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Abstract—The memory coherence 
problem occurs while mapping 
shared virtual memory in a loosely 
coupled multiprocesses setup. 
Memory is considered coherent if a 
read operation provides the same 
data written in the last write 
operation. The problem has been 
addressed in the literature using 
different algorithms, although the 
correctness of a distributed 
algorithm remains questionable. 
Formal verification is the principal 
term for a group of techniques that 
routinely use an analysis established 
on mathematical transformations to 
conclude the rightness of the 
hardware or software behavior in 
divergence to dynamic verification 
techniques. The current study 
employed UPPAAL model checker 
to model the Dynamic Distributed 
algorithm for shared virtual 
memory given by K. Li and P. 
Hudak.  The results showed that the 
Dynamic Distributed algorithm for 
shared virtual memory partially 
fulfils its functional requirements. 

Index Terms—distributed 
algorithm, formal specification, 
verification, shared memory, virtual 
memory 

 

I. Introduction 
The idea of virtual memory 

becomes inevitable/indispensable 
when a system requires more 
memory than installed. Virtual 
memory comprises the usage of 
other than the main memory as the 
main memory. In shared virtual 
memory, physically separated 
memories (on the network) are 
shared among the processes 
connected through a loosely 
coupled fashion. Different 
processes may use shared virtual 
memory like the traditional virtual 
memory, as shown in Figure 1.  

This paper investigates the 
Dynamic Distributed Memory 
Management algorithm given in [1], 
where other approaches, such as 
centralized manager, fixed, and 
broadcast are also given. 
Implementing the centralization 
algorithm becomes challenging 
when all of the traffic passes 
through a central manager for each 
type of page fault. An algorithm 
appears to have the best required 
results a namely the Dynamic 
Distributed Manager algorithm.  
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The Dynamic Distributed 
Manager algorithm is 
comparatively better than other 
algorithms, when there are a lot of 
page faults and network traffic 
needs to be managed in an efficient 
manner. The performance of this 
algorithm shows that it is 
probable/possible to implement it 
on a huge scale multiprocessor. 
However, the functional 
requirement of this algorithm needs 
to be verified by using formal 
methods [2], [3]. Formal Method is 
a standard word/term for system 
scheme [4], investigation, and 
application methods designated and 
used with scientific precision [5], 
[6]. 

 

 
Fig.  1. Shared virtual memory [1]     

II. Literature Review 
In [7], Venkateswarlu 

Chennareddy et al. verified a weak 
consistency model of distributed 
shared memory. CADP 

(Construction and Analysis of 
Distributed Processes) toolbox was 
used to design and implement the 
model. In [5], Johan. B et al. 
modeled the memory management 
system of virtual memory with 
MSVL tool. Memory management 
system is formalized via MSVL 
(Modeling Simulation and 
Verification Language) using the 
Model Checking (MC) approach. 
This approach is applied to verify 
the perfection, delay linked 
properties and regular repeated 
properties. Munez et al. presented 
the formal verification of a 
sequentially consistent memory 
model, where low level functions 
are considered as sequential [5]. In 
[5], Kim G. Larsen et al. performed 
model checking using UPPAAL 
and verified the audio protocol. 
Several researchers have described 
the importance of structures in 
UPPAAL for model checking [8]–
[10]. Another integration of formal 
verification through Cyber-Physical 
Systems (CPS) design process is 
presented in the literature. It 
consists of executing the 
transformation of AADL 
(Architecture Analysis and Design 
Language) models and represents 
them in timed automata. This 
approach was analyzed through 
model checking [11]. 

In [12], the authors introduce  
DSMC (Deep Statistical Model 
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Checking) to 
MECHATRONICUML, which is 
labelled as DSML (Domain 
Specific Model Checking) for the 
cyber physical systems. 

III. Memory Coherence Problem 
A single address space is shared 

by several processes in a shared 
virtual memory on the network, as 
shown in Figure 1. All processes 
are allowed to directly access any 
memory address in the address 
space. Memory Mapping Manager 
controls the implementation of 
mapping between shared virtual 
memory address space and local 
memories. Major responsibilities of 
a manager include to protect the 
system from the memory coherence 
problem. Its prevention is necessary 
to ensure that a read operation value 
on all processes remains the same 
as the most recent write operation.  

Address spaces of shared virtual 
memory are divided into pages. 
Pages are a point to a memory 
block. Multiple copies of a page 
may exist over a network as read 
only however, for writing a page, it 
is assumed that there’s only one 
copy and all other copies are 
invalidated.. Memory Mapping 
Manager scans the local memory as 
well as the address spaces of 
attached processes from the shared 
virtual memory cache. A page fault 
occurs due to memory reference 

when the page memory location is 
not in the current physical memory 
of the process. So, in case of a page 
fault, memory manager rescues the 
page. It gets a page from the disk or 
via any other process. If another 
process has copies of the faulting 
memory page reference, then the 
manager needs to put in some effort 
to maintain memory coherence. The 
memory coherence problem might 
be encountered as these algorithms 
maintain the memory. A shared 
virtual memory on loosely coupled 
systems has no shared memory in 
physical form and the 
communication budget between the 
processes is non-trivial. 

