Use of Deep Learning in Early Software Bug Detection
Syed Mibran Hassan Zaidi* and Mustafa Latif

Department of Computer Science and Information Technology, NED University
of Engineering and Technology, Karachi, Pakistan

ABSTRACT Traditional defect prediction studies primarily rely on hand-crafted features
fed into Machine Learning (ML) classifiers to identify defective code. However, these
features frequently fail to capture the essential semantic and structural information of
programs and metric-based datasets, which are critical for accurate defect prediction. To
address these limitations, the current study introduced a comprehensive deep learning
pipeline for Software Defect Prediction (SDP) using multiple publicly-available datasets.
The study particularly focused on the integration of Convolutional Neural Networks (CNN)
and Random Forest classifiers. The datasets, representing different versions of software
projects, were loaded, concatenated, and preprocessed using a combination of
StandardScaler and OneHotEncoder. This preprocessing ensures the data is in a suitable
format for training models. The approach adopted by the current study involved building
and training a CNN model to capture semantic and structural features of the software data,
followed by a Random Forest model tuned through GridSearchCV for optimal
performance. Predictions from both models were combined using an ensemble method,
where a majority vote determined the final predictions. The accuracy, precision, recall, and
F1 score of this ensemble model were calculated to evaluate its performance. The
experimental results demonstrated that the ensemble model, leveraging the strengths of
both CNN and Random Forest classifiers, achieved high accuracy and F1 scores across
multiple datasets. This study highlighted the effectiveness of combining deep learning with
traditional ML techniques for SDP. This offered a robust framework to improve software
reliability and aid developers in order to identify potential bugs.

INDEX TERMS Convolutional Neural Networks (CNN), deep learning, early Software
Defect Prediction (SDP), Random Forest

I. INTRODUCTION reliability by helping developers identify
potential bugs and allocate testing
resources more efficiently. Traditional
defect prediction methods typically rely on
hand-crafted features that are entered into
ML classifiers to detect defective code.
However, these hand-crafted features often
fall short in capturing the essential semantic
and structural information of programs, as
well as metric-based datasets, which are
vital for accurate defect prediction.

Machine Learning (ML) techniques have
become integral in analyzing the data from
diverse perspectives. This offers critical
insights to the developers that enhance
software development processes. These
techniques have shown particular promise
in the realm of software bug prediction, a
crucial aspect of ensuring software
reliability.

Effective Software Defect Prediction

. . . To address these limitations, the current
(SDP) is essential to improve software ’ Y

study proposed a novel deep learning

*Corresponding Author: mibranhassan@gmail.com

Department of Information Systems

UMT 2

Volume 5 Issue 1, Spring 2025

mailto:mibranhassan@

Use of Deep Learning in Early Software...

pipeline designed for SDP, utilizing
multiple publicly-available datasets. The
approach involved a detailed evaluation of
various ML techniques, with a particular
focus on integrating Convolutional Neural
Networks (CNN) and Random Forest
classifiers. The datasets, representing
different versions of software projects,
were carefully loaded, concatenated, and
preprocessed using StandardScaler and
OneHotEncoder to prepare them for model
training.

The study built and trained a CNN model to
automatically extract semantic and
structural features from the software data
and optimize a Random Forest model
through GridSearchCV. The predictions
from these models were combined using an
ensemble method, where a majority vote
determined the final output. The
performance of this ensemble approach was
assessed based on accuracy and F1 score.
The results demonstrated that the ensemble
model, which leverages the strengths of
both CNN and Random Forest classifiers,
achieved high performance across multiple
datasets.

This research used deep learning to predict
software defects early, enhancing the
overall software quality and resource
allocation. It pioneers proactive defect
detection, optimizes testing efforts, and
integrates deep learning for informed
decision-making in software development,
fostering innovation and sustained
excellence. The ultimate goal was to
revolutionize the field by seamlessly
incorporating deep learning into software
development processes.

