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ABSTRACT Automated segmentation is also essential in planning treatment and 
enhancing patient outcomes because early and correct brain tumor detection is crucial for 
multi-modal 3D MRI, which is still difficult. Image variability, inhomogeneity of tumor 
morphology, inhomogeneous intensity, motion, compromise, and noisiness, along with 
non-homogeneous borders of the tumor, compromise generalization and consistency. 
Manual delineation, although still common in clinical settings, is labor-intensive and 
operator-dependent. Semi-automatic processes are less labor-intensive yet still require user 
intervention and close tuning of parameters. Fully automatic methods are promising, 
particularly with recent deep learning models, which are high-quality, but they require 
high-quality data, a large volume of computation, and careful handling of domain shift 
issues. This literature review summarizes traditional and modern MRI-based segmentation 
algorithms, such as classical clustering and atlas-based algorithms, convolutional 
networks, and new CNN–Transformer hybrid models, along with their strengths, 
weaknesses, and common failure modes. We outline practical considerations for clinical 
translation (robustness, uncertainty, efficiency, and interpretability) and identify 
opportunities for future work in data-efficient learning, multi-site validation, and workflow 
integration. Advancing along these directions can yield more accurate, scalable, and 
clinically useful brain tumor segmentation systems. 

INDEX TERMS automated detection, brain tumor, diagnostic accuracy, medical imaging, 
MRI segmentation 

I. INTRODUCTION 

The brain examination images are normally 
acquired by Magnetic Resonance Imaging 
(MRI). Noise or attenuation problems, 
including changes in intensity during 
acquisition, may affect them. MRI is an 
appropriate tool to use in brain tumors with 
non-invasive characteristics. In addition, 
the images of the brain also depict other 
brain structures, including grey matter, 
cerebral fluid, skull tissues, and white 
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matter [1]. These steps, namely, 
preprocessing, segmentation, extraction of 
relevant tumor features, and classification, 
set the workflow of the system [1]. 
Preprocessing includes the denoising of the 
image frames, the coarsening of the frames, 
and skull tissue removal. In the 
preprocessing stage, common filters used 
are skull stripping, histogram equalization, 
and the median filter. Segmentation 
accuracy can be improved, and 
computation time can be reduced by 
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partitioning the preprocessed images. 
Processing involves the multiplexing of 
input and output images, calculating a 
global threshold, reconstruction opening, 
and morphological closing. Thereafter, 
valuable features are collected and trimmed 
down. Statistical features are derived, and 
the Grey Level Co-occurrence Matrix 
(GLCM) is calculated. Then, principal 
components are determined and features 
are extracted using GLCM, among others. 

The images fall into the benign and 
malignant categories. In this step, a Support 
Vector Machine (SVM) classifier is 
trained, its parameters are adjusted, and test 
images are predicted. Classification 
accuracy serves as the basis for evaluation, 
and metrics such as the confusion matrix 
are utilized to compute sensitivity and 
specificity. These processes are frequently 
implemented with the use of well-known 
programs, such as Python and MATLAB. 
This is demonstrated by a segmentation 
method described in [1], [2]. This method 
used a dataset consisting of 19 brain images 
impacted by four tumor types, namely 
meningioma and sarcoma, glioma, 
metastatic, and adenocarcinoma. Dataset 
details are critical for the current study. 
There are tumors of three sizes: small, 
medium, and large. More recent work 
highlights that advanced deep learning 
models, including transformer-based 
architectures and foundation models, are 
increasingly integrated into MRI analysis 
for tumor detection and segmentation, 
improving generalization across datasets 
and clinical settings [3], [4]. 