A. Dynamic Distributed Memory 
Management 

Dynamic Distributed algorithm 
is a type of Distributed Manager 
algorithms in which tasks are 
divided among individual 
processes. In this algorithm, every 
process has its local table for 
maintaining the ownership of all 
pages, which is known as PTable. 
This PTable has five columns 
namely page ID, access field, copy 
set, probowner, and lock field [13]. 
i. Page ID is the unique ID of 
page. 
ii. Access field shows the page 
accessibility roles, that is, either 
read or write. 
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iii. Copy set contains the IDs of the 
processes having the copies of the 
page. 
iv. Probowner means a the possible 
owner of a page. 
v. Lock field is used to avoid the 
race condition between/among 
processes demanding the same 
page. 

In this algorithm, probowner is 
set in a way that there remains no 
loop for pointing it out. For 
example, it is not possible that a 
node A says that probowner is the 
node B or the node B says that 
probowner is the node A. 

In this protocol, every node 
sends requests to its probowner. If 
probowner is the actual owner then 
it replies back. Otherwise, it 
forwards the request to probowner. 
Eventually, a page is served by the 
actual owner. 

Read Operation: Two processes 
are involved in each read operation. 
One is read fault handler (which 
comprises the request for read 
access) and the other is read server 
(which is specified in the 
probowner field). For read access, 
fault handler requests a process 
mentioned by the probowner field. 
If read server is the true owner of 
the requested page, then it needs to 
do the following operations: 

i. Add itself to the copy set of the 
requested page. 
ii. Change access to “Read” in its 
PTable. 
iii. Send page and page copy set to 
faulting process. 
iv. Add faulting process into the 
probowner field of its PTable. 

If read server is not the true 
owner of the requested page, then it 
forwards the request to the process 
mentioned in the probowner field of 
its PTable. It also updates its 
probowner field with the requested 
node. Every time a faulting process 
receives a page copy, it updates its 
PTable along with its probowner 
field with “self” and changes access 
to “read”. 

Write Operation: Write 
operation also works the same as 
the read operation, except 
invalidating pages according to the 
copy set. Two processes are 
involved in each write operation. 
One is write fault handler (which 
requests for the write access) and 
the other is write server (which is 
specified in the probowner field). 
For write access, fault handler 
requests to a process mentioned by 
the probowner field. If write server 
is the true owner of the requested 
page, then it needs to do the 
following operations: 
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1) Change access to “nill” in its 
PTable. 
2) Send page and page copy set to 
the faulting process. 
3) Add requested process into the 
probowner field of its PTable. 

If the write server is not the true 
owner of the requested page, it 
forwards the request to the process 
mentioned in the probowner field of 
its PTable. It also updates its 
probowner field with the requested 
node. When faulting process 
receives the page copy; firstly, it 
invalidates all copies from the copy 
set. 

III. Formal Specification 
In Dynamic Distributed 

Manager algorithm of shared virtual 
memory, there are synchronized 
processes that have been discussed 
previously. The current study 
cultivates models for every 
synchronized process. It practices 
the UPPAAL tool suit [13], [14] for 
modelling these processes. 
Modelling the Dynamic Distributed 
Manager algorithm of shared virtual 
memory turned out to be suitable in 
definite situations Structures of 
UPPAAL with broadcast 
frequencies and dedicated positions 
let broadcast communication being 
categorized as the atomic 
arrangement of identical process 
organizations. The foremost 

apprehension investigated in this 
paper is to demonstrate the formal 
analysis of [1] through the use of 
UPPAAL. It delivers a complete 
examination of numerous protocol 
varieties in relation to the 
verification of complete functional 
requirements. 

Let us discuss the summary of 
prescribed requirements in the 
toolset UPPAAL and the formalism 
which is castoff in the prescribed 
requirement of the Dynamic 
Distributed Manager algorithm. For 
demonstrating Dynamic Distributed 
Manager algorithm in UPPAAL, 
two local processes were generated 
along with a manager. These 
processes request as well as serve 
all pages and generate both the read 
and write requests. These processes 
perform the following tasks: 
1. Generate a read fault. 
2. Handle a read fault request. 
3. Forward a read request to 
probowner. 
4. Generate a write fault. 
5. Handle a write fault request. 
6. Forward a write request to 
probowner. 
7. Invalidate pages upon giving up 
ownership. 

