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A Comprehensive Review of Automatic Semantic Segmentation of
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ABSTRACT Automated segmentation is also essential in planning treatment and
enhancing patient outcomes because early and correct brain tumor detection is crucial for
multi-modal 3D MRI, which is still difficult. Image variability, inhomogeneity of tumor
morphology, inhomogeneous intensity, motion, compromise, and noisiness, along with
non-homogeneous borders of the tumor, compromise generalization and consistency.
Manual delineation, although still common in clinical settings, is labor-intensive and
operator-dependent. Semi-automatic processes are less labor-intensive yet still require user
intervention and close tuning of parameters. Fully automatic methods are promising,
particularly with recent deep learning models, which are high-quality, but they require
high-quality data, a large volume of computation, and careful handling of domain shift
issues. This literature review summarizes traditional and modern MRI-based segmentation
algorithms, such as classical clustering and atlas-based algorithms, convolutional
networks, and new CNN-Transformer hybrid models, along with their strengths,
weaknesses, and common failure modes. We outline practical considerations for clinical
translation (robustness, uncertainty, efficiency, and interpretability) and identify
opportunities for future work in data-efficient learning, multi-site validation, and workflow
integration. Advancing along these directions can yield more accurate, scalable, and
clinically useful brain tumor segmentation systems.

INDEX TERMS automated detection, brain tumor, diagnostic accuracy, medical imaging,
MRI segmentation

I. INTRODUCTION matter [1]. These steps, namely,
preprocessing, segmentation, extraction of
relevant tumor features, and classification,
set the workflow of the system [1].
Preprocessing includes the denoising of the
image frames, the coarsening of the frames,
and skull tissue removal. In the
preprocessing stage, common filters used
are skull stripping, histogram equalization,
and the median filter. Segmentation
accuracy can be improved, and
computation time can be reduced by

The brain examination images are normally
acquired by Magnetic Resonance Imaging
(MRI). Noise or attenuation problems,
including changes in intensity during
acquisition, may affect them. MRI is an
appropriate tool to use in brain tumors with
non-invasive characteristics. In addition,
the images of the brain also depict other
brain structures, including grey matter,
cerebral fluid, skull tissues, and white
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partitioning the preprocessed images.
Processing involves the multiplexing of
input and output images, calculating a
global threshold, reconstruction opening,
and morphological closing. Thereafter,
valuable features are collected and trimmed
down. Statistical features are derived, and
the Grey Level Co-occurrence Matrix
(GLCM) is calculated. Then, principal
components are determined and features
are extracted using GLCM, among others.

The images fall into the benign and
malignant categories. In this step, a Support
Vector Machine (SVM) classifier is
trained, its parameters are adjusted, and test
images are predicted. Classification
accuracy serves as the basis for evaluation,
and metrics such as the confusion matrix
are utilized to compute sensitivity and
specificity. These processes are frequently
implemented with the use of well-known
programs, such as Python and MATLAB.
This is demonstrated by a segmentation
method described in [1], [2]. This method
used a dataset consisting of 19 brain images
impacted by four tumor types, namely
meningioma and sarcoma, glioma,
metastatic, and adenocarcinoma. Dataset
details are critical for the current study.
There are tumors of three sizes: small,
medium, and large. More recent work
highlights that advanced deep learning
models, including transformer-based
architectures and foundation models, are
increasingly integrated into MRI analysis
for tumor detection and segmentation,
improving generalization across datasets
and clinical settings [3], [4].

A. IMAGE SEGMENTATION

Image segmentation divides the images into
homogenous and contiguous parts based on
predefined classes. It plays an important
role in the diagnosis of brain tumors
employing MRI technology [2]. Various

