
UMT Artificial Intelligence Review (UMT-AIR)
Volume 2 Issue 2, Fall 2022
ISSN(P): 2791-1276 ISSN(E): 2791-1268
Homepage: https://journals.umt.edu.pk/index.php/UMT-AIR

Article QR

A publication of
Department of Information System, Dr. Hasan Murad School of Management

University of Management and Technology, Lahore, Pakistan

Title: Formal Analysis of Distributed Shared Memory Algorithms

Author (s): Muhammad Atif1, Mudasser Naseer2, Ahmad Salman Khan3

Affiliation (s):
1The University of Lahore, Pakistan
2Higher Colleges of Technology, UAE.
3The University of Lahore, Pakistan.

DOI: https://doi.org/10.32350.umt-air.22.02

History: Received: October 30, 2022, Revised: November 25, 2022, Accepted: December 12, 2022

Citation:
M. Atif, M. Naseer, and A. S. Khan, “Formal analysis of distributed shared
memory algorithms,” UMT Artif. Intell. Rev., vol. 2, no. 2, pp. 00–00, 2022,
doi: https://doi.org/10.32350.umt-air.22.02

Copyright: © The Authors

Licensing: This article is open access and is distributed under the terms of
Creative Commons Attribution 4.0 International License

Conflict of
Interest: Author(s) declared no conflict of interest

https://journals.umt.edu.pk/index.php/UMT-AIR
https://doi.org/10.32350.umt-air.22.02
https://doi.org/10.32350.umt-air.22.02
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

23 Department of Information Systems
Volume 2 Issue 2, Fall 2022

Formal Analysis of Distributed Shared Memory Algorithm
Muhammad Atif1* , Mudassar Naseer1 and Ahmad Salman Khan2

1Department of Computer Science and Information Technoloy, The Uiversity of
Lahore, Pakistan

2Department of Software Engineering, The Uiversity of Lahore, Pakistan

Abstract—The memory coherence
problem occurs while mapping
shared virtual memory in a loosely
coupled multiprocesses setup.
Memory is considered coherent if a
read operation provides the same
data written in the last write
operation. The problem has been
addressed in the literature using
different algorithms, although the
correctness of a distributed
algorithm remains questionable.
Formal verification is the principal
term for a group of techniques that
routinely use an analysis established
on mathematical transformations to
conclude the rightness of the
hardware or software behavior in
divergence to dynamic verification
techniques. The current study
employed UPPAAL model checker
to model the Dynamic Distributed
algorithm for shared virtual
memory given by K. Li and P.
Hudak. The results showed that the
Dynamic Distributed algorithm for
shared virtual memory partially
fulfils its functional requirements.

Index Terms—distributed
algorithm, formal specification,
verification, shared memory, virtual
memory

I. Introduction
The idea of virtual memory

becomes inevitable/indispensable
when a system requires more
memory than installed. Virtual
memory comprises the usage of
other than the main memory as the
main memory. In shared virtual
memory, physically separated
memories (on the network) are
shared among the processes
connected through a loosely
coupled fashion. Different
processes may use shared virtual
memory like the traditional virtual
memory, as shown in Figure 1.

This paper investigates the
Dynamic Distributed Memory
Management algorithm given in [1],
where other approaches, such as
centralized manager, fixed, and
broadcast are also given.
Implementing the centralization
algorithm becomes challenging
when all of the traffic passes
through a central manager for each
type of page fault. An algorithm
appears to have the best required
results a namely the Dynamic
Distributed Manager algorithm.

Corresponding Author: muhammad.atif@cs.uol.edu.pk

mailto:muhammad.atif@cs.uol.edu.pk

Formal Analysis of Distributed...

24 UMT Artificial Intelligence Review
 Volume 2 Issue 2, Fall 2022

The Dynamic Distributed
Manager algorithm is
comparatively better than other
algorithms, when there are a lot of
page faults and network traffic
needs to be managed in an efficient
manner. The performance of this
algorithm shows that it is
probable/possible to implement it
on a huge scale multiprocessor.
However, the functional
requirement of this algorithm needs
to be verified by using formal
methods [2], [3]. Formal Method is
a standard word/term for system
scheme [4], investigation, and
application methods designated and
used with scientific precision [5],
[6].