A. RESEARCH OBJECTIVES

The current study aimed to address the
following research objectives:

e Develop and implement deep learning

models that enable the early detection
of software defects during the
development lifecycle, minimizing the
impact on downstream processes.

e Optimize testing efforts by leveraging
deep learning algorithms to identify
and prioritize areas of the codebase
more prone to defects, allowing for
more targeted testing.

e Contribute to the optimization of
resource allocation in software
development by efficiently identifying
and addressing software defects early
in the development lifecycle.

B. RESEARCH QUESTIONS

The research sought to address the
following questions:
RQI1: How effective is the proposed

approach utilizing enhanced CNNs in
software bug detection compared to
traditional defect prediction models?

RQ2: To what extent does the integration of
deep learning techniques, specifically
CNNs, contribute to the accuracy and
efficiency of software bug prediction in
comparison to conventional ML methods?

RQ3: How does the proposed approach
perform in predicting defects across diverse
open-source software defect datasets, and
what insights can be drawn from its
performance in real-world scenarios?

In developing advanced software defect
detection through deep learning, ethical
considerations are paramount.
Transparency, privacy protection, and bias
mitigation are crucial in handling open-
source software defect datasets responsibly.
Adherence to ethical guidelines in data
collection, respecting consent and
anonymization, is vital. The choice of
evaluation metrics should prioritize
fairness, avoiding unintended

UMT Artificial Intelligence Review

24— UMT-AIRE)

Volume 5 Issue 1, Spring 2025

Zaidi and Latif

consequences. A rigorous ethical scrutiny

of the proposed model, particularly in real- user well-being.

commitment to responsible innovation and

world applications, underscores the
TABLEI
SKILLS AUDIT
Initial
Competence
Skills Skill Indicators Lewel Approach to Improve Competency

Programrming
Proficiency

Statistical
Knowiedge

Deep Learning
Algorithms

Deata
Preprocessing

Feature
Engineering

Model
Evaluation
Metrics

Domain
Knowledge

Albility to write efficient
code in Python

Understanding of
hypothesis testing and
probability theony
Proficiency in
classification and

regression algorthms

Ability to clean,
transform, and prepare
datasets

Skill in identifying and
enginesring relevant
features
Understanding of
precision, recall,
stc

Familiarity with software

developrment processes

II. LITERATURE REVIEW

Software

Archives
Instances
(1) Labeling i2) Feature
(buggy / clean) Extraction

FIGURE 1. Defect prediction

SDP is a process of predicting potentially
defective areas of code, which can help

Department of Information Systems

F1-score,

Intermediate

Intermediate

Intermediate

Intermediate

}:}._}

[3) Creating
Training Set

Engage in coding exercises, contribute to
open-source projects, and take advanced
programming Courses.

Enrall in online courses covering statistical
concepts, read relevant literature, and
practice statistical analysis.

Explore advanced Deep Leaming
algorithms, participate in Kaggle
competitions, and implement models on

diverse datasets.

Workl on real-world datasets, and practice
handling missing data, outliers, and
normalization techniques.

Study feabure enginesring techniques,
experiment with different combinations,
and understand domain-spedfic features.

Stay updated on new metri
implications, and implement them in model

ics, analyze their

ewvaluation.

Read |iterature on software engineering,
collaborate with industry professionals, and

gain practical experience in software
development.

Test
Instances

Training ;
Instances @
e

Bugpy or Clean

{4) Building Model
& Prediction

developers allocate their testing efforts by
first checking potentially buggy code [1].

Volume 5 Issue 1, Spring 2025

Use of Deep Learning in Early Software...

Defect prediction is essential to ensuring
reliability of today’s large-scale software.
Figure 2 presents a typical file-level defect
prediction process which is commonly
adopted in the literature [2]-[4]. As the
process shows, the first step is to collect
source code files (instances) from software
archives and label them as buggy or clean.
The labeling process is based on the
number of post-release defects of each file.
A file is labeled as buggy if it contains at
least one post-release bug. Otherwise, the
file is labeled as clean. The second step is
to extract features from each file. Many
traditional features have been defined in
past studies, which can be categorized into
two kinds: code metrics (e.g., McCabe
features [5] and CK features [6], and
process metrics (e.g., change histories). The
instances with the corresponding features
and labels are subsequently employed to
train predictive classifiers using various
ML algorithms, such as SVM, Naive
Bayes, and dictionary learning [2]. Finally,
new instances are fed into the trained
classifier, which may predict whether the
files are buggy or clean. The set of
instances used for building the classifier is
training set, while test set includes the
instances used for evaluating the learned
classifier. The current study focused on
within-project defect prediction, that is, the
training and test sets 319 belong to the same
project. Following the previous work in this
field [3], the current study used instances
from an older version of this project for
training, and instances from a newer
version for test.

