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ABSTRACT Currently, numerous healthcare physicians are having hitches detecting
diabetic retinopathy early in patients. This disease's primary warning indications are
challenging to detect. A clear-cut instruction technique is compulsory to detect this
condition timely. Deep learning is one method to use for this purpose. This work used a
particle swarm optimization (PSO) technique to select the optimal Diabetic Retinopathy.
Applying deep learning with particle swarm optimization (PSO) resulted in a 73.11%
increase in outcome. This VGG19 model exhibits training and validation losses of 0.755
and 0.7151, respectively. VGG19 shows the finest simplification capability, as realized
since the minor variance among training and validation victims. This model realizes
steadily on together training and hidden data.

INDEX TERMS Diabetic Retinopathy, Deep learning, Classification, VGG19, Particle

Swarm Optimization (PSO), Inception v3, MobileNetV3

I. INTRODUCTION

Diabetes is a sickness that affects 463
million persons aged 20 to 79. Diabetes is
among the the ten most common reasons of
death among deceased individuals these
days. In this illness, the pancreas is
incapable to produce sufficient insulin
hormone or is unable to use the insulin
hormone sufficiently, consequentially
raising blood sugar levels in the body.
Analyzing World Health Organization’s
(WHO) estimations, one uncovers that
diabetes destroyed 1.6 million persons in
2015 [1], with Indonesia having the highest
percentage of this disease in the Asia-
Pacific. High plasma sugar stages are a
significant feature of this chronic, incurable
condition triggered by insulin
manufacturing problems. Type 2 diabetes,
also identified as non-insulin-dependent
diabetes mellitus, is extremely common in

various countries and frequently affects
persons aged 30 to 60. This disease is
mostly caused by an unnatural lifestyle [2].

Diabetes can take a severe toll on a person’s
life if not diagnosed and treated early.
Examples contain  pancreatic = harm,
outlying vascular illness, cardiovascular
failure, renal failure, blindness, and weight
damage [3]. Diabetes retinopathy remains
as the lone diabetes that was exposed to be
the cause of blindness. Insulin levels in the
blood rise, fetching the root of diabetic
retinopathy, a chronic disease that needs
crucial treatment to avoid blindness. The
patient's primary diabetic retinopathy spine
not directly root blindness [4]. Medicinal
professionals and technical studies
normally decide that premature diagnosis
raises the chances of recovery [5]. In view
of this, early detection of diabetic
retinopathy is critical for depressing the
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risk of blindness. Several specialists have
conducted studies to detect diabetic
retinopathy at its primary stage.

II. LITERATURE REVIEW

To contextualize our research study, we
examined a variety of articles on topics
such as diabetic retinopathy, deep learning
algorithms, machine learning techniques,
image processing, illness forecasts, and
further. In 2014, B. A. Hajdu and Antal did
a remarkable study that assisted us greatly.
This work intensive on the messidor dataset
and employed machine learning classifiers
to reach ensemble learning [6]. Applying
different algorithmic approaches, such as
neural networks, fuzzy C-means, and
multilayer preceptor [7], other researchers,
notably Herliana in 2016, reduced the
procedure by implementing the
Correlation-based Elements Determination
(CFS) [8]. Research from 2016 suggested
excellent precision in categorizing Pap
Smear individual cells, emphasizing the
significance of feature selection in boosting
model performance [9]. Diabetic
retinopathy was a serious complication of
diabetes that must be identified and
addressed early to prevent loss of vision
[10].

Author proposed the study asserts that a
fully associated network can be efficiently
applied for noticing diabetic retinopathy, to
get hopeful results for initial diagnosis,
assisting in better recognition of the disease

[L1].

Author proposed PSO demonstrates to
remain an active tool for feature range in
retinal image organization, smoothing
better presentation and abridged resource
feasting in diabetic retinopathy detection
[12].

An author proposed in their study that
MobileNet delivers a lightweight, however,
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actual solution for correctly classifying skin
injuries, making it apposite for mobile and
resource-constrained strategies [13].

Another paper proposes the practice of
MobileNet for finding apple leaf ailments.
The study achieves that MobileNet
proposes a highly effective and precise
solution for noticing numerous apple leaf
ailments, making it appropriately aimed at
mobile applications and actual agricultural
disease checking [14]. An author proposed
in their paper, a technique for detecting
potato leaf ailments with the Inception V3
NN model. The study achieves that
Inception V3  efficiently identifies
numerous potato leaf diseases by high
accuracy, presenting a reliable key for
farming disease supervision [15].

III. RESEARCH METHODOLOGY
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A. DATASET DETAIL AND SPLIT
OPTION

The dataset composes of images from five
unique classes: “Mild, No DR , Moderate,
Serve and Proliferate Dr”. these images
were customized t0 128x128 pixels. The
dataset was spontaneously divided into
testing (20%) and training (80%) set to
assess model efficiency. The dataset
comprised of images from five unique
classes: “Mild, No_DR, Moderate, Serve
and Proliferate Dr”. These images were
customized t0 128x128 pixels. The dataset
was spontaneously divided into testing
(20%) and training (80%) set to assess the
model efficiency.