Fig. 1. Shared virtual memory [1]

II. Literature Review
In [7], Venkateswarlu

Chennareddy et al. verified a weak
consistency model of distributed
shared memory. CADP

(Construction and Analysis of
Distributed Processes) toolbox was
used to design and implement the
model. In [5], Johan. B et al.
modeled the memory management
system of virtual memory with
MSVL tool. Memory management
system is formalized via MSVL
(Modeling Simulation and
Verification Language) using the
Model Checking (MC) approach.
This approach is applied to verify
the perfection, delay linked
properties and regular repeated
properties. Munez et al. presented
the formal verification of a
sequentially consistent memory
model, where low level functions
are considered as sequential [5]. In
[5], Kim G. Larsen et al. performed
model checking using UPPAAL
and verified the audio protocol.
Several researchers have described
the importance of structures in
UPPAAL for model checking [8]–
[10]. Another integration of formal
verification through Cyber-Physical
Systems (CPS) design process is
presented in the literature. It
consists of executing the
transformation of AADL
(Architecture Analysis and Design
Language) models and represents
them in timed automata. This
approach was analyzed through
model checking [11].

In [12], the authors introduce
DSMC (Deep Statistical Model

Atif et al.

25 Department of Information Systems
Volume 2 Issue 2, Fall 2022

Checking) to
MECHATRONICUML, which is
labelled as DSML (Domain
Specific Model Checking) for the
cyber physical systems.

III. Memory Coherence Problem
A single address space is shared

by several processes in a shared
virtual memory on the network, as
shown in Figure 1. All processes
are allowed to directly access any
memory address in the address
space. Memory Mapping Manager
controls the implementation of
mapping between shared virtual
memory address space and local
memories. Major responsibilities of
a manager include to protect the
system from the memory coherence
problem. Its prevention is necessary
to ensure that a read operation value
on all processes remains the same
as the most recent write operation.

Address spaces of shared virtual
memory are divided into pages.
Pages are a point to a memory
block. Multiple copies of a page
may exist over a network as read
only however, for writing a page, it
is assumed that there’s only one
copy and all other copies are
invalidated.. Memory Mapping
Manager scans the local memory as
well as the address spaces of
attached processes from the shared
virtual memory cache. A page fault
occurs due to memory reference

when the page memory location is
not in the current physical memory
of the process. So, in case of a page
fault, memory manager rescues the
page. It gets a page from the disk or
via any other process. If another
process has copies of the faulting
memory page reference, then the
manager needs to put in some effort
to maintain memory coherence. The
memory coherence problem might
be encountered as these algorithms
maintain the memory. A shared
virtual memory on loosely coupled
systems has no shared memory in
physical form and the
communication budget between the
processes is non-trivial.

A. Dynamic Distributed Memory
Management

Dynamic Distributed algorithm
is a type of Distributed Manager
algorithms in which tasks are
divided among individual
processes. In this algorithm, every
process has its local table for
maintaining the ownership of all
pages, which is known as PTable.
This PTable has five columns
namely page ID, access field, copy
set, probowner, and lock field [13].
i. Page ID is the unique ID of
page.
ii. Access field shows the page
accessibility roles, that is, either
read or write.

Formal Analysis of Distributed...

26 UMT Artificial Intelligence Review
 Volume 2 Issue 2, Fall 2022

iii. Copy set contains the IDs of the
processes having the copies of the
page.
iv. Probowner means a the possible
owner of a page.
v. Lock field is used to avoid the
race condition between/among
processes demanding the same
page.

In this algorithm, probowner is
set in a way that there remains no
loop for pointing it out. For
example, it is not possible that a
node A says that probowner is the
node B or the node B says that
probowner is the node A.

In this protocol, every node
sends requests to its probowner. If
probowner is the actual owner then
it replies back. Otherwise, it
forwards the request to probowner.
Eventually, a page is served by the
actual owner.

Read Operation: Two processes
are involved in each read operation.
One is read fault handler (which
comprises the request for read
access) and the other is read server
(which is specified in the
probowner field). For read access,
fault handler requests a process
mentioned by the probowner field.
If read server is the true owner of
the requested page, then it needs to
do the following operations:

i. Add itself to the copy set of the
requested page.
ii. Change access to “Read” in its
PTable.
iii. Send page and page copy set to
faulting process.
iv. Add faulting process into the
probowner field of its PTable.

If read server is not the true
owner of the requested page, then it
forwards the request to the process
mentioned in the probowner field of
its PTable. It also updates its
probowner field with the requested
node. Every time a faulting process
receives a page copy, it updates its
PTable along with its probowner
field with “self” and changes access
to “read”.