A. IMAGE SEGMENTATION 

Image segmentation divides the images into 
homogenous and contiguous parts based on 
predefined classes. It plays an important 
role in the diagnosis of brain tumors 
employing MRI technology [2]. Various 

techniques are employed. These include (a) 
A threshold-based method was introduced 
that uses global thresholds and 
morphological operations for brain tumor 
segmentation [2], [5], (b) Edge detection 
techniques employing Sobel operators with 
automatic thresholding are used to identify 
intensity changes in tumors [6], [7], (c) 
Wavelet Transformation, utilized for noise 
reduction and data compression in MRI, 
decomposes signals into different scales 
[7], (d) Morphological operations, 
including dilation and erosion have been 
used to extract tumors from low-intensity 
MRI [8], (e) The Region Growing method 
was proposed for brain tumor 
segmentation, segments tumor regions 
based on pixel similarity using spatial and 
texture-related information [9], [10], (f) 
The Watershed algorithm was improved for 
brain tumor segmentation, segments 
images without markers but is prone to 
over-segmentation [2], [11], (g) A Genetic 
Algorithm integrated with K-means 
clustering was proposed for brain tumor 
segmentation, optimizes tumor 
segmentation inspired by natural evolution 
[12], (h) Fuzzy clustering techniques were 
used for accurate tumor boundary 
delineation, classifies pixels based on 
membership values [13], [14], (i) K-means 
clustering has been used to effectively 
cluster data within MRI regions [15], (j) 
Deformational models have been applied 
using Support Vector Machines (SVM) 
with Vector Field Convolution (VFC), 
define curves or surfaces using both local 
and global properties for brain region 
segmentation [16], (k) Atlas-based methods 
have been utilized for brain tumor 
segmentation, combine intensity templates 
and segmented labels for accurate 
registration using mesh-free techniques 
[17]–[19], (l) Markov Random Field 
(MRF) models have been integrated, 
enhance segmentation by incorporating 



Khan and Afzal 

65 
Department of Information Systems 

Volume 4 Issue 1, Spring 2024 

spatial features [20], [21], (m) Artificial 
Neural Networks (ANNs) have been 
employed, process input features to 
improve accuracy and handle complex data 
in brain tumor segmentation [22]–[25], (n) 
Hybrid methods combining Stationary 
Wavelet Transform (SWT) and Pulse-
Coupled Neural Networks (PCNN), and 
active contour models for a robust and 
accurate MRI-based brain tumor 
segmentation [26]–[28], (o) and Future 
Challenges of MRI, as outlined by the 
current research [5], include artifacts, 
intensity, inhomogeneity, and tumor 
variability, necessitating high-resolution 
imaging and advanced filtering techniques 
to maintain segmentation accuracy in 
clinical applications. 

Recent advances, however, show that semi-
supervised learning and transfer learning 
approaches (e.g., VGG-19 integrated U-
Net) address these challenges, achieving 
dice scores above 0.96 on BraTS and 
clinical datasets [29]. Similarly, models 
such as ResSAXU-Net and optimized nnU-
Net pipelines improve segmentation 
robustness by up to 15% over traditional 
CNNs, particularly for small and enhancing 
tumor regions [30]. 

B. BRAIN TUMOR IMAGE 
SEGMENTATION 

Brain tumor image segmentation entails the 
dissection of normal brain tissues, 
including Gray matter (GM), White matter 
(WM), Cerebralspinal fluid (CSF), and 
Skull, versus tumor brain tissues in brain 
MRI images. The segmentation of the 
image into various sections is adopted by 
the application of the clustering method 
called Fuzzy C-means due to its superior 
performance in past studies. The BraTS 
dataset is used to measure different 
automatic brain tumor segmentation 
methods, and the results are mainly 

measured by metrics such as dice score, 
specificity, and sensitivity of the different 
tumor regions, such as whole tumor, core 
tumor (no edema), and active tumor (active 
only cells) [2]. Recent studies chose deep 
learning neural networks as the state-of-
the-art in glioma localization, based on 
multimodal MRI data, such as Magnetic 
Resonance Spectroscopy (MRS). To 
improve accuracy, Positron Emission 
Tomography (PET) and Diffusion Tensor 
Imaging (DTI) have to be used [7], [8], 
[13]. Challenges with the classical 
segmentation strategies involve the 
mapping of the prior knowledge to 
probabilistic maps and the choice of strong 
features for classifiers [31], [32]. Deep 
learning automatic semantic segmentation 
systems, e.g., that use the Convolutional 
Neural Networks (CNNs) and OpenCV, in 
an attempt to classify and segment medical 
pictures, including those of brain tumors, 
with a high level of accuracy [12]. 
Discriminative techniques accentuate 
managed learning approaches that involve 
phases of feature extraction and 
classification, and generative methods 
employ probabilistic models on the basis of 
available atlases of healthy tissues to 
determine the tumor compartments [13], 
[33]. 