A process named as invalidate-
process was modeled to address all 
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the requests from all the processes 
when they want to invalidate the 
old copies of pages. Essentially, the 
invalidate-process behaves like a 
buffer to process requests one by 
one. A process invalidates pages 
according to the copy set, while 
transferring the ownership of a 
page. It shows that a page is going 
to be updated and previously used 
copies of that page are invalidated. 
A process gets the updated copy of 
a page by generating a read fault 
request. 

IV. Results and Discussion 
The prescribed analysis of the 

Dynamic Distributed Manager 
algorithm is presented in [14]. The 
specification of this distributed 
algorithm in an automaton theoretic 
formalism is formalized and 
functional requirements are 
verified. 

A. Functional Requirements  
The algorithm has the following 

functional requirements for formal 
analysis and formal verification.  
[R1] : Deadlock freedom. No 
deadlock is supposed to be there 
when any process requests for the 
read or write page in the system. 
System does not hang while anyone 
requests for read, write, or 
broadcast invalidate request. 
[R2] : Any process can get the read 
access of any page. 

[R3] : Any process can get the write 
access of any page. 
[R4] : When a process requests for 
the read page, then it must get the 
read access of the page. The true 
owner of the page must send the 
page copy to the requested process. 
[R5] : When a process requests for 
the write page, then it must get the 
write access of the page. The true 
owner of the page must send the 
page write access to the requested 
process. 

B. Formal Specification of the 
Requirements  
The principal requirement is 

that system does not contain any 
deadlock. According to the 
requirement, there is no valid 
deadlock in the system. The model 
must be deadlock free. So, the 
query to verify this requirement is 
given below. 
• A [] not deadlock 

The query says that for all paths 
and states, there is no deadlock. In 
the query, ‘A’ represents all paths 
and ‘[]’ represents all states. Any 
process in the system can get the 
read access of any page, indicating 
that any process can send read 
request for any page. Then, the true 
owner of the page sends the page 
access to the process page.  
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The query to verify R2 is given 
below. 
• E<> forall (i:pro_id_t) forall 
(j:page_id_t) 
Process(i).PTable[j][1]==1 

This query uses nested loop. 
The outer loop is for the process 
and the inner loop is for the page. 
The query checks the read access 
from the PTable. It verifies the read 
access for all pages under each 
process. As described earlier, Index 
1 shows the page access value, 
where 0, 1, and 2 represent the nil, 
read, and write access, respectively. 

Any process in the system can 
get the write access of any page. 
Similarly, any process can send the 
write request for any page. The true 
owner of the page sends the page 
for the write access to the 
requesting process. The query to 
verify R3 is given below. 
• E<> forall (i:pro_id_t) forall 
(j:page_id_t) 
Process(i).PTable[j][1]==2.  

In the query, ‘E’ represents 
‘some path’ and ‘<>’ represents 
‘some state’. This query is similar 
to the query in R2, except it checks 
the write access. For the write 
access, the value of Index 1 in 
PTable must be equal to 2. When 
the process requests to read a page, 
it must get the read access of that 
page. So, according to this 

requirement, when a process 
requests to read a page , i.e., it is at 
the readFault state then it is 
supposed to reach the Ideal state, 
eventually.. The formula of R4 
requirement is given below. 
• Process (1). ReadFault --> 
Process(1). Ideal 

According to the R4 
requirement, when Process (1) 
reaches the readFault state, it 
definitely goes back to the ideal 
state. When the process requests for 
a write page, it must get the write 
access of that page. So, according 
to this requirement, when a process 
requests to write a page, the 
process goes to the writeFault state 
and eventually reach to the Ideal 
state. The formula of R5 
requirement is given below. 
• Process (1).writeFault --> 
Process(1). Ideal 

According to R5, when the 
Process (1) reaches the writeFault 
state it definitely goes back to the 
ideal state. 

C. Verification Results   
The current model was verified 

with respect to the given functional 
requirements and the results are 
shown below in Table 1. The 
technique of verifying a model 
using timed automata is applied in 
the same way [15]. An algorithm 
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with 3 processes and 8 pages is 
modelled.  

Table I 
Verification Results 

Requirements Results Time Memory 
R1 Satisfied 19h25s 2.16GB 
R2 Satisfied 0.046 102MB 
R3 Satisfied 0.001s 29.16MB 
R4 Satisfied 11.032s 100MB 
R5 Satisfied 13.172s 102MB 

The current authors faced some 
serious challenges related to 
machine power in verifying and 
validating these requirements. 
Firstly, it was executed on a 
machine with the specification, 
Windows 10, 8GB RAM, and Core 
i5 7th generation. On this machine, 
the model was executed for 20 
minutes and then it crashed due to 
the state space problem. This query 
was also executed on MacBook 
2016 with 16 GB RAM, where it 
ran for around 4 hours and then 
crashed. So, its execution on a 
more powerful machine is needed 
to verify this requirement. The 
other four requirements were 
satisfied with 2 processes and 2 
pages. The results are presented in 
Table I, where the time needed to 
verify a requirement and the 
memory used are shown. 
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