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ABSTRACT Traditional defect prediction studies primarily rely on hand-crafted features 

fed into Machine Learning (ML) classifiers to identify defective code. However, these 

features frequently fail to capture the essential semantic and structural information of 

programs and metric-based datasets, which are critical for accurate defect prediction. To 

address these limitations, the current study introduced a comprehensive deep learning 

pipeline for Software Defect Prediction (SDP) using multiple publicly-available datasets. 

The study particularly focused on the integration of Convolutional Neural Networks (CNN) 

and Random Forest classifiers. The datasets, representing different versions of software 

projects, were loaded, concatenated, and preprocessed using a combination of 

StandardScaler and OneHotEncoder. This preprocessing ensures the data is in a suitable 

format for training models. The approach adopted by the current study involved building 

and training a CNN model to capture semantic and structural features of the software data, 

followed by a Random Forest model tuned through GridSearchCV for optimal 

performance. Predictions from both models were combined using an ensemble method, 

where a majority vote determined the final predictions. The accuracy, precision, recall, and 

F1 score of this ensemble model were calculated to evaluate its performance. The 

experimental results demonstrated that the ensemble model, leveraging the strengths of 

both CNN and Random Forest classifiers, achieved high accuracy and F1 scores across 

multiple datasets. This study highlighted the effectiveness of combining deep learning with 

traditional ML techniques for SDP. This offered a robust framework to improve software 

reliability and aid developers in order to identify potential bugs.      

INDEX TERMS Convolutional Neural Networks (CNN), deep learning, early Software 

Defect Prediction (SDP), Random Forest 

I. INTRODUCTION 

Machine Learning (ML) techniques have 

become integral in analyzing the data from 

diverse perspectives. This offers critical 

insights to the developers that enhance 

software development processes. These 

techniques have shown particular promise 

in the realm of software bug prediction, a 

crucial aspect of ensuring software 

reliability.  

Effective Software Defect Prediction 

(SDP) is essential to improve software 
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reliability by helping developers identify 

potential bugs and allocate testing 

resources more efficiently. Traditional 

defect prediction methods typically rely on 

hand-crafted features that are entered into 

ML classifiers to detect defective code. 

However, these hand-crafted features often 

fall short in capturing the essential semantic 

and structural information of programs, as 

well as metric-based datasets, which are 

vital for accurate defect prediction. 

To address these limitations, the current 

study proposed a novel deep learning 
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pipeline designed for SDP, utilizing 

multiple publicly-available datasets. The 

approach involved a detailed evaluation of 

various ML techniques, with a particular 

focus on integrating Convolutional Neural 

Networks (CNN) and Random Forest 

classifiers. The datasets, representing 

different versions of software projects, 

were carefully loaded, concatenated, and 

preprocessed using StandardScaler and 

OneHotEncoder to prepare them for model 

training. 

The study built and trained a CNN model to 

automatically extract semantic and 

structural features from the software data 

and optimize a Random Forest model 

through GridSearchCV. The predictions 

from these models were combined using an 

ensemble method, where a majority vote 

determined the final output. The 

performance of this ensemble approach was 

assessed based on accuracy and F1 score. 

The results demonstrated that the ensemble 

model, which leverages the strengths of 

both CNN and Random Forest classifiers, 

achieved high performance across multiple 

datasets. 

This research used deep learning to predict 

software defects early, enhancing the 

overall software quality and resource 

allocation. It pioneers proactive defect 

detection, optimizes testing efforts, and 

integrates deep learning for informed 

decision-making in software development, 

fostering innovation and sustained 

excellence. The ultimate goal was to 

revolutionize the field by seamlessly 

incorporating deep learning into software 

development processes.  

A. RESEARCH OBJECTIVES 

The current study aimed to address the 

following research objectives: 

• Develop and implement deep learning 

models that enable the early detection 

of software defects during the 

development lifecycle, minimizing the 

impact on downstream processes. 

• Optimize testing efforts by leveraging 

deep learning algorithms to identify 

and prioritize areas of the codebase 

more prone to defects, allowing for 

more targeted testing. 

• Contribute to the optimization of 

resource allocation in software 

development by efficiently identifying 

and addressing software defects early 

in the development lifecycle. 

B. RESEARCH QUESTIONS 

The research sought to address the 

following questions: 

RQ1: How effective is the proposed 

approach utilizing enhanced CNNs in 

software bug detection compared to 

traditional defect prediction models? 

RQ2: To what extent does the integration of 

deep learning techniques, specifically 

CNNs, contribute to the accuracy and 

efficiency of software bug prediction in 

comparison to conventional ML methods? 

RQ3: How does the proposed approach 

perform in predicting defects across diverse 

open-source software defect datasets, and 

what insights can be drawn from its 

performance in real-world scenarios? 