techniques are employed. These include (a)
A threshold-based method was introduced
that uses global thresholds and
morphological operations for brain tumor
segmentation [2], [5], (b) Edge detection
techniques employing Sobel operators with
automatic thresholding are used to identify
intensity changes in tumors [6], [7], (c)
Wavelet Transformation, utilized for noise
reduction and data compression in MRI,
decomposes signals into different scales
[7], (d) Morphological operations,
including dilation and erosion have been
used to extract tumors from low-intensity
MRI [8], (e) The Region Growing method
was  proposed for  brain  tumor
segmentation, segments tumor regions
based on pixel similarity using spatial and
texture-related information [9], [10], (f)
The Watershed algorithm was improved for
brain tumor segmentation, segments
images without markers but is prone to
over-segmentation [2], [11], (g) A Genetic
Algorithm  integrated with K-means
clustering was proposed for brain tumor
segmentation, optimizes tumor
segmentation inspired by natural evolution
[12], (h) Fuzzy clustering techniques were
used for accurate tumor boundary
delineation, classifies pixels based on
membership values [13], [14], (i) K-means
clustering has been used to effectively
cluster data within MRI regions [15], (j)
Deformational models have been applied
using Support Vector Machines (SVM)
with Vector Field Convolution (VFC),
define curves or surfaces using both local
and global properties for brain region
segmentation [16], (k) Atlas-based methods
have been utilized for brain tumor
segmentation, combine intensity templates
and segmented labels for accurate
registration using mesh-free techniques
[17]-[19], (1) Markov Random Field
(MRF) models have been integrated,
enhance segmentation by incorporating
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spatial features [20], [21], (m) Artificial
Neural Networks (ANNs) have been
employed, process input features to
improve accuracy and handle complex data
in brain tumor segmentation [22]-[25], (n)
Hybrid methods combining Stationary
Wavelet Transform (SWT) and Pulse-
Coupled Neural Networks (PCNN), and
active contour models for a robust and
accurate ~ MRI-based  brain  tumor
segmentation [26]-[28], (o) and Future
Challenges of MRI, as outlined by the
current research [5], include artifacts,
intensity, inhomogeneity, and tumor
variability, necessitating high-resolution
imaging and advanced filtering techniques
to maintain segmentation accuracy in
clinical applications.

Recent advances, however, show that semi-
supervised learning and transfer learning
approaches (e.g., VGG-19 integrated U-
Net) address these challenges, achieving
dice scores above 0.96 on BraTS and
clinical datasets [29]. Similarly, models
such as ResSAXU-Net and optimized nnU-
Net pipelines improve segmentation
robustness by up to 15% over traditional
CNNeE, particularly for small and enhancing
tumor regions [30].

B. BRAIN TUMOR
SEGMENTATION

IMAGE

Brain tumor image segmentation entails the
dissection of normal brain tissues,
including Gray matter (GM), White matter
(WM), Cerebralspinal fluid (CSF), and
Skull, versus tumor brain tissues in brain
MRI images. The segmentation of the
image into various sections is adopted by
the application of the clustering method
called Fuzzy C-means due to its superior
performance in past studies. The BraTS

dataset is used to measure different
automatic brain tumor segmentation
methods, and the results are mainly
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measured by metrics such as dice score,
specificity, and sensitivity of the different
tumor regions, such as whole tumor, core
tumor (no edema), and active tumor (active
only cells) [2]. Recent studies chose deep
learning neural networks as the state-of-
the-art in glioma localization, based on
multimodal MRI data, such as Magnetic
Resonance Spectroscopy (MRS). To
improve accuracy, Positron Emission
Tomography (PET) and Diffusion Tensor
Imaging (DTI) have to be used [7], [8],
[13]. Challenges with the classical
segmentation  strategies involve the
mapping of the prior knowledge to
probabilistic maps and the choice of strong
features for classifiers [31], [32]. Deep
learning automatic semantic segmentation
systems, e.g., that use the Convolutional
Neural Networks (CNNs) and OpenCV, in
an attempt to classify and segment medical
pictures, including those of brain tumors,
with a high level of accuracy [12].
Discriminative  techniques accentuate
managed learning approaches that involve
phases of feature extraction and
classification, and generative methods
employ probabilistic models on the basis of
available atlases of healthy tissues to
determine the tumor compartments [13],
[33].

The processing pipelines usually involve
noise elimination [34], feature extraction
techniques including Discrete Wavelet
Transforms (DWT) [7] and first-order
statistical feature techniques [35], and
classification using a variety of algorithms,
which can include Support Vector
Machines (SVM) [36], AdaBoost [37],
Neural Networks (NNs) [38], K-Nearest
Neighbor (KNN) [28], Random Forests
(RFs) [39], and Self-Organizing Maps
(SOMs) [23]. Advanced techniques such as
Conditional Random Fields (CRF) [36],
[39] and Connected Components (CC)
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[40], [41] are being explored to refine
segmentation results. The current trends
aim to further automate and enhance brain
tumor  segmentation techniques for
improved diagnostic capabilities [2], [42].
In particular, studies from 2023-2025
demonstrate that transformer-based
architectures such as Swin-HAFNet and
new datasets such as BRISC (2025, 6,000
MRI scans) set new benchmarks, while
lightweight two-sequence models (T1C +
FLAIR) have been shown to achieve
comparable Dice scores (= 0.87-0.93) to
full four-sequence pipelines [43].