The processing pipelines usually involve 
noise elimination [34], feature extraction 
techniques including Discrete Wavelet 
Transforms (DWT) [7] and first-order 
statistical feature techniques [35], and 
classification using a variety of algorithms, 
which can include Support Vector 
Machines (SVM) [36], AdaBoost [37], 
Neural Networks (NNs) [38], K-Nearest 
Neighbor (KNN) [28], Random Forests 
(RFs) [39], and Self-Organizing Maps 
(SOMs) [23]. Advanced techniques such as 
Conditional Random Fields (CRF) [36], 
[39] and Connected Components (CC) 
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[40], [41] are being explored to refine 
segmentation results. The current trends 
aim to further automate and enhance brain 
tumor segmentation techniques for 
improved diagnostic capabilities [2], [42]. 
In particular, studies from 2023–2025 
demonstrate that transformer-based 
architectures such as Swin-HAFNet and 
new datasets such as BRISC (2025, 6,000 
MRI scans) set new benchmarks, while 
lightweight two-sequence models (T1C + 
FLAIR) have been shown to achieve 
comparable Dice scores (≈ 0.87–0.93) to 
full four-sequence pipelines [43]. 

II. LITERATURE REVIEW 

Convolutional Neural Networks (CNNs) 
are frequently employed in brain tumor 
diagnosis, as they yield reliable results by 
classifying brain tumors as either benign or 
malignant. Tools such as MATLAB and 
WEKA are used for DNN training and 
evaluation, respectively, to obtain better 
accuracy [44]. The segmentation work was 
transformed into a voxel classification 
objective, which can be performed on the 
same brain scan [42], [45]. 

In this study, it is claimed that semantic 
segmentation CNNs effectively deal with 
large image sizes, address data imbalance, 
and can be trained end-to-end on voxel-
wise objectives. The segmentation process 
is modeled as voxel categorization. It 
selects a subset of voxels for each MRI scan 
that may indicate various tissue categories. 
Voxels are categorized into numerous 
categories based on their respective levels 
of intensity, thereby making accurate brain 
tumor segmentation possible [46].  

A Deep Neural Network (DNN) was 
proposed to detect tumors based on 
convolutional features obtained using 
GoogleNet. The model was tested on two 
datasets: BraTS 2018 and BraTS 2019 [43]. 
The study found that the model is more 

accurate and less time is needed to train the 
neural network. In the study, DNN proved 
to be more accurate in tumor detection than 
traditional techniques. A Convolutional 
Neural Network (CNN) model was 
developed to detect brain tumors by 
categorizing MRI scans into glioma, 
meningioma, and pituitary tumors [30]. 
Their CNN model is more accurate than a 
number of existing machine learning 
methods. A deep learning architecture was 
proposed to classify brain tumors using a 
Convolutional Neural Network (CNN). The 
model was trained on 3,064 MRI scans 
[34]. The findings showed that the 
proposed CNN model is more accurate at 
classification than conventional machine 
learning approaches [47].  

Another study introduced a brain tumor 
segmentation approach that relies on 
Convolutional Neural Networks (CNNs) 
using small 3D patches of MRI scans [48]. 
The suggested scheme relies on intensity 
normalization and data augmentation to 
address problems related to scarce data and 
intensity variation. The research observes 
that the algorithm demonstrates 
competitive behavior in tumor 
segmentation issues. Based on their 
findings, the proposed CNN model is more 
precise in segmentation, and it can be 
trained on small datasets [49]. 

A CNN-based brain tumor segmentation 
architecture was designed for use on a 
large-scale dataset [25]. Their model is 
much easier to compute and has lower 
memory requirements than the 
conventional ones. As noted in the paper, 
the proposed CNN architecture 
demonstrates the latest brain tumor 
segmentation performance, and it can be 
implemented on a grand scale. Similarly, an 
ensemble of 11 Convolutional Neural 
Networks (CNNs) combined with a 3D 
Conditional Random Field (CRF) was 
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proposed to segment brain tumors [50]. The 
suggested model performs better than a 
number of other available approaches in 
both its accuracy and segmentation, and 
shows greater efficiency in computation 
[51], [52]. 