In developing advanced software defect 

detection through deep learning, ethical 

considerations are paramount. 

Transparency, privacy protection, and bias 

mitigation are crucial in handling open-

source software defect datasets responsibly. 

Adherence to ethical guidelines in data 

collection, respecting consent and 

anonymization, is vital. The choice of 

evaluation metrics should prioritize 

fairness, avoiding unintended 
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consequences. A rigorous ethical scrutiny 

of the proposed model, particularly in real-

world applications, underscores the 

commitment to responsible innovation and 

user well-being. 

TABLE I 

SKILLS AUDIT 

 

II. LITERATURE REVIEW 

 

FIGURE 1. Defect prediction 

SDP is a process of predicting potentially 

defective areas of code, which can help 

developers allocate their testing efforts by 

first checking potentially buggy code [1]. 
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Defect prediction is essential to ensuring 

reliability of today’s large-scale software. 

Figure 2 presents a typical file-level defect 

prediction process which is commonly 

adopted in the literature [2]-[4]. As the 

process shows, the first step is to collect 

source code files (instances) from software 

archives and label them as buggy or clean. 

The labeling process is based on the 

number of post-release defects of each file. 

A file is labeled as buggy if it contains at 

least one post-release bug. Otherwise, the 

file is labeled as clean. The second step is 

to extract features from each file. Many 

traditional features have been defined in 

past studies, which can be categorized into 

two kinds: code metrics (e.g., McCabe 

features [5] and CK features [6], and 

process metrics (e.g., change histories). The 

instances with the corresponding features 

and labels are subsequently employed to 

train predictive classifiers using various 

ML algorithms, such as SVM, Naive 

Bayes, and dictionary learning [2]. Finally, 

new instances are fed into the trained 

classifier, which may predict whether the 

files are buggy or clean. The set of 

instances used for building the classifier is 

training set, while test set includes the 

instances used for evaluating the learned 

classifier. The current study focused on 

within-project defect prediction, that is, the 

training and test sets 319 belong to the same 

project. Following the previous work in this 

field [3], the current study used instances 

from an older version of this project for 

training, and instances from a newer 

version for test. 

CNNs are a specialized kind of neural 

networks for processing that data that have 

a known grid-like topology [7], such as 

time-series data in 1D grid and image data 

in 2D grid. CNNs have been demonstrated 

successful in many practical fields, 

including speech recognition [8], image 

classification [9], [10] and Natural 

Language Processing (NLP) [11]. 

SDP has garnered substantial attention in 

recent years due to its critical role in 

improving software quality and reliability. 

Various methodologies have been explored 

to enhance the accuracy and efficiency of 

defect prediction. 

ML has played a crucial role in software 

bug prediction, with numerous studies 

exploring this domain. However, it faces 

limitations when dealing with large and 

complex datasets. To address these 

challenges, deep learning has emerged as a 

potential solution. Despite its promise, 

there has been relatively little research 

focused specifically on using deep learning 

for software bug prediction. 

[12] introduced a new convolutional graph 

neural network (GCNN) which leverages 

the Abstract Syntax Tree (AST) of source 

code for defect prediction, adapting to 

various project sizes. This model 

outperforms traditional approaches in AUC 

and F-score, offering strong predictive 

capabilities. [13]-[16] introduced a 

framework for benchmarking classification 

algorithms on software defect datasets. 

This concluded that while their selected 

algorithms offered good prediction 

accuracy, there was no significant 

difference in performance among the 

various classifiers. This study, however, 

did not cover the full spectrum of machine 

learning techniques available for defect 

prediction. Sharma and Jain [17] utilized 

the WEKA tool to compare different 

classification algorithms but did not 

specifically apply these methods to 

software bug prediction. Similarly, Kaur 

and Pallavi [18] examined various data 

mining techniques for defect prediction 

without providing a comparative 

performance analysis. Wang et al. [19] 
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focused exclusively on ensemble 

classifiers, highlighting their potential but 

not considering other ML methods. These 

studies underscore a gap in comprehensive 

comparative analyses of diverse ML 

techniques in the context of software defect 

prediction. 

Historically, research has also delved into 

the use of software metrics for defect 

prediction. Chidamber and Kemerer [6] 

demonstrated the suitability of software 

metrics for defect prediction, while Basili et 

al. [20] validated object-oriented design 

metrics (OODM) for this purpose. 

Gyimothy et al. [21] advanced this field by 

using object-oriented metrics analysis to 

enhance prediction performance. Singh and 

Verma [22] argued for the use of design 

metrics during the software development 

lifecycle to enable early defect detection 

and cost-effective development. 