II. LITERATURE REVIEW

Convolutional Neural Networks (CNNs)
are frequently employed in brain tumor
diagnosis, as they yield reliable results by
classifying brain tumors as either benign or
malignant. Tools such as MATLAB and
WEKA are used for DNN training and
evaluation, respectively, to obtain better
accuracy [44]. The segmentation work was
transformed into a voxel classification
objective, which can be performed on the
same brain scan [42], [45].

In this study, it is claimed that semantic
segmentation CNNs effectively deal with
large image sizes, address data imbalance,
and can be trained end-to-end on voxel-
wise objectives. The segmentation process
is modeled as voxel categorization. It
selects a subset of voxels for each MRI scan
that may indicate various tissue categories.
Voxels are categorized into numerous
categories based on their respective levels
of intensity, thereby making accurate brain
tumor segmentation possible [46].

A Deep Neural Network (DNN) was
proposed to detect tumors based on
convolutional features obtained using
GoogleNet. The model was tested on two
datasets: BraTS 2018 and BraTS 2019 [43].
The study found that the model is more

accurate and less time is needed to train the
neural network. In the study, DNN proved
to be more accurate in tumor detection than
traditional techniques. A Convolutional
Neural Network (CNN) model was
developed to detect brain tumors by
categorizing MRI scans into glioma,
meningioma, and pituitary tumors [30].
Their CNN model is more accurate than a
number of existing machine learning
methods. A deep learning architecture was
proposed to classify brain tumors using a
Convolutional Neural Network (CNN). The
model was trained on 3,064 MRI scans
[34]. The findings showed that the
proposed CNN model is more accurate at
classification than conventional machine
learning approaches [47].

Another study introduced a brain tumor
segmentation approach that relies on
Convolutional Neural Networks (CNNs)
using small 3D patches of MRI scans [48].
The suggested scheme relies on intensity
normalization and data augmentation to
address problems related to scarce data and
intensity variation. The research observes

that  the algorithm  demonstrates
competitive behavior in tumor
segmentation issues. Based on their

findings, the proposed CNN model is more
precise in segmentation, and it can be
trained on small datasets [49].

A CNN-based brain tumor segmentation
architecture was designed for use on a
large-scale dataset [25]. Their model is
much easier to compute and has lower
memory requirements than the
conventional ones. As noted in the paper,
the proposed CNN architecture
demonstrates the latest brain tumor
segmentation performance, and it can be
implemented on a grand scale. Similarly, an
ensemble of 11 Convolutional Neural
Networks (CNNs) combined with a 3D
Conditional Random Field (CRF) was
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proposed to segment brain tumors [50]. The
suggested model performs better than a
number of other available approaches in
both its accuracy and segmentation, and
shows greater efficiency in computation
[31], [32].

A CNN-based brain tumor segmentation
method that combines local and global
contextual features to detect brain tumors
was proposed [29], [30]. They combined
multi-scale characteristics to improve the
accuracy of segmentation. As per their
observations, the proposed CNN model is
significantly better at segmentation than the
traditional ones. Another 3D Convolutional
Neural Network (CNN) model was
proposed for brain tumor segmentation
[53]. Variational autoencoder
regularization is added to the model to
enhance its generalization. The paper
describes how the proposed 3D CNN
model performed best in the BraTS 2018
competition, proving that it is an effective
mode of brain tumor segmentation [54],
[55].

Medical image analysis is an important
procedure in brain tumor detection. Proper
brain tumor identification helps to
determine the location and size of tumors,
which is important in diagnosing and
planning tumor treatment. Different studies
have used CNN-based models to detect
brain tumors. An example is the Capsule
Network (CapsNet) proposed by Afshar et
al. [56] to classify brain tumors with the
help of MRI scans. The study indicates that
the CapsNet model is more accurate and
stronger than the conventional CNN
models. Furthermore, a multi-grade brain
tumor classification framework was trained
using a deep Convolutional Neural
Network (CNN). A deep Convolutional
Neural Network (CNN) model was
introduced to classify brain tumors [57].
They trained their model on 3,064 TI-
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weighted contrast-enhanced MRI scans.
Based on their study, the proposed CNN
model shows state-of-the-art performance
in brain tumor classification. Another study
proposed a hybrid algorithm that combines
Convolutional Neural Networks (CNNs)
and genetic algorithms to classify brain
tumors [44]. The researchers stated that the
hybrid model outperforms the traditional
CNN models in terms of classification
accuracy and robustness.