CNNs are a specialized kind of neural
networks for processing that data that have
a known grid-like topology [7], such as
time-series data in 1D grid and image data
in 2D grid. CNNs have been demonstrated
successful in many practical fields,
including speech recognition [8], image

classification [9], [10] and Natural
Language Processing (NLP) [11].

SDP has garnered substantial attention in
recent years due to its critical role in
improving software quality and reliability.
Various methodologies have been explored
to enhance the accuracy and efficiency of
defect prediction.

ML has played a crucial role in software
bug prediction, with numerous studies
exploring this domain. However, it faces
limitations when dealing with large and
complex datasets. To address these
challenges, deep learning has emerged as a
potential solution. Despite its promise,
there has been relatively little research
focused specifically on using deep learning
for software bug prediction.

[12] introduced a new convolutional graph
neural network (GCNN) which leverages
the Abstract Syntax Tree (AST) of source
code for defect prediction, adapting to
various project sizes. This model
outperforms traditional approaches in AUC
and F-score, offering strong predictive
capabilities. [13]-[16] introduced a
framework for benchmarking classification
algorithms on software defect datasets.
This concluded that while their selected

algorithms offered good prediction
accuracy, there was no significant
difference in performance among the

various classifiers. This study, however,
did not cover the full spectrum of machine
learning techniques available for defect
prediction. Sharma and Jain [17] utilized
the WEKA tool to compare different
classification algorithms but did not
specifically apply these methods to
software bug prediction. Similarly, Kaur
and Pallavi [18] examined various data
mining techniques for defect prediction
without providing a comparative
performance analysis. Wang et al. [19]

UMT Artificial Intelligence Review

26— UMT-AIRE)

Volume 5 Issue 1, Spring 2025

Zaidi and Latif

focused exclusively on ensemble
classifiers, highlighting their potential but
not considering other ML methods. These
studies underscore a gap in comprehensive
comparative analyses of diverse ML
techniques in the context of software defect
prediction.

Historically, research has also delved into
the use of software metrics for defect
prediction. Chidamber and Kemerer [6]
demonstrated the suitability of software
metrics for defect prediction, while Basili et
al. [20] validated object-oriented design
metrics (OODM) for this purpose.
Gyimothy et al. [21] advanced this field by
using object-oriented metrics analysis to
enhance prediction performance. Singh and
Verma [22] argued for the use of design
metrics during the software development
lifecycle to enable early defect detection
and cost-effective development.

In exploring classification methods, [23]
proposed a polynomial function-based
neural network (pf-NN) model, combining
fuzzy C-means and genetic clustering
techniques to handle nonlinear parameters.
Despite these advances, clustering
techniques alone may not achieve optimal
III. METHODOLOGY

Vs S

|

Accuracy
Fl-Score
Precisian
Recall

FIGURE 2. Proposed model

Department of Information Systems

Volume 5 Issue 1, Spring 2025

'I Dataset)—> Preprocessing Da::al Spl.ltlngf Resize/Normalized
v aning Images
Metrics Calculation p——— Identify Potential Bugs _{

prediction performance. Various ML
algorithms, such as Naive Bayes (NB),
Support Vector Machines (SVM), and
Decision Trees (DTs), have been employed
to overcome these limitations. Elish et al.
[24] found that SVMs were highly effective
in defect detection as compared to other
models. Similarly, Shivaji et al. [25]
demonstrated that feature selection
methods could enhance NB classifiers'
performance. Dejaeger et al. [26]
highlighted that augmented NB classifiers
outperformed other models in terms of
ROC curve analysis. DT approaches, as
explored by [27], also showed promise,
while Singh and Verma [28] demonstrated
the effectiveness of multi-classifier
approaches combining SVM, NB, and
Random Forest (RF). Singh et al. [29]
further explored fuzzy rule-based
techniques, showing competitive results as
compared to traditional methods.