In exploring classification methods, [23] 

proposed a polynomial function-based 

neural network (pf-NN) model, combining 

fuzzy C-means and genetic clustering 

techniques to handle nonlinear parameters. 

Despite these advances, clustering 

techniques alone may not achieve optimal 

prediction performance. Various ML 

algorithms, such as Naïve Bayes (NB), 

Support Vector Machines (SVM), and 

Decision Trees (DTs), have been employed 

to overcome these limitations. Elish et al. 

[24] found that SVMs were highly effective 

in defect detection as compared to other 

models. Similarly, Shivaji et al. [25] 

demonstrated that feature selection 

methods could enhance NB classifiers' 

performance. Dejaeger et al. [26] 

highlighted that augmented NB classifiers 

outperformed other models in terms of 

ROC curve analysis. DT approaches, as 

explored by [27], also showed promise, 

while Singh and Verma [28] demonstrated 

the effectiveness of multi-classifier 

approaches combining SVM, NB, and 

Random Forest (RF). Singh et al. [29] 

further explored fuzzy rule-based 

techniques, showing competitive results as 

compared to traditional methods. 

Recently, Yang et al. [30] applied deep 

learning techniques to defect prediction, 

utilizing deep belief networks on large 

open-source projects to achieve significant 

improvements in prediction accuracy. 

III. METHODOLOGY 

 
FIGURE 2. Proposed model 
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The code involves a comprehensive deep 

learning pipeline that processes multiple 

datasets, trains models, and evaluates their 

performance [31]. The code uses several 

Python libraries for data manipulation, 

model building, and evaluation, including 

pandas, numpy, matplotlib, scikit-learn, 

keras, and imblearn. 

TABLE II 

DATASET DESCRIPTION 

 

Seven pairs of CSV files, each representing 

different versions of software projects 

(Camel, JEdit, Lucene, POI, Synapse, 

Xalan, Xerces), were used. These files were 

read, combined, and processed [32].  

A. MODEL TRAINING AND EVALUATION 

PROCESS  

A function defines a CNN model 

architecture. The model consists of a 

Conv1D layer, MaxPooling1D layer, 

Flatten layer, Dense layer with ReLU 

activation, Dropout layer, and an output 

Dense layer with softmax activation. The 

model is compiled using the Adam 

optimizer and the categorical inter-entropic 

loss. In the data preprocessing and training 

phase, datasets are first loaded and 

concatenated. Features and target variables 

are then separated, and categorical and 

numeric columns are identified. The data is 

preprocessed using a 

`ColumnTransformer`, which applies 

`StandardScaler` to numeric columns and 

`OneHotEncoder` to categorical columns. 

A pipeline is created to ensure the data is 

transformed into a suitable format for the 

CNN. The data is then divided into training 

and test sets. Target labels are mapped to 

consecutive integers and converted to a 

categorical format for the CNN, and the 

data is reshaped accordingly. For training 

the CNN, the model is built and trained on 

the training data. After training, predictions 

are made on the test data using the trained 

CNN model. In the Random Forest 

Classifier phase, a Random Forest model is 

tuned using `GridSearchCV` with a 

specified parameter grid. The best model 

from the grid search is selected and trained 

on the training data. Predictions are then 

made on the test data using this tuned 

Random Forest model. 

Finally, in the ensemble predictions phase, 

predictions from both the CNN and 

Random Forest models are combined using 

a majority vote to form the final 

predictions. The accuracy and F1 score of 

the ensemble model are then calculated to 

evaluate its performance. 

IV. RESULTS 

The performance of the SDP model is 

typically evaluated using precision, recall, 

f-score and accuracy. To compare with 

the state-of-the-art models’ performances, 

the model was evaluated using F-score. 

However, the study reported accuracy score 

as well. This is because it has a lower 
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variance, that is, it is more static than any 

of the above metrics, and is therefore, 

highly preferable for the evaluation of 

defect prediction models [34]. 

The F-score is the harmonic mean of 

precision and recall. It is a widely used 

measure of the accuracy of the test, with 

values between 0 for the worst accuracy 

and 1 for the best accuracy. 

The results of accuracy, precision, recall, 

and F-score performance measures are 

shown in Table 3, with the best results 

among classifiers highlighted in bold. 

Additionally, obtained scores are shown as 

the violin plots in Figure 3. Table IV shows 

the average accuracy, precision, recall, and 

F-scores obtained by the classifiers in the 

analyzed projects. 