The CNN-based models have shown
considerable promise in detecting brain
tumors, as well as in classifying and
segmenting them. These models are more
effective than the classical machine
learning models since they prove to be
more accurate, efficient, and robust. The
literature review shows that CNN-based
approaches are successful in analyzing
brain tumors and may be used in clinical
practice. More recent work (2020-2025)
extends these advances: lightweight deep
learning pipelines have achieved a
classification accuracy of above 98% and
dice segmentation scores exceeding 0.95 on
benchmark datasets [4], [29]. Empirical
comparisons of various deep architectures
indicate that the model and the training
configuration significantly affect the
semantic segmentation of medical images
[58]. These results validate the idea that the
world is evolving towards scalable, highly
automated, and clinically relevant brain
tumor analysis systems [45], [47], [54],
[59].

ITI. DISCUSSION

The level of user interaction determines the
division of the brain tumor segmentation
methods into either manual, semi-
automatic, or fully automatic methods. The
manual systems involve the radiologists
using multimodal MRI data, anatomical,
and physiological data to manually follow

Volume 4 Issue 1, Spring 2024
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the tumor regions slice by slice. This is
done by contouring the tumor in special
software that is able to identify the mass in
the tumor that is enhancing, as compared to
the areas in the tumor that are not
enhancing. Although very popular to test
both semi-automatic and fully automatic
techniques, manual segmentation is time-
consuming and very sensitive to the
radiologist, resulting in a variation in the
segmentation outcome.

Semi-automatic methods imply the
involvement of the user in initiation,
feedback, and evaluation processes. The
initial one is to delimit a region of interest
(ROI) of the estimated tumor region.
Subsequently, it is repeatedly refined on the
data of user feedback using automated
algorithms. The parameters can be adjusted
to input images using preprocessing
techniques. Semi-automatic procedures can
also be faster than manual procedures and
are also subject to intra- and interuser

variation. However, fully automatic
procedures are designed to have no user
interaction. These methods combine
background knowledge with artificial
intelligence to autonomously solve the
segmentation problem. The challenge of
automatic brain tumor segmentation
methods is the focus of continuous research
that is dedicated to the increased accuracy
and efficiency of segmentation [45], [47],
[59].

A. DEEP LEARNING
SEGMENTATION APPROACHES
(BRAIN MRI)

Table I provides a comparative overview of
thresholding-based approaches,
summarizing their automation level,
advantages, and limitations. Thresholding
methods, while simple and computationally
efficient, often face challenges with
intensity, inhomogeneity, and noise,
leading to reduced segmentation accuracy.

TABLE I
DEEP LEARNING-BASED SEGMENTATION OF BRAIN MRI
Methods Automation Advantages Disadvantages
Level
Variation in tissue
CNN (Small 3x3 Reduces intensity across
Fully . .
filters for deeper automatic computation time by subjects poses
architecture) [48] approximately 10x segmentation
challenges
SVM (Deep neural Semi- Achieves hlgher Requires GPU
. segmentation . .
network) [25] automatic implementation
accuracy
Reduces burden of
CNN (3D input, 2D Fully high-dimensional Limited dataset size
input patches) [60] automatic CNNes; efficient affects performance
processing
CNN (4 CNNs + RF Fully Comblpes mult.lple Increas§d
. . modalities for higher computational
classifier) [61] automatic .
accuracy complexity
CNN (Two-pathway: Fully alt-z:slle:snflcl)lrltelz-f;zziieve Requires additional
local & global) [25] automatic p filtering and overhead

