A. I. Pugh III, *Introduction to* system dynamics modeling with DYNAMO. Productivity Press Inc., 1981.
- [22] K. Saeed, "Circumscribing system dynamics modeling and building confidence in models a personal perspective," pp. 1-27, Nov. 2017.

-UMT-AIR

Appendix A

Symbols for Flow /Block Diagram

Description	Symbol	Associated Equation Type	Explanation
Level		L	Stock
Rate	\rightarrow	R	Flow
Auxiliary	\bigcirc	А	Convertor
Table Function		Т	Perception map between x,y plane
Exogenous variable		E	Occasionally affect the model behavior but not part of model
Constant		С	Constant which has unique value
Source or Sink of Material	\bigcirc	Define	Out of boundary, defines the model scope
Material / Information Flow			Use for the movement of material and information

Appendix **B**

Variables Description		UOM	Equation Type	Parametric Value
Susceptible	Soft Skills Training conduction time	Persons	L	
Infected	Infected	Persons	L	0
Resolved	Resolved	Persons	L	0
Population	Population	Persons	С	19700000 0
Outsider	Outsider	Person	С	1
Resolution Time	Resolution Time	Days	С	23
Herd Community	Herd Community	Dimensionless	А	
Reproduction Number	Reproduction Number	Dimensionless	А	
Infection Rate	Infection Rate	Persons/Days	R	
Transmission Rate	Transmission Rate from Susceptible to infected	Persons/Days	R	
POMC	People Oriented Measures Correction		Т	
GOMC	Government Oriented Measures Correction		Т	
GOM	Government Oriented Measures	Days	С	65
РОМ	People Oriented Measures	Dimensionless	С	0.245
В	Infection Growth-Beta	Number of contacts per infected person per day	А	
G	Gamma-Reciprocal to Resolution Time	Number of recoveries per person per day	А	
Prob of Contacts with Susceptible	Probability of Contacts with Susceptible	Dimensionless	А	

List of Variables

18-UMT-AIR

Yusuf et al.

Variables	Description	UOM	Equation Type	Parametric Value
Infected Reproduction Fraction	Infected Reproduction Fraction	Dimensionless	А	
Susceptible Contact with infected	Susceptible Contact with infected	Persons	А	
Infection Growth	Infection Growth	Persons per day	А	

Appendix C

Programming for System Dynamics Simulation Model on STELLA Professional Software Version 1.1.2

SIR Model Equations

Top-Level Model: Infected(t) = Infected(t - dt) + (Transmission Rate + Outsider -Infection Rate) * dt INIT Infected = 0UNITS: persons **INFLOWS**: Transmission Rate = Infection growth UNITS: persons/days Outsider = 1UNITS: persons/days **OUTFLOWS**: Infection Rate = Infected/Resolution Time UNITS: persons/days Resolved(t) = Resolved(t - dt) + (Infection Rate) * dtINIT Resolved = 0UNITS: persons **INFLOWS**: Infection Rate = Infected/Resolution Time UNITS: persons/days Susceptible(t) = Susceptible(t - dt) + (- Transmission Rate) * dtINIT Susceptible = Popluation-Infected **UNITS:** persons **OUTFLOWS:**

Transmission Rate = Infection growth UNITS: persons/days B = Infection growth G = 1/Resolution Time GOMC = GRAPH(Govt Oriented Measures) (0.0, 0.0000), (36.5, 0.0460), (73.0, 0.0799), (109.5, 0.1073), (146.0, 0.0000), (36.5, 0.0460), (73.0, 0.0799), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (109.5, 0.1073), (146.0, 0.0000), (146.0, 0.0.1290), (182.5, 0.1404), (219.0, 0.1518), (255.5, 0.1598), (292.0, 0.1655), (328.5, 0.1735), (365.0, 0.1769)UNITS: persons per days Govt Oriented Measures = 65**UNITS: Days** Herd Immunity = Resolved/Popluation*100 Infection growth = Susceptible contact with Infected*Infection Reprod Fraction UNITS: persons/days Infection Reprod Fraction = 0.234-POMC-GOMC **UNITS: Dimensionless** People Oriented Measures = 0.245**UNITS:** Dimensionless POMC = GRAPH(People Oriented Measures) (0.0000, 0.000205), (0.0950, 0.0134), (0.1900, 0.0312), (0.2850, 0.0552),(0.3800, 0.0775), (0.4750, 0.1033), (0.5700, 0.1353), (0.6650, 0.1523),(0.7600, 0.1585), (0.8550, 0.1585), (0.9500, 0.1594)**UNITS:** Dimensionless Popluation = 197000000UNITS: persons Prob of contact with Susceptible = Susceptible/Popluation **UNITS:** Dimensionless Reproduction Number = Infection Reprod Fraction/G Resolution Time = 23**UNITS:** Days Susceptible contact with Infected = Infected*Prob of contact with Susceptible UNITS: person { The model has 20 (20) variables (array expansion in parens). In 1 Modules with 0 Sectors. Stocks: 3 (3) Flows: 3 (3) Converters: 14 (14) Constants: 5 (5) Equations: 12 (12) Graphicals: 2 (2)

Appendix D

Graphical Functions

Affect of People Oriented Measures on Infection Reproduction