A CNN-based brain tumor segmentation 
method that combines local and global 
contextual features to detect brain tumors 
was proposed [29], [30]. They combined 
multi-scale characteristics to improve the 
accuracy of segmentation. As per their 
observations, the proposed CNN model is 
significantly better at segmentation than the 
traditional ones. Another 3D Convolutional 
Neural Network (CNN) model was 
proposed for brain tumor segmentation 
[53]. Variational autoencoder 
regularization is added to the model to 
enhance its generalization. The paper 
describes how the proposed 3D CNN 
model performed best in the BraTS 2018 
competition, proving that it is an effective 
mode of brain tumor segmentation [54], 
[55]. 

Medical image analysis is an important 
procedure in brain tumor detection. Proper 
brain tumor identification helps to 
determine the location and size of tumors, 
which is important in diagnosing and 
planning tumor treatment. Different studies 
have used CNN-based models to detect 
brain tumors. An example is the Capsule 
Network (CapsNet) proposed by Afshar et 
al. [56] to classify brain tumors with the 
help of MRI scans. The study indicates that 
the CapsNet model is more accurate and 
stronger than the conventional CNN 
models. Furthermore, a multi-grade brain 
tumor classification framework was trained 
using a deep Convolutional Neural 
Network (CNN). A deep Convolutional 
Neural Network (CNN) model was 
introduced to classify brain tumors [57]. 
They trained their model on 3,064 T1-

weighted contrast-enhanced MRI scans. 
Based on their study, the proposed CNN 
model shows state-of-the-art performance 
in brain tumor classification. Another study 
proposed a hybrid algorithm that combines 
Convolutional Neural Networks (CNNs) 
and genetic algorithms to classify brain 
tumors [44]. The researchers stated that the 
hybrid model outperforms the traditional 
CNN models in terms of classification 
accuracy and robustness. 

The CNN-based models have shown 
considerable promise in detecting brain 
tumors, as well as in classifying and 
segmenting them. These models are more 
effective than the classical machine 
learning models since they prove to be 
more accurate, efficient, and robust. The 
literature review shows that CNN-based 
approaches are successful in analyzing 
brain tumors and may be used in clinical 
practice. More recent work (2020-2025) 
extends these advances: lightweight deep 
learning pipelines have achieved a 
classification accuracy of above 98% and 
dice segmentation scores exceeding 0.95 on 
benchmark datasets [4], [29]. Empirical 
comparisons of various deep architectures 
indicate that the model and the training 
configuration significantly affect the 
semantic segmentation of medical images 
[58]. These results validate the idea that the 
world is evolving towards scalable, highly 
automated, and clinically relevant brain 
tumor analysis systems [45], [47], [54], 
[59]. 

III. DISCUSSION 

The level of user interaction determines the 
division of the brain tumor segmentation 
methods into either manual, semi-
automatic, or fully automatic methods. The 
manual systems involve the radiologists 
using multimodal MRI data, anatomical, 
and physiological data to manually follow 
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the tumor regions slice by slice. This is 
done by contouring the tumor in special 
software that is able to identify the mass in 
the tumor that is enhancing, as compared to 
the areas in the tumor that are not 
enhancing. Although very popular to test 
both semi-automatic and fully automatic 
techniques, manual segmentation is time-
consuming and very sensitive to the 
radiologist, resulting in a variation in the 
segmentation outcome. 

Semi-automatic methods imply the 
involvement of the user in initiation, 
feedback, and evaluation processes. The 
initial one is to delimit a region of interest 
(ROI) of the estimated tumor region. 
Subsequently, it is repeatedly refined on the 
data of user feedback using automated 
algorithms. The parameters can be adjusted 
to input images using preprocessing 
techniques. Semi-automatic procedures can 
also be faster than manual procedures and 
are also subject to intra- and interuser 

variation. However, fully automatic 
procedures are designed to have no user 
interaction. These methods combine 
background knowledge with artificial 
intelligence to autonomously solve the 
segmentation problem. The challenge of 
automatic brain tumor segmentation 
methods is the focus of continuous research 
that is dedicated to the increased accuracy 
and efficiency of segmentation [45], [47], 
[59]. 