segmentation
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Automation

Methods Level Advantages Disadvantages
Improves
Fully segmentation Limited scalability to
CNN + K-means [62] automatic without MRF large datasets
preprocessing
3DCNN (3D Handles 4D input; High processing load,
. Fully . . .S
convolutional filters) . provides strong 3D requires specialized
automatic .
[63] representation layers
1 o
DeepLab v3, FCN, Semi- Aic;nle Zed 9r§'98ir/10 Limited to local
U-Net, Dilation-10 emt- pixet accuracy dataset; needs broader
automatic breast tumor R
[58], [64] : validation
detection
U-Net++ with Improves boundary
attention gates Fully segmentation with Computationally more
(nested skip automatic nested skip demanding
connections) [36] pathways
Swin Transformer + Captures lono-rance
U-Net hybrid p g-rang .
. Fully dependencies; Requires large-scale
(TransUNet variants) . . . .
automatic  improved Dice score training data
[3], [46], [51], [52],
for MRI
[55]
nnU-Net (self- Provides out-of-the-
configuring Fully box performance High training time and
framework) [29], automatic across multiple MRI GPU demand
[53] datasets
SAM (Segment Semi Enables Z'CI'O'—Sh.Ot . .
. emi- generalization; Requires medical fine-
Anything Model) . .
automatic robust cross-dataset tuning for MRI tasks
fine-tuned [4], [29] .
segmentation
B. STATISTICAL / CLASSICAL relationships between pixels. These
APPROACHES approaches improve homogeneity in
Table II  highlights  region-based segmented restons butlmla;y suf.ffer from
approaches which  exploit  spatial over—segmentatlon or leaxage 1f tumor
PP ’ boundaries are not well defined.
TABLE 11
STATISTICAL / CLASSICAL APPROACHES
Methods Automation Advantages Disadvantages
Level
Misclassifies some
Fully Identifies six tissue white matter as edema;
K-means [15] . . .
automatic classes efficiently relies solely on

intensity
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Automation

Methods Level Advantages Disadvantages
Fuzzy C-Means Fully rgotr}rllb(linets rinr;lltrlpie High computational
FCM) [14 automatic cthods fo Improve complexit
plexity
accuracy
FCM [65] Fully Enhances robustness of High computational
- automatic initialization complexity
. Lack of spatial
FCM [66] Fully . Reliable, fast,.and information affects
automatic robust to noise
accuracy
FCM Full Handles intensity Complex upper/lower
(Intuitionistic au tomZtic inhomogeneity; reduces approximation
Rough Set) [67] randomness selection
Combines local voxel- . .
MREF [68] Fully . based and contextual High comp utgﬂonal
automatic . complexity
segmentation
Enhanced Spatial ImproYes bias ﬁe'ld Implementation
Fully correction and noise .
FCM (e-sFCM) automatic handling via SSIM complexity and
[32], [45] g VI validation effort
weighting
Hybrid FCM- Fully Optlmlzesf cluslterlrig by PSO }nchases
PSO [32] automatic PSO org oba. computational cost and
= optimum centroids tuning overhead
C. EVOLUTIONARY /  c-means algorithms. These methods are
OPTIMIZATION-BASED popular for their ability to handle complex
APPROACHES data distributions but they can be sensitive
Table T outlines clustering-based to initialization and noise, requiring careful

approaches, including k-means and fuzzy

parameter tuning.

TABLE III
EVOLUTIONARY / OPTIMIZATION-BASED APPROACHES

Automation

Methods Level Advantages Disadvantages
Finds optimal number .
GA [12] Fully of selzgmentation Choosing fitness
- automatic regions function is difficult
Contour-based . . .
(MCSS. Cuckoo Fully . High segmentation More cgmputatlonally
Searc’h) [37] automatic accuracy intensive than ACM
Hybrid (GAANN, Semi- High accuracy and Cogllcili:tsieo(ilal
GASVM) [28] automatic high speed putatic
complexity
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Methods Automation Advantages Disadvantages
Level
GA+ Dc?ep Feature Fully Selects informative Increased pipeline
Selection (GA- automatic deep features complexit
DEFES) [43] p plexity
Full Improves contour PSO adds
PSO-AC [37] Y initialization and hyperparameter
automatic
convergence overhead
. Automates . .
Evo-Trans [3], [59] Seml-. search/tuning for High computational
automatic cost
transformers
D. ATLAS AND  MODEL-BASED clustering techniques. These hybrid
APPROACHES approaches offer improved accuracy in

Table IV presents morphological and

distinguishing tumor boundaries and tissue
types, though they often come with high

clustering-based approaches, which computational complexity
combine shape-based analysis with P p ’
TABLE IV
ATLAS AND MODEL-BASED APPROACHES
Methods Automation Advantages Disadvantages
Level
Atlas-based Fully Works well on noisy, Accuracy depends
segmentation [18] automatic low-resolution MRIs on graph priors
Robust; no .
Atlas-b.ased Not specified deformation model No prep rocessing
segmentation [19] ) applied
required
Joint segmentation & Semi- Processes mu!tlp le Needs improved
. . . seeds for multifocal . .
registration [69] automatic . registration
gliomas
Generative + Semi- Robust to Requires user
Cellular Automata . . . .