Recently, Yang et al. [30] applied deep
learning techniques to defect prediction,
utilizing deep belief networks on large
open-source projects to achieve significant
improvements in prediction accuracy.

Metrics Dataset

Train Classifier }~
Evaluate Classifier on
Test Set

Ensemble Learning
Technique

|

Conuolutional Neural Netwark
With
Random Forest

& UMT 7

The code involves a comprehensive deep
learning pipeline that processes multiple
datasets, trains models, and evaluates their
performance [31]. The code uses several

Python libraries for data manipulation,
model building, and evaluation, including
pandas, numpy, matplotlib, scikit-learn,
keras, and imblearn.

TABLE II
DATASET DESCRIPTION

Project Description Versions (Tr, T) | Avg. Files | Buggy Rate (%)
camel Enterprise integration framework 14, 1.6 892 18.6
jEdit Text editor designed for programmers 4.0, 4.1 284 238
lucene Text search engine library 20,22 210 55.7
xalan A library for transforming XML files 25,26 815 48.5
xerces XML parser 12,13 441 15.5
synapse Data transport adapters 1.1,12 239 30.5

poi Java library to access Microsoft format files 25,30 409 64.7

Seven pairs of CSV files, each representing
different versions of software projects
(Camel, JEdit, Lucene, POI, Synapse,
Xalan, Xerces), were used. These files were
read, combined, and processed [32].

A. MODEL TRAINING AND EVALUATION
PROCESS

A function defines a CNN model
architecture. The model consists of a
ConvlD layer, MaxPoolinglD layer,

Flatten layer, Dense layer with ReLU
activation, Dropout layer, and an output
Dense layer with softmax activation. The
model is compiled using the Adam
optimizer and the categorical inter-entropic
loss. In the data preprocessing and training
phase, datasets are first loaded and
concatenated. Features and target variables
are then separated, and categorical and
numeric columns are identified. The data is
preprocessed using a
‘ColumnTransformer’, which applies
‘StandardScaler’ to numeric columns and
‘OneHotEncoder’ to categorical columns.
A pipeline is created to ensure the data is
transformed into a suitable format for the
CNN. The data is then divided into training
and test sets. Target labels are mapped to
consecutive integers and converted to a

Department of Information Systems

categorical format for the CNN, and the
data is reshaped accordingly. For training
the CNN, the model is built and trained on
the training data. After training, predictions
are made on the test data using the trained
CNN model. In the Random Forest
Classifier phase, a Random Forest model is
tuned using ‘GridSearchCV' with a
specified parameter grid. The best model
from the grid search is selected and trained
on the training data. Predictions are then
made on the test data using this tuned
Random Forest model.

Finally, in the ensemble predictions phase,
predictions from both the CNN and
Random Forest models are combined using
a majority vote to form the final
predictions. The accuracy and F1 score of
the ensemble model are then calculated to
evaluate its performance.

IV. RESULTS

The performance of the SDP model is
typically evaluated using precision, recall,
f-score and accuracy. To compare with
the state-of-the-art models’ performances,
the model was evaluated using F-score.
However, the study reported accuracy score
as well. This is because it has a lower

Volume 5 Issue 1, Spring 2025

Zaidi and Latif

variance, that is, it is more static than any
of the above metrics, and is therefore,
highly preferable for the evaluation of
defect prediction models [34].

The F-score is the harmonic mean of
precision and recall. It is a widely used
measure of the accuracy of the test, with
values between 0 for the worst accuracy
and 1 for the best accuracy.

The results of accuracy, precision, recall,
and F-score performance measures are
shown in Table 3, with the best results
among classifiers highlighted in bold.
Additionally, obtained scores are shown as
the violin plots in Figure 3. Table IV shows
the average accuracy, precision, recall, and
F-scores obtained by the classifiers in the
analyzed projects.