Write Operation: Write
operation also works the same as
the read operation, except
invalidating pages according to the
copy set. Two processes are
involved in each write operation.
One is write fault handler (which
requests for the write access) and
the other is write server (which is
specified in the probowner field).
For write access, fault handler
requests to a process mentioned by
the probowner field. If write server
is the true owner of the requested
page, then it needs to do the
following operations:

Atif et al.

27 Department of Information Systems
Volume 2 Issue 2, Fall 2022

1) Change access to “nill” in its
PTable.
2) Send page and page copy set to
the faulting process.
3) Add requested process into the
probowner field of its PTable.

If the write server is not the true
owner of the requested page, it
forwards the request to the process
mentioned in the probowner field of
its PTable. It also updates its
probowner field with the requested
node. When faulting process
receives the page copy; firstly, it
invalidates all copies from the copy
set.

III. Formal Specification
In Dynamic Distributed

Manager algorithm of shared virtual
memory, there are synchronized
processes that have been discussed
previously. The current study
cultivates models for every
synchronized process. It practices
the UPPAAL tool suit [13], [14] for
modelling these processes.
Modelling the Dynamic Distributed
Manager algorithm of shared virtual
memory turned out to be suitable in
definite situations Structures of
UPPAAL with broadcast
frequencies and dedicated positions
let broadcast communication being
categorized as the atomic
arrangement of identical process
organizations. The foremost

apprehension investigated in this
paper is to demonstrate the formal
analysis of [1] through the use of
UPPAAL. It delivers a complete
examination of numerous protocol
varieties in relation to the
verification of complete functional
requirements.

Let us discuss the summary of
prescribed requirements in the
toolset UPPAAL and the formalism
which is castoff in the prescribed
requirement of the Dynamic
Distributed Manager algorithm. For
demonstrating Dynamic Distributed
Manager algorithm in UPPAAL,
two local processes were generated
along with a manager. These
processes request as well as serve
all pages and generate both the read
and write requests. These processes
perform the following tasks:
1. Generate a read fault.
2. Handle a read fault request.
3. Forward a read request to
probowner.
4. Generate a write fault.
5. Handle a write fault request.
6. Forward a write request to
probowner.
7. Invalidate pages upon giving up
ownership.

A process named as invalidate-
process was modeled to address all

Formal Analysis of Distributed...

28 UMT Artificial Intelligence Review
 Volume 2 Issue 2, Fall 2022

the requests from all the processes
when they want to invalidate the
old copies of pages. Essentially, the
invalidate-process behaves like a
buffer to process requests one by
one. A process invalidates pages
according to the copy set, while
transferring the ownership of a
page. It shows that a page is going
to be updated and previously used
copies of that page are invalidated.
A process gets the updated copy of
a page by generating a read fault
request.

IV. Results and Discussion
The prescribed analysis of the

Dynamic Distributed Manager
algorithm is presented in [14]. The
specification of this distributed
algorithm in an automaton theoretic
formalism is formalized and
functional requirements are
verified.

A. Functional Requirements
The algorithm has the following

functional requirements for formal
analysis and formal verification.
[R1] : Deadlock freedom. No
deadlock is supposed to be there
when any process requests for the
read or write page in the system.
System does not hang while anyone
requests for read, write, or
broadcast invalidate request.
[R2] : Any process can get the read
access of any page.

[R3] : Any process can get the write
access of any page.
[R4] : When a process requests for
the read page, then it must get the
read access of the page. The true
owner of the page must send the
page copy to the requested process.
[R5] : When a process requests for
the write page, then it must get the
write access of the page. The true
owner of the page must send the
page write access to the requested
process.

B. Formal Specification of the
Requirements
The principal requirement is

that system does not contain any
deadlock. According to the
requirement, there is no valid
deadlock in the system. The model
must be deadlock free. So, the
query to verify this requirement is
given below.
• A [] not deadlock

The query says that for all paths
and states, there is no deadlock. In
the query, ‘A’ represents all paths
and ‘[]’ represents all states. Any
process in the system can get the
read access of any page, indicating
that any process can send read
request for any page. Then, the true
owner of the page sends the page
access to the process page.

Atif et al.