B. DEEP LEARNING MODELS

There are three unique deep learning
models that were chosen for extraction and
grouping. VGG19: a model that was
previously trained using the ImageNet
dataset. The data defrosted for 10 years to
be approved for improvement.
InceptionV3: it was another pre-trained
model extracted by the image net dataset.
There were last five unique layer were
defrosted enhancement. Mobile Net: they
were non-essential model under processes
for last 10 year defrosted for improvement.
Each subsequent model was trained by
adapted construction where spatial global
aggregation layer and entirely linked
subsequent layer were included to process

IV. RESULT

dimension reduction through a unique
softmax yield level for categorizing five
unique classes. After learning, the models
produced output forecasts, representing the
categorization of diabetic retinopathy
pictures into one of five categories. To
improve the accuracy of classification, the
Particle Swarm Optimization (PSO)
technique was applied to tune each model's
parametric variables. PSO was utilized to
optimize every model's hyper parameters,
namely the learning rate and batch size. The
swarm found the optimal combination of
these features to maximize accuracy in
validation and therefore improve model
performance.

C. PSO

Using particle swarm optimization, I
identified the batch size and learning rate,
and we then fitted three models MobileNet,
VGGI19 and InceptionV3 and the accuracy
were obtained.

PSO modified these parameters, leading to
enhanced efficiency throughout all three
models. Following the optimisation
procedure, the resulting models were
checked for correctness on the test data.
Performance indicators like accuracy,
recall, and F1 score for each class were
calculated to determine how successfully
the models generalized to previously
encountered data.

TABLE I
INCEPTION V3
Class No DR Mild Moderate Severe Proliferate DR
Precision 91% 29% 49% 17% 19%
Recall 77% 47% 48% 28% 14%
F1 Score 83% 36% 48% 21% 16%

The table 1 demonstrates the Inception v3
model's ability to categorize different

phases of diabetic retinopathy (DR). The
framework works well in the No DR class,
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with a F1 rating of 83% and high accuracy
(91%). But it falls greatly during the phases
of  Moderate, Mild, Severe, and
Proliferative DR stages, when recall,
accuracy, and F1 scores are significantly
lower, particularly for Severe and
Proliferative DR (precisions reaching as

low as 17% and 19%, respectively). These
data indicate that, while the model is great
at recognizing healthy individuals, it fails to
distinguish between the extra severe and
serious stages of DR, possibly due to
overlying features or class disparity.
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FIGURE 2. Inception v3
TABLE II
MOBILENETV3
Class No DR Mild Moderate Severe Proliferate DR

Precision 98% 61% 48% 36% 52%
Recall 79% 12% 91% 48% 31%

F1 Score 87% 21% 63% 41% 38%
The above table 2 is meant for 63%, implies medium accuracy. But
MobileNetV3 in categorizing Diabetic efficiency suffers in the Proliferate DR,

Retinopathy (DR). It displays robust
performance designed for the No DR class,
by great precision (98%) and a decent F1
score (87%), representative of consistent
identification of well cases. In this
Moderate DR class, the simulation has a
high recall (91%), but an equal F1 rating of
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Mild, and Severe phases, when F1 scores
were short (38%, 21%, and 41%,
respectively), showing difficulties with
recognizing those phases, notably Mild DR,
that has a particularly poor recall (12%). It
demonstrates that the technique struggles to
recognize the initial stages and severe DR.
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FIGURE 3. Mobile net v3
TABLE III
VGG-19
Class No DR Mild Moderate Severe Proliferate DR

Precision 94% 59% 62% 39% 33%
Recall 97% 47% 68% 45% 25%
F1 Score 96% 52% 65% 42% 29%

In the above table 3, VGG-19 model
No DR class performs outstandingly in
detecting cases deprived of diabetic
retinopathy, by great precision (94%), and
F1 score (96%) and recall (97%). It is
actually consistent at classifying healthy
cases. Mild DR class: The model fails at
classifying mild cases of DR, showing
modest low recall (47%), precision (59%)
subsequently, a low F1 score (52%). It
frequently misses mild cases,
representative of difficulty in distinctive
early-stage DR. Moderate DR class VGG-
19 shows uncertain display in detecting
moderate DR, with precision (62%), recall

(68%) and a F1 mark of 65%. It achieves
relatively fine results but can be improved.
Severe DR class: The model underachieves
in noticing severe DR, with short precision
(39%) and recall (45%), leading to a F1
score of 42%. It fights to distinguish severe
cases from other phases. Proliferative DR
class: The model achieves unwell results in
classifying proliferative DR, with squat
precision (33%) and very stumpy recall
(25%), ensuing in a F1 score of 29%. It
frequently misclassifies these cases.
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TABLE IV
ACCURACY

Incepti  Mobile VGG
onV3 Net 19
Accuracy  58% 68% 74%

The combined accuracy of three distinct
models VGG19 (74%), MobileNet (68%)
and InceptionV3 (58%) shows that
VGG19 outdoes the other models in
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categorizing diabetic retinopathy phases,
reaching the uppermost accuracy.
MobileNet demonstrations moderate,
while InceptionV3 has the lowermost
accuracy, signifying its inability to
correctly classify the stages of diabetic
retinopathy. VGG19's higher accuracy
imitates its more reliable act across the
numerous DR classes, while InceptionV3
can need more refinement or data
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balancing to recover classification

accuracy.
V.CONCLUSION & FUTURE WORKS

VGG-19 provides outstanding results for
diagnosing diabetic retinopathy, with the
most accuracy (74%), and strong outcomes
across all severity levels. MobileNetV3
succeeds in No DR precision (98%) but
struggles with severe instances, whereas
Inception v3 shows strong initial detection
(f1 score 83% for No DR) but comes
behind in later phases such as
Proliferate DR (fl score 16%). More
enhancements must be made for severe DR
diagnosis.

As a result of addressing these future
research guidelines, we purpose to improve
and enlarge the applicability of the LSTM-
PSO model for Diabetic Retinopathy
classification, causal to developments in
medical imaging and deep learning
procedures collectively.
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