TABLE 111
PERFORMANCE OF PROPOSED MODEL

Dataset Accuracy F1 Score
Camel 0.820 0.759
Jedit 0.747 0.670
Lucene 0483 0.405
Poi 0.570 0.547
Synapse 0.739 0.681
Xalan 0.586 0.552
Xerces 0.816 0.761
TABLE IV

AVERAGE ACCURACY, F1-SCORE,
PRECISION, AND RECALL OF THE PROPOSED
MODEL, AND THE (DP-GCNN) FOR SEVEN

PROMISE PROJECTS

Metric Average

Accuracy 0648
F1 Score 0.626
Precision 0591
Recall 0648

TABLE V
AVERAGE F1-SCORE OF THE PROPOSED
MODEL, AND THE (DP-GCNN) FOR SEVEN
PROMISE PROIJECTS

Metric Our Model DP-GENN

Fl Score 0626 0810

Department of Information Systems

Precision Recall
0.722 0.820
0.662 0.747
0.382 0483
0.528 0.570
0.653 0.739
0.539 0.586
0.712 0816

It can be seen from both the violin plots and
numerical values that the proposed model
was more successful than the DP-GCNN
model. DP-GCNN's effectiveness in
predicting defective software modules from
PROMISE projects, measured by F-score.
It can be concluded that the proposed model
generally performed better than DP-GCNN
for PROMISE dataset. In addition, as
compared to DP-GCNN, the model
performed better on both measures
for camel and xerces projects, which suffer
the most from the class imbalance problem
in the analyzed dataset.

Volume 5 Issue 1, Spring 2025

Model —_—
N Our Model
081 1 DppP-GCNN
@ Our Model —
© DP-GCNN d

0.6

F1 Score

—e—

Camel Jedit Lucene Poi Synapse Xalan Xerces
Dataset

FIGURE 3. Violin plot of F-score by the proposed model and DP=GCNN model

0.8

0.7 1

0.6

0.5 1

0.4 1

Accuracy

0.3 1

0.2

0.1

0.0 -
> S & S 2 o]
<& i {p -g"é\ $ q\é"d’ -\3}0 &é‘z
Dataset
FIGURE 4. Accuracy metrics of the proposed model

F1 Score

e S &
& &§ &
W

Dataset

FIGURE 5.F1-score metric of the proposed model

Department of Information Systems

Volume 5 Issue 1, Spring 2025

Zaidi and Latif

Precision

e
@@ L 4 ‘>(?‘°

> 2 & &
& & 3@ &

Dataset

FIGURE 6. Precision metric of the proposed model

0.8

0.7

0.6

0.54

0.4 1

Recall

0.34

0.2 1

0.1 1

0.0 -

5 &
& A &

<Y @ o
&
€ & 3

Dataset

FIGURE 7. Recall metric of the proposed model

V. DISCUSSION

The current study proposed an advanced
deep learning pipeline integrating CNN and
Random Forest classifiers to address the
limitations of traditional software defect
prediction methods. The results
demonstrated that the ensemble model
outperformed the existing models in terms
of accuracy and F1 score across multiple
datasets. By utilizing CNN, semantic and
structural features were captured from the
software data, a notable improvement over
hand-crafted features typically used in
defect prediction.

Department of Information Systems

The CNN's ability to analyze grid-like data
structures, such as source code, made it
especially useful for identifying complex
patterns within software projects. On the
other hand, the Random Forest model
provided robustness by handling the data
imbalance effectively and offering strong
prediction accuracy, especially in datasets
with skewed distributions, such as those
seen in Camel and Xerces projects.

The findings suggested that combining
deep learning with traditional ML models
can enhance the accuracy of software
defect prediction. The ensemble approach,

Volume 5 Issue 1, Spring 2025

Use of Deep Learning in Early Software...

which aggregates the strengths of both
CNN and Random Forest models through
majority voting, provided better
generalization and increased predictive
performance. These results emphasize the
potential of hybrid models in defect
prediction and suggest new research
avenues, such as exploring other deep
learning architectures including LSTMs or
graph neural networks.

A. CONCLUSION

This study introduced a novel deep learning
approach for early SDP, combining the
strengths of CNNs and Random Forest
classifiers into a cohesive ensemble model.
The methodology, wvalidated across
multiple publicly-available datasets,
demonstrated superior performance over
existing models in terms of accuracy, F1
score, precision, and recall.