TABLE III 

 PERFORMANCE OF PROPOSED MODEL 

 

TABLE IV 

AVERAGE ACCURACY, F1-SCORE, 

PRECISION, AND RECALL OF THE PROPOSED 

MODEL, AND THE (DP-GCNN) FOR SEVEN 

PROMISE PROJECTS 

 

TABLE V 

AVERAGE F1-SCORE OF THE PROPOSED 

MODEL, AND THE (DP-GCNN) FOR SEVEN 

PROMISE PROJECTS 

 

It can be seen from both the violin plots and 

numerical values that the proposed model 

was more successful than the DP-GCNN 

model. DP-GCNN's effectiveness in 

predicting defective software modules from 

PROMISE projects, measured by F-score. 

It can be concluded that the proposed model 

generally performed better than DP-GCNN 

for PROMISE dataset. In addition, as 

compared to DP-GCNN, the model 

performed better on both measures 

for camel and xerces projects, which suffer 

the most from the class imbalance problem 

in the analyzed dataset. 
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FIGURE 3. Violin plot of F-score by the proposed model and DP=GCNN model 

 
FIGURE 4. Accuracy metrics of the proposed model 

 
FIGURE 5.F1-score metric of the proposed model 
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FIGURE 6. Precision metric of the proposed model 

 

FIGURE 7. Recall metric of the proposed model 

V. DISCUSSION 

The current study proposed an advanced 

deep learning pipeline integrating CNN and 

Random Forest classifiers to address the 

limitations of traditional software defect 

prediction methods. The results 

demonstrated that the ensemble model 

outperformed the existing models in terms 

of accuracy and F1 score across multiple 

datasets. By utilizing CNN, semantic and 

structural features were captured from the 

software data, a notable improvement over 

hand-crafted features typically used in 

defect prediction. 

The CNN's ability to analyze grid-like data 

structures, such as source code, made it 

especially useful for identifying complex 

patterns within software projects. On the 

other hand, the Random Forest model 

provided robustness by handling the data 

imbalance effectively and offering strong 

prediction accuracy, especially in datasets 

with skewed distributions, such as those 

seen in Camel and Xerces projects. 

The findings suggested that combining 

deep learning with traditional ML models 

can enhance the accuracy of software 

defect prediction. The ensemble approach, 
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which aggregates the strengths of both 

CNN and Random Forest models through 

majority voting, provided better 

generalization and increased predictive 

performance. These results emphasize the 

potential of hybrid models in defect 

prediction and suggest new research 

avenues, such as exploring other deep 

learning architectures including LSTMs or 

graph neural networks. 

A. CONCLUSION 

This study introduced a novel deep learning 

approach for early SDP, combining the 

strengths of CNNs and Random Forest 

classifiers into a cohesive ensemble model. 

The methodology, validated across 

multiple publicly-available datasets, 

demonstrated superior performance over 

existing models in terms of accuracy, F1 

score, precision, and recall. 

The experimental results highlighted the 

efficacy of integrating deep learning 

techniques into the defect prediction 

domain, offering software developers a 

more reliable tool for identifying buggy 

code early in the development process. 

This, in turn, may lead towards more 

efficient allocation of testing resources and 

a reduction in post-release defects. Future 

research should focus on refining the model 

by incorporating additional neural network 

architectures and exploring its applicability 

in different software environments. 
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APPENDIX 

Datasets: The study used seven publicly-

available software defect datasets from the 

PROMISE repository. Key features 

extracted included code metrics (e.g., 

McCabe features) and process metrics (e.g., 

change history). 

Data Preprocessing: Data was loaded and 

concatenated into a single data frame for 

unified training and evaluation. Separated 

features—comprising code metrics and 

process metrics—from the target labels 

(buggy/clean). Applied StandardScaler to 

numeric features and OneHotEncoder to 

categorical features, then split the data into 

training and testing sets. 

Model Architecture 

CNN Model: Extracted semantic and 

structural features using Conv1D, 

MaxPooling, Dense, and Dropout layers. 

Random Forest Classifier: Built an 

ensemble of DTs; fine-tuned using 

GridSearchCV for optimal performance. 

Ensemble Method: Combined predictions 

from both CNN and Random Forest models 

using majority voting. 

Evaluation Metrics: Performance measured 

using accuracy, precision, recall, and F1 

Score. F1 score emphasized for its utility in 

class-imbalanced datasets. 

Tools and Libraries: Pandas and numpy for 

data manipulation. scikit-learn for ML, 

preprocessing, and hyperparameter tuning. 

Keras for building the CNN. matplotlib for 

generating performance plots. imblearn for 

handling class imbalances. 

Results Visualization: Violin Plots 

visualized the distribution of performance 

metrics across datasets. Results are 

presented in tables, highlighting the 

superior performance of the ensemble 

method. 

Ethical Considerations: Ensured 

responsible handling of open-sourced 

datasets with attention to privacy, 

transparency, and bias mitigation. 

 