A. DEEP LEARNING 
SEGMENTATION APPROACHES 
(BRAIN MRI) 

Table I provides a comparative overview of 
thresholding-based approaches, 
summarizing their automation level, 
advantages, and limitations. Thresholding 
methods, while simple and computationally 
efficient, often face challenges with 
intensity, inhomogeneity, and noise, 
leading to reduced segmentation accuracy. 

TABLE I 
DEEP LEARNING-BASED SEGMENTATION OF BRAIN MRI 

Methods Automation 
Level Advantages Disadvantages 

CNN (Small 3×3 
filters for deeper 
architecture) [48] 

Fully 
automatic 

Reduces 
computation time by 
approximately 10× 

Variation in tissue 
intensity across 
subjects poses 
segmentation 

challenges 

SVM (Deep neural 
network) [25] 

Semi-
automatic 

Achieves higher 
segmentation 

accuracy 

Requires GPU 
implementation 

CNN (3D input, 2D 
input patches) [60] 

Fully 
automatic 

Reduces burden of 
high-dimensional 
CNNs; efficient 

processing 

Limited dataset size 
affects performance 

CNN (4 CNNs + RF 
classifier) [61] 

Fully 
automatic 

Combines multiple 
modalities for higher 

accuracy 

Increased 
computational 

complexity 

CNN (Two-pathway: 
local & global) [25] 

Fully 
automatic 

Uses multi-scale 
patches for effective 

segmentation 

Requires additional 
filtering and overhead 
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Methods Automation 
Level Advantages Disadvantages 

CNN + K-means [62] Fully 
automatic 

Improves 
segmentation 
without MRF 
preprocessing 

Limited scalability to 
large datasets 

3D CNN (3D 
convolutional filters) 

[63] 

Fully 
automatic 

Handles 4D input; 
provides strong 3D 

representation 

High processing load; 
requires specialized 

layers 

DeepLab v3, FCN, 
U-Net, Dilation-10 

[58], [64] 

Semi-
automatic 

Achieved 92.98% 
pixel accuracy in 

breast tumor 
detection 

Limited to local 
dataset; needs broader 

validation 

U-Net++ with 
attention gates 

(nested skip 
connections) [36] 

Fully 
automatic 

Improves boundary 
segmentation with 

nested skip 
pathways 

Computationally more 
demanding 

Swin Transformer + 
U-Net hybrid 

(TransUNet variants) 
[3], [46], [51], [52], 

[55] 

Fully 
automatic 

Captures long-range 
dependencies; 

improved Dice score 
for MRI 

Requires large-scale 
training data 

nnU-Net (self-
configuring 

framework) [29], 
[53] 

Fully 
automatic 

Provides out-of-the-
box performance 

across multiple MRI 
datasets 

High training time and 
GPU demand 

SAM (Segment 
Anything Model) 

fine-tuned [4], [29] 

Semi-
automatic 

Enables zero-shot 
generalization; 

robust cross-dataset 
segmentation 

Requires medical fine-
tuning for MRI tasks 

B. STATISTICAL / CLASSICAL 
APPROACHES 

Table II highlights region-based 
approaches, which exploit spatial 

relationships between pixels. These 
approaches improve homogeneity in 
segmented regions but may suffer from 
over-segmentation or leakage if tumor 
boundaries are not well defined. 