29 Department of Information Systems
Volume 2 Issue 2, Fall 2022

The query to verify R2 is given
below.
• E<> forall (i:pro_id_t) forall
(j:page_id_t)
Process(i).PTable[j][1]==1

This query uses nested loop.
The outer loop is for the process
and the inner loop is for the page.
The query checks the read access
from the PTable. It verifies the read
access for all pages under each
process. As described earlier, Index
1 shows the page access value,
where 0, 1, and 2 represent the nil,
read, and write access, respectively.

Any process in the system can
get the write access of any page.
Similarly, any process can send the
write request for any page. The true
owner of the page sends the page
for the write access to the
requesting process. The query to
verify R3 is given below.
• E<> forall (i:pro_id_t) forall
(j:page_id_t)
Process(i).PTable[j][1]==2.

In the query, ‘E’ represents
‘some path’ and ‘<>’ represents
‘some state’. This query is similar
to the query in R2, except it checks
the write access. For the write
access, the value of Index 1 in
PTable must be equal to 2. When
the process requests to read a page,
it must get the read access of that
page. So, according to this

requirement, when a process
requests to read a page , i.e., it is at
the readFault state then it is
supposed to reach the Ideal state,
eventually.. The formula of R4
requirement is given below.
• Process (1). ReadFault -->
Process(1). Ideal

According to the R4
requirement, when Process (1)
reaches the readFault state, it
definitely goes back to the ideal
state. When the process requests for
a write page, it must get the write
access of that page. So, according
to this requirement, when a process
requests to write a page, the
process goes to the writeFault state
and eventually reach to the Ideal
state. The formula of R5
requirement is given below.
• Process (1).writeFault -->
Process(1). Ideal

According to R5, when the
Process (1) reaches the writeFault
state it definitely goes back to the
ideal state.

C. Verification Results
The current model was verified

with respect to the given functional
requirements and the results are
shown below in Table 1. The
technique of verifying a model
using timed automata is applied in
the same way [15]. An algorithm

Formal Analysis of Distributed...

30 UMT Artificial Intelligence Review
 Volume 2 Issue 2, Fall 2022

with 3 processes and 8 pages is
modelled.

Table I
Verification Results

Requirements Results Time Memory
R1 Satisfied 19h25s 2.16GB
R2 Satisfied 0.046 102MB
R3 Satisfied 0.001s 29.16MB
R4 Satisfied 11.032s 100MB
R5 Satisfied 13.172s 102MB

The current authors faced some
serious challenges related to
machine power in verifying and
validating these requirements.
Firstly, it was executed on a
machine with the specification,
Windows 10, 8GB RAM, and Core
i5 7th generation. On this machine,
the model was executed for 20
minutes and then it crashed due to
the state space problem. This query
was also executed on MacBook
2016 with 16 GB RAM, where it
ran for around 4 hours and then
crashed. So, its execution on a
more powerful machine is needed
to verify this requirement. The
other four requirements were
satisfied with 2 processes and 2
pages. The results are presented in
Table I, where the time needed to
verify a requirement and the
memory used are shown.

Acknowledgement
We acknowledge the

anonymous reviewers who helped
us to improve this article. We are

also thankful to the University of
Lahore for providing research
facilities.

References
[1] P. Hudak and K. Li, “Memory

coherence in shared virtual
memory systems,” ACM Trans.
Comput. Sys., vol. 7, no. 4, pp.
321–359, Nov. 1989, doi:
https://doi.org/10.1145/75104.7
5105

[2] C. Baier and J.P. Katoen,
Principles of model checking,
MIT Press Cambridge, 2008.

[3] E. M. Clarke and J. M. Wing,
“Formal methods: State of the
art and future directions,” ACM
Comput. Sur., vol. 28, no. 4, pp.
626–643, Dec. 1996, doi:
https://doi.org/10.1145/242223.
242257

[4] N. Ibrahim and I. Khalil,
“Verifying web services
compositions using Uppaal,” in
Proc.1st IEEE Int. Conf.
Comput. Sys. Indust. Inform.,
Sharjah, UAE, Dec. 18–20,
2012, doi:
https://doi.org/10.1109/ICCSII.
2012.6454365

[5] J. Bengtsson, W. O. D.
Griffioen, K. J. Kristoffersen,
K. G. Larsen, F. Larsson, P.
Pettersson, and W. Yi,
“Verification of an audio
protocol with bus collision

https://doi.org/10.1145/75104.75105
https://doi.org/10.1145/75104.75105
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/242223.242257
https://doi.org/10.1109/ICCSII.2012.6454365
https://doi.org/10.1109/ICCSII.2012.6454365

Atif et al.