[70] automatic heterogeneity interaction
Probabilistic atlas + Fully Av:fliatllsl lgﬁﬁsi;ml;éteed Requires large
DL priors [39], [45] automatic p annotated datasets

accuracy
Multi-atlas + fusion Fully High robustness via Computationally
(DeepMedic) [50] automatic voting expensive
i + . . -
Hybrid atlas Fully Handles anatomical High training
deformable (3D . . .
automatic variability complexity

CNN) [53]. [54]

E. EDGE, REGION, AND CONTOUR-
BASED SEGMENTATION

Table V deals with machine learning-based
methods, such as Support Vectors

Department of Information Systems

Machines (SVMs) and random forests,
which make use of handcrafted features.

These techniques can make

dramatic

progress in segmentation quality but need
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large annotated datasets to train and can be

constrained by feature engineering.

TABLE V
EDGE, REGION, AND CONTOUR-BASED SEGMENTATION
Methods Automation Advantages Disadvantages
Level
Contour-based Semi- Works for various .
segmentation [33] automatic tumors Limited 3D support
Region growing [9] Semi-. Reduces over- apd Seed select.ion is
= automatic under-segmentation challenging
Edge-based Fully Simple Produces thick
segmentation [6] automatic boundaries
Edge (Fuzzy + K- Fully Improves threshold Computationally
means) [5] automatic setting heavy
Hybrid edge-region Fully (;(?}r:il:\lzrézsbgiteei’ Needs large
DL [42], [45] automatic annotated datasets
accuracy
Deep active contours Semi-/Fully Handles complex Computationally
[71] automatic boundaries expensive
Region-edge fusion Fully Achieves SOTA o
(Transformer) [3], . . . High training cost
[59] automatic Dice; robust to noise
F. MORPHOLOGICAL AND  Networks (CNNs) and their variations
CLUSTERING APPROACHES show  state-of-the-art  behavior in
automatically learning hierarchical

Table VI outlines the deep learning-based
methods which have recently become the
most potent brain tumor segmentation

features, but require large amounts of
computational resources and large-scale
annotated datasets.

algorithms. Convolutional Neural
TABLE VI
MORPHOLOGICAL AND CLUSTERING APPROACHES
Methods Automation Advantages Disadvantages
Level
Morphological Fully Accurate on low- Requires multiple
segmentation [8] automatic intensity images iterations
SOM [23] Semi-. Integ:ttieasl ;g)riizland High computgtional
automatic . . complexity
information
Vector Quantization Fully Separates damaged Perfect mapping is
via SOM [24] automatic vs. normal tissues difficult
Watershed Fully Marker-controlled; Requires precise
segmentation [11] automatic improves accuracy marking
Morphology + DL Fully Produces better Sensitive to
fusion [36], [54] automatic boundaries hyperparameters
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Automation

Methods Advantages Disadvantages
Level
. Fully Learns robust Needs large labeled
Deep clustering [40] automatic embeddings datasets
Hybrid Watershed + Fully P;ZZ?:Z:: s\(}egf; Computationally
U-Net [29], [36] automatic expensive

segmentation

G. HYBRID AND MISCELLANEOUS
APPROACHES

Lastly, Table VII shows the hybrid and
miscellaneous techniques, which combine
several techniques or include manual

references, such as human raters. They are
strong and versatile solutions, a fusion of
various methods, but can be associated with
more extended training periods or
inaccurate hand judgments.

TABLE VII
HYBRID AND MISCELLANEOUS APPROACHES

Methods Automation Advantages Disadvantages
Level
. Fully S
Hybrid method [27] . Accurate and robust Longer training time
automatic
Human Rater Serves as a benchmark
Manual for algorithm Interrater variability
(manual) [72] .
evaluation
Hybrid CNN + Fully Achieves top BraTS Computationally
Clustering [53] automatic performance intensive
Attention-guided Fully State-of-the-art 3D Complex network
Hybrid U-Net [29] automatic MRI segmentation design
Transformer + . Training is
CNN Hybrids [3], Fully . Provides better global computationally
automatic context
[55] heavy
Semi-supervised Semi- Utilizes unlabeled data  Sensitive to domain
Hybrids [40] automatic effectively shift