The experimental results highlighted the
efficacy of integrating deep learning
techniques into the defect prediction
domain, offering software developers a
more reliable tool for identifying buggy
code early in the development process.
This, in turn, may lead towards more
efficient allocation of testing resources and
a reduction in post-release defects. Future
research should focus on refining the model
by incorporating additional neural network
architectures and exploring its applicability
in different software environments.

CONFLICT OF INTEREST

The authors of the manuscript have no
financial or non-financial conflict of
interest in the subject matter or materials
discussed in this manuscript.

DATA AVAILABILITY STATEMENT

The dataset used is available from the
corresponding author upon reasonable
request.

FUNDING DETAILS

No funding has been received for this
research.

REFERENCES

[1] T. Menzies, Z. Milton, B. Turhan, B.
Cukic, Y. Jiang, and A. Bener, “Defect
prediction from static code features:
Current results, limitations, and new
approaches,” Autom. Softw. Eng., vol.
17, no. 4, pp. 375-407, Dec. 2010, doi:
https://doi.org/10.1007/s10515-010-
0079-7.

[2] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-
S. Wu, and J. Liu, “Dictionary learning
based software defect prediction,” in
Proc. Int. Conf. Softw. Eng. (ICSE),
May 2014, pp. 414-423, doi:
https://doi.org/10.1145/2568225.2568
230.

[3] S. Wang, T. Liu, and L. Tan,
“Automatically learning semantic
features for defect prediction,” in Proc.
Int. Conf. Sofiw. Eng. (ICSE), May
2016, pp. 297-308, doi:
https://doi.org/10.1145/2884781.2884
804.

[4] T. Menzies, J. Greenwald, and A.
Frank, “Data mining static code
attributes to learn defect predictors,”
IEEE Trans. Softw. Eng., vol. 33, no.
1, pp. 2-13, Jan. 2007, doi:
https://doi.org/10.1109/TSE.2007.256
941.

[5] T. J. McCabe, “A complexity
measure,” [EEE Trans. Softw. Eng.,
no. 4, pp. 308-320, Dec. 1976, doi:
https://doi.org/10.1109/TSE.1976.233
837.

[6] S. R. Chidamber and C. F. Kemerer,
“A metrics suite for object-oriented
design,” IEEE Trans. Softw. Eng., vol.
20, no. 6, pp. 476493, Jun. 1994, doi:

UMT Artificial Intelligence Review

32— UMT-AIRS)

Volume 5 Issue 1, Spring 2025

https://doi.org/10.1007/s10515-010-0079-7
https://doi.org/10.1007/s10515-010-0079-7
https://doi.org/10.1145/2568225.2568230
https://doi.org/10.1145/2568225.2568230
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837

Zaidi and Latif

https://doi.org/10.1109/32.295895.

[7] O. Abdel-Hamid, A.-R. Mohamed, H.
Jiang, and G. Penn, “Applying
convolutional neural networks
concepts to hybrid NN-HMM models
for speech recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2012, pp.
4277-4280, doi:
https://doi.org/10.1109/ICASSP.2012.
6288864.

[8] A. Krizhevsky, I. Sutskever, and G. E.
Hinton, “ImageNet classification with
deep convolutional neural networks,”
in Adv. Neural Inf. Process. Syst.
(NeurIPS), Dec. 2012, pp. 1097-1105,
doi: https://doi.org/10.1145/3065386.

[9] 1. Goodfellow, Y. Bengio, and A.
Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[10]Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner, “Gradient-based learning
applied to document recognition,”
Proc. IEEE, vol. 86, no. 11, pp. 2278—
2324, Nov. 1998, doi:
https://doi.org/10.1109/5.726791.

[11]1X. Zhang, J. Zhao, and Y. LeCun,
“Character-level convolutional
networks for text classification,” in
Adv. Neural Inf. Process. Syst.
(NeurIPS), Dec. 2015, pp. 649—657.