31 Department of Information Systems
Volume 2 Issue 2, Fall 2022

using uppaal,” in Proc.
Comput. Aid. Verific. 8th Int.
Conf., CAV'96 New
Brunswick, USA, July 31–
August 3, 1996, pp. 244–256.

[6] A. Blanchard, N. Kosmatov, M.
Lernerre and F. Loulergue, “A
Case Study on Formal
Verification of the Anaxagoros
Hypervisor Paging System with
Frama-C,” in Proc. FMICS
Formal Meth. Indus. Critic.
Sys. 20th Int. Work., Oslo,
Norway, June 22–23, 2015,
pp.15–30.

[7] V. Chennareddy and J. K.
Deka, “Formally Verifying the
Distributed Shared Memory
Weak Consistency Models,” in
Proc. Int. Conf. Adv. Comput.
Commun., Mangalore, India,
Dec. 20–23, 2006, pp. 455–460,
doi:
https://doi.org/10.1109/ADCO
M.2006.4289935

[8] A. F. G. David, K. G. Larsen,
A. Legay, M. Mikucionis, and
D. B. Poulsen, “Uppaal smc
tutorial,” Int. J. Softw. Tools.
Technol. Transfer., vol.17, pp.
397–415, 2014, doi:
https://doi.org/10.1007/s10009-
014-0361-y

[9] D. Fabian and R. Marik,
“Configuration dynamics
verification using Uppaal,” in

Proc. 15th Int. Config. Works.,
Vienna, Austria, August 29–30,
2013, pp. 35–42.

[10] Y. Fei, H. Zhu, and X. Li,
“Modeling and verification of
nlsr protocol using uppaal.” in
Proc. Int. Symp. Theor. Aspec.
Soft. Eng., Guangzhou, China,
Aug. 29–31, 2018, pp. 108–
115, doi:
https://doi.org/10.1109/TASE.2
018.00022

[11] F. S. Gonçalves, D. Pereira,
E. Tovar, and L. B. Becker,
“Formal Verification of AADL
Models Using UPPAAL,” in
Proc. VII Braz. Symp. Comput.
Sys. Eng., Curitiba, PR, Brazil,
Nov. 6–10, 2017, pp. 117–124,
doi:
https://doi.org/10.1109/SBESC.
2017.22

[12] C. Gerking, S. Dziwok, C.
Heinzemann, and W. Schäfer,
“Domain-specific model
checking for cyber-physical
systems,” in Proc. 12th Work.
Model-Driven Eng., Verific.
Valid., Ottawa, Canada, 2015,
pp. 18–27.

[13] P. Bulychev, et al.,
“Uppaal-smc: Statistical model
checking for priced timed
automata,” in Proc. Workshop
Quanti. Aspec. Program. Lang.
Sys., 2012, pp. 1–16, doi:

https://doi.org/10.1109/ADCOM.2006.4289935
https://doi.org/10.1109/ADCOM.2006.4289935
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1109/TASE.2018.00022
https://doi.org/10.1109/TASE.2018.00022
https://doi.org/10.1109/SBESC.2017.22
https://doi.org/10.1109/SBESC.2017.22

Formal Analysis of Distributed...

32 UMT Artificial Intelligence Review
 Volume 2 Issue 2, Fall 2022

https://doi.org/10.48550/arXiv.
1207.1272

[14] K. G. Larsen, P. Pettersson,
and W. Yi, “Uppaal in a
nutshell.” Int. J. Softw,” Tools
Technol. Trans., vol. 1, no. 1,
pp. 134–152, 1997.

[15] S. Wimmer and P.
Lammich, “Verified model
checking of timed automata,” in
Proc. Tools Algor. Construc.
Anal. Syst., 2018, pp. 61–78,
doi:
https://doi.org/10.1007/978-3-
319-89960-2_4

https://doi.org/10.48550/arXiv.1207.1272
https://doi.org/10.48550/arXiv.1207.1272
https://doi.org/10.1007/978-3-319-89960-2_4
https://doi.org/10.1007/978-3-319-89960-2_4

	A. Dynamic Distributed Memory Management
	The prescribed analysis of the Dynamic Distributed Manager algorithm is presented in [14]. The specification of this distributed algorithm in an automaton theoretic formalism is formalized and functional requirements are verified.

	A. Functional Requirements
	B. Formal Specification of the Requirements
	C. Verification Results