The qualitative analysis of the above seven
tables shows that there has been a gradual
shift to fully automated procedures.
Further, with the development of
algorithms, thresholding and region-based
algorithms have been replaced with
machine learning, and their accuracy,
efficiency, and robustness have improved.
CNNs have been shown to be effective. It
is one of the most effective methods in
response to the difficulties concerning brain
tumor image segmentation, due to its ability
to automatically learn complicated features

Department of Information Systems

on the basis of multimodal statistics. A
multimodal 3D CNN-based segmentation
scheme for glioma in MRI was developed
[63]. They are based on the approach to 3D
patches created using various MRI
modalities as inputs and give them an
efficient means of manipulating 4D data
that incorporates spatial information of
intensity across modalities. In an equally
effective approach, a method was proposed
to convert 4D information into a format
compatible with conventional 2D CNN
networks [60], which is an effective saving

Volume 4 Issue 1, Spring 2024
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of the computation cost, yet efficiency is
guaranteed. But the results were achieved
in both pieces of research with small
datasets, which raises uncertainty about
how they can be extrapolated.

To address these constraints, a two-
pathway CNN cascaded architecture was
introduced to process both smaller patches
(33 x 33 pixels) and larger patches (65 x 65
pixels) from various MRI modalities [25].
This approach yields much better
segmentation accuracy and resilience by
juxtaposing local tissue data against global
contextual data. Moreover, it is easy to
interact with to initialize, less sensitive to
initialization errors, efficient to compute
with, and independent of the tumor type.
Continuing on the topic, a three-phase
pipeline consisting of preprocessing, CNN-
based classification, and post-processing
was proposed [48]. They introduced a
specific approach to deal with various
issues, such as changes in intensity, due to
distortions in the bias field of MRI images
which is likely to affect tissue
classification. In a different approach, the
problem of multifocal segmentation of
gliomas was addressed using multiple
tumor seed points and a tumor growth
model, demonstrating good estimation of
tumor shape even under adverse conditions
[69]. It is also worth noting the role of
human raters. Manual segmentation is
challenging in any case, especially in
challenging areas, such as the tumor core
and active core, as seen in high-grade
gliomas (Human Raters [72]. These are
specific areas of improvement that have
been demonstrated by algorithmic methods,
being more reproducible and efficient than
human performance. Lastly, a local
structure  prediction framework using
Convolutional Neural Networks (CNNs)
was proposed for 3D segmentation
problems [62]. Their approach produced

excellent results on dense anatomical
annotation by directly modelling local
anatomical structures and by avoiding
preprocessing by Markov Random Fields
(MRFs). In general, the recent development
of CNN-based brain tumor segmentation
methods shows that their innovative
architecture and training methods can cope
with the challenges of multimodal imaging.
The further progress resulted in significant
improvements in accuracy, efficiency, and
robustness of segmentation, and, once
again, the disruptive power of deep learning
in this sector [45], [54], [59].

IV.CHALLENGES IN AUTOMATIC BRAIN
TUMOR SEGMENTATION

Automatic segmentation of brain tumors is
not an easy task since accuracy must be
very high when a clinical application is
required. The shape, size, and location of
the tumor are diverse and heterogeneous in
all patients, making the segmentation of the
tumor very difficult. Furthermore, the
nonuniform and jagged edges of tumors
restrict the success of the conventional
edge- and region-based approaches.
Clinical data obtained from routine scans or
publicly available datasets introduces
additional complexity, with variations in
intensity biases, contrast levels, and
imaging protocols across different MRI
modalities further challenging
segmentation efforts [7], [29], [45], [54],
(591, [72].

A. CHALLENGES
SEGMENTATION

WITH MANUAL

Manual segmentation is both very precise
and very time-consuming, especially when
dealing with large volumes of volumetric
data, which can take hours to annotate on a
slice-by-slice basis. Assessment of several
axial sections is tedious and subject to inter-
and intra-operative inconsistency.
Segmentation results can also be affected
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by the display quality, brightness, and
contrast adjustment. Specialization is
necessary  yet  changeable  among
radiologists, and this contributes to the
drawbacks of manual segmentation [27],
[72].

B. CHALLENGES WITH
AUTOMATIC SEGMENTATION

SEMI-

Semi-automatic techniques reduce the
disadvantages of manual techniques by
enabling user-specified seed points or
region- of-interest (ROI) selection.
Although it enhances uniformity and
minimizes the overall effort, semi-
automatic algorithms, nevertheless,
demand considerable human intervention,
parameter optimization, and trial-and-error

procedures.  Although auto- mated
segmentation is quicker than manual
segmentation, there can be variance
between users, which can affect
reproducibility [2], [9], [L1], [72].