[12]D. Al-Fraihat and Y. Sharrab,
“Predicting software defects using
ensemble learning techniques,” in
Proc. IEEE Int. Conf. Data Sci. Adv.
Anal. (DSAA), Oct. 2022, pp. 1-10,
doi:
https://doi.org/10.1109/DSAA54385.2
022.10032457.

[13]“The PROMISE repository of software
engineering databases,” in Sofiw. Eng.
Databases, 2nd ed., vol. 3. NASA, Ed.

Department of Information Systems

Pennsylvania, USA: CiteSeerX, 2024,
pp. 1-12.

[14]J. Li, P. He, J. Zhu, and M. R. Lyu,
“Software defect prediction via
convolutional neural network,” in
Proc. IEEE Int. Conf. Softw. Qual.,
Reliab. Secur. (QORS), Jul. 2017, pp.
318-328,
doi:https://doi.org/10.1109/QRS.2017.
42.

[15]Fei, “PROMISE-backup,” GitHub
repository. [Online]. Available:
https://github.com/feiwww/PROMISE
-backup. [Accessed: Aug. 3, 2024].

[16]S. Lessmann, B. Baesens, C. Mues,
and S. Pietsch, “Benchmarking
classification models for software
defect prediction,” IEEE Trans. Softw.
Eng., vol. 34, no. 4, pp. 485-496, Jul.
2008, doi:
https://doi.org/10.1109/TSE.2008.35.

[17]T. C. Sharma and M. Jain, “WEKA
approach for comparative study of
classification algorithms,” Int. J. Adv.

Res. Comput. Commun. Eng., vol. 2,
no. 4, pp. 1925-1931, Apr. 2013.

[18]P. J. Kaur and Pallavi, “Data mining
techniques for software defect
prediction,” Int. J. Softw. Web Sci., vol.
3,no. 1, pp. 54-57, 2013.

[19]T. Wang, W. Li, H. Shi, and Z. Liu,
“Software defect prediction based on
classifiers ensemble,” J. Inf. Comput.
Sci., vol. 8, no. 1, pp. 42414254,
2011.

[20]V. R. Basili et al., “A validation of
object-oriented design metrics as
quality indicators,” IEEE Trans. Sofiw.
Eng.,vol.22,no0. 10, pp. 751-761, Oct.
1996, doi:
https://doi.org/10.1109/32.544352.

[21]T. Gyimothy, R. Ferenc, and 1. Siket,

Volume 5 Issue 1, Spring 2025

S {UMT =

https://doi.org/10.1109/32.295895
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/DSAA54385.2022.10032457
https://doi.org/10.1109/DSAA54385.2022.10032457
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1109/QRS.2017.42
https://github.com/feiwww/PROMISE-backup
https://github.com/feiwww/PROMISE-backup
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/32.544352

Use of Deep Learning in Early Software...

“Empirical validation of object-
oriented metrics on open source
software,” IEEE Trans. Sofiw. Eng.,
vol. 31, no. 10, pp. 897-910, Oct.
2005, doi:
https://doi.org/10.1109/TSE.2005.112.

[22]P. Singh and S. Verma, “Cross project
software fault prediction at the design
phase,” Int. J. Comput. Inf. Eng., vol.
9, no. 3, pp. 800-805, 2015.

[23]B. J. Park et al., “Polynomial function-
based neural networks for software
defect detection,” Inf. Sci., vol. 229,
pp. 40-57, Apr. 2013, doi:
https://doi.org/10.1016/;.ins.2012.12.0
42.

[24]K. O. Elish and M. O. Elish,
“Predicting defect-prone software
modules using support vector
machines,” J. Syst. Sofiw., vol. 81, no.
5, pp. 649-660, May 2008, doi:
https://doi.org/10.1016/.jss.2007.07.0
40.

[25]S. Shivaji et al., “Reducing features to
improve code change-based bug
prediction,” IEEE Trans. Sofiw. Eng.,
vol. 39, no. 4, pp. 552-569, Apr. 2013,
doi:
https://doi.org/10.1109/TSE.2012.38.

[26]K. Dejaeger et al, “Toward
comprehensible software fault
prediction models using Bayesian
networks,” IEEE Trans. Softw. Eng.,
vol. 39, no. 2, pp. 237-257, Feb. 2013,
doi:
https://doi.org/10.1109/TSE.2012.24.