TABLE II 
STATISTICAL / CLASSICAL APPROACHES 

Methods Automation 
Level Advantages Disadvantages 

K-means [15] Fully 
automatic 

Identifies six tissue 
classes efficiently 

Misclassifies some 
white matter as edema; 

relies solely on 
intensity 
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Methods Automation 
Level Advantages Disadvantages 

Fuzzy C-Means 
(FCM) [14] 

Fully 
automatic 

Combines multiple 
methods to improve 

accuracy 

High computational 
complexity 

FCM [65] Fully 
automatic 

Enhances robustness of 
initialization 

High computational 
complexity 

FCM [66] Fully 
automatic 

Reliable, fast, and 
robust to noise 

Lack of spatial 
information affects 

accuracy 
FCM 

(Intuitionistic 
Rough Set) [67] 

Fully 
automatic 

Handles intensity 
inhomogeneity; reduces 

randomness 

Complex upper/lower 
approximation 

selection 

MRF [68] Fully 
automatic 

Combines local voxel-
based and contextual 

segmentation 

High computational 
complexity 

Enhanced Spatial 
FCM (e-sFCM) 

[32], [45] 

Fully 
automatic 

Improves bias field 
correction and noise 
handling via SSIM 

weighting 

Implementation 
complexity and 
validation effort 

Hybrid FCM-
PSO [32] 

Fully 
automatic 

Optimizes clustering by 
PSO for global 

optimum centroids 

PSO increases 
computational cost and 

tuning overhead 

C. EVOLUTIONARY / 
OPTIMIZATION-BASED 
APPROACHES 

Table III outlines clustering-based 
approaches, including k-means and fuzzy 

c-means algorithms. These methods are 
popular for their ability to handle complex 
data distributions but they can be sensitive 
to initialization and noise, requiring careful 
parameter tuning. 

TABLE III 

EVOLUTIONARY / OPTIMIZATION-BASED APPROACHES 

Methods Automation 
Level Advantages Disadvantages 

GA [12] Fully 
automatic 

Finds optimal number 
of segmentation 

regions 

Choosing fitness 
function is difficult 

Contour-based 
(MCSS, Cuckoo 

Search) [37] 

Fully 
automatic 

High segmentation 
accuracy 

More computationally 
intensive than ACM 

Hybrid (GAANN, 
GASVM) [28] 

Semi-
automatic 

High accuracy and 
high speed 

Increased 
computational 

complexity 
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Methods Automation 
Level Advantages Disadvantages 

GA + Deep Feature 
Selection (GA-

DFS) [43] 

Fully 
automatic 

Selects informative 
deep features 

Increased pipeline 
complexity 

PSO-AC [37] Fully 
automatic 

Improves contour 
initialization and 

convergence 

PSO adds 
hyperparameter 

overhead 

Evo-Trans [3], [59] Semi-
automatic 

Automates 
search/tuning for 

transformers 

High computational 
cost 

D. ATLAS AND MODEL-BASED 
APPROACHES 

Table IV presents morphological and 
clustering-based approaches, which 
combine shape-based analysis with 

clustering techniques. These hybrid 
approaches offer improved accuracy in 
distinguishing tumor boundaries and tissue 
types, though they often come with high 
computational complexity. 

TABLE IV 
ATLAS AND MODEL-BASED APPROACHES 

Methods Automation 
Level Advantages Disadvantages 

Atlas-based 
segmentation [18] 

Fully 
automatic 

Works well on noisy, 
low-resolution MRIs 

Accuracy depends 
on graph priors 

Atlas-based 
segmentation [19] Not specified 

Robust; no 
deformation model 

required 

No preprocessing 
applied 

Joint segmentation & 
registration [69] 

Semi-
automatic 

Processes multiple 
seeds for multifocal 

gliomas 

Needs improved 
registration 

Generative + 
Cellular Automata 

[70] 

Semi-
automatic 

Robust to 
heterogeneity 

Requires user 
interaction 

Probabilistic atlas + 
DL priors [39], [45] 

Fully 
automatic 

Atlas priors combined 
with CNNs improve 

accuracy 

Requires large 
annotated datasets 

Multi-atlas + fusion 
(DeepMedic) [50] 

Fully 
automatic 

High robustness via 
voting 

Computationally 
expensive 

Hybrid atlas + 
deformable (3D 
CNN) [53], [54] 

Fully 
automatic 

Handles anatomical 
variability 

High training 
complexity 

E. EDGE, REGION, AND CONTOUR-
BASED SEGMENTATION 

Table V deals with machine learning-based 
methods, such as Support Vectors 

Machines