C. ADVANTAGES OF FULLY

AUTOMATIC SEGMENTATION

The fully automatic segmentation would
reduce the interaction with the user and
minimize the segmentation time, as well as
increase the consistency of the results.
These techniques do not rely on display
screen effects on image quality, which
increases their applicability to the clinic.
High-end automated techniques use
machine learning [73], skeleton-based ones
[74], probabilistic graphical models [17],
[68], and deep neural networks [25], [29],
[46]-[48], [52], [55], [59], in order to
overcome the limitation of manual and
semi-automatic approaches.

D. IMAGE MODALITY
PROCESSING CHALLENGES

AND

Several imaging modalities (MRI, CT,
PET) present imaging modality challenges.
MRI images can be affected by RF noises,

Department of Information Systems
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bias field artifacts, and motion-related
distortions; the CT images could contain
streak artifacts or beam hardening effects.
The artifacts are harmful to the quality of
the image and consistency, which is
challenging to automated segmentation [7],
(271, [45], [54], [72], [73].

E. PATIENT- AND
RELATED CHALLENGES

ANATOMY-

Anatomical differences in patients that are
not unique to the patient and depend on age

and pathology, as well as natural
differences in structure, also make
segmentation more challenging. The

artifacts of movement, particularly in
dynamic organs or owing to natural
movement during acquisition, bring about
blurring and ghosting effects which are a
challenge to segmentation algorithms [29],
[31], [69], [72], [75].

F. APPLICATION-SPECIFIC
CHALLENGES

Medical imaging does not have
standardized algorithms and benchmark
datasets, which are major obstacles to the
use of automatic segmentation tools.
Performance comparison and
benchmarking across studies is challenging
due to the absence of a universal truth [27],
[29], [45], [39], [72], [73].

Although tremendous progress has been
made in the automatic segmentation
methods, there are still difficulties in
imaging modalities and patient variations,
as well as clinical applications. To resist
them, it is necessary to keep on creating
strong algorithms that can withstand them
by managing a wide variety of imaging
conditions, anatomical complexities, and
data heterogeneity. The overall survey and
analysis, as shown in Tables 1-7, indicate
that there is no single standardized method
that can be used to deal with all the
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challenges in brain tumor segmentation.
Segmentation algorithms are effective
depending on image quality, user
interaction needed, imaging modality, and
tissue homogeneity. Additional features
might be required in developing fully
automatic segmentation methods that can
be applied to clinical tasks, e.g., in multi-
scale feature extraction, deep learning-
based context awareness, and hybrid model
structures. Table 1-7 points out the different
degrees of the necessary user intervention,
as well as the merits and demerits of the
various  state-of-the-art  segmentation
methods. After discussion, the main
difficulties related to each approach are
revealed, and recommendations are made
in order to focus future research, with a
special focus on a comparative analysis of
the manual, semi-automatic, and fully
automatic segmentation methods [46], [47],
[49], [52], [55].

V. CONCLUSION AND FUTURE WORK

Automated detection of brain tumors in
patients is essential for better outcomes;
however, it requires the development of
reliable machines that can be clinically
implemented. Segmentation, particularly in
multi-modal 3D MRI, remains challenging.
Although there has been considerable
improvement, performance still varies
across methods. Fully automatic techniques
do not involve human intervention but
usually require high-quality data and large
computational resources, while semi-
automatic ones reduce the workload but
still require human involvement. MRI is
primarily used because of its superior tissue
contrast and relatively low noise, though
inter-scanner, inter-protocol, and inter-
patient variability hinder generalization. In
future studies, the focus should be on
rigorously validated and fully automatic
pipelines with robustness and uncertainty
quantification;  data-efficient learning

approaches (self-, weak-, semi-supervised,
active, or federated) to reduce annotation
costs and address domain shift; and
efficient multi-modal processing. Within
clinical latency and memory constraints,
3D fusion methods (e.g., CNN-
Transformer hybrids) should provide
interpretable, well-calibrated predictions
integrated into workflows and cross-center
assessments,  including  standardized
reporting.  Advancements in  these
directions may lead to more accurate,
faster, and reliable tumor segmentation
with broader clinical applications.
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