[27]S. S. Rathore and S. Kumar, “A
decision tree logic-based
recommendation system,” Computing,
vol. 99, no. 3, pp. 255284, Mar. 2017,
doi: https://doi.org/10.1007/s00607 -
016-0485-9.

[28]P. Singh and S. Verma, “Multi-
classifier model for software fault
prediction,” Int. Arab J. Inf- Technol.,
vol. 15, no. 5, pp. 912-919, Sep. 2018.

[29]1P. Singh et al., “Fuzzy rule-based
approach for software fault
prediction,” [EEE Trans. Syst., Man,
Cybern.: Syst., vol. 47, no. 5, pp. 826—
837, May 2017, doi:
https://doi.org/10.1109/TSMC.2016.2
566608.

[30]X. Yang et al., “Deep learning for just-
in-time defect prediction,” in Proc.
IEEE Int. Conf. Softw. Qual., Reliab.
Secur., Aug. 2015, pp. 17-26, doi:
https://doi.org/10.1109/QRS.2015.14.

[31]T. Thaher and F. Khamayseh, “A novel
machine learning approach for
software defect prediction,” in Proc.
Int. Conf. Comput. Intell. Data Eng.,
2021, pp. 95-106.

[32]Y. Jiang, J. Lin, B. Cukic, and T.
Menzies, “Variance analysis in
software fault prediction models,” in
Proc. Int. Symp. Softw. Reliab. Eng.,
Nov. 2009, pp. 99-108, doi:
https://doi.org/10.1109/ISSRE.2009.3
3.

UMT Artificial Intelligence Review

34— UMT-AIR)

Volume 5 Issue 1, Spring 2025

https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.1016/j.ins.2012.12.042
https://doi.org/10.1016/j.ins.2012.12.042
https://doi.org/10.1016/j.jss.2007.07.040
https://doi.org/10.1016/j.jss.2007.07.040
https://doi.org/10.1109/TSE.2012.38
https://doi.org/10.1109/TSE.2012.24
https://doi.org/10.1007/s00607-016-0485-9
https://doi.org/10.1007/s00607-016-0485-9
https://doi.org/10.1109/TSMC.2016.2566608
https://doi.org/10.1109/TSMC.2016.2566608
https://doi.org/10.1109/QRS.2015.14
https://doi.org/10.1109/ISSRE.2009.33
https://doi.org/10.1109/ISSRE.2009.33

Zaidi and Latif

APPENDIX

Datasets: The study used seven publicly-
available software defect datasets from the
PROMISE repository. Key features
extracted included code metrics (e.g.,
McCabe features) and process metrics (e.g.,
change history).

Data Preprocessing: Data was loaded and
concatenated into a single data frame for
unified training and evaluation. Separated
features—comprising code metrics and
process metrics—from the target labels
(buggy/clean). Applied StandardScaler to
numeric features and OneHotEncoder to
categorical features, then split the data into
training and testing sets.

Model Architecture
CNN Model: Extracted semantic and
structural ~ features using ConvlD,

MaxPooling, Dense, and Dropout layers.

Random Forest Classifier: Built an
ensemble of DTs; fine-tuned using
GridSearchCV for optimal performance.

Department of Information Systems

Ensemble Method: Combined predictions
from both CNN and Random Forest models
using majority voting.

Evaluation Metrics: Performance measured
using accuracy, precision, recall, and F1
Score. F1 score emphasized for its utility in
class-imbalanced datasets.

Tools and Libraries: Pandas and numpy for
data manipulation. scikit-learn for ML,
preprocessing, and hyperparameter tuning.
Keras for building the CNN. matplotlib for
generating performance plots. imblearn for
handling class imbalances.

Results Visualization: ~ Violin Plots
visualized the distribution of performance
metrics across datasets. Results are
presented in tables, highlighting the
superior performance of the ensemble
method.

Ethical Considerations: Ensured

responsible handling of open-sourced
privacy,

datasets with attention to
transparency, and bias mitigation.

Volume 5 Issue 1, Spring 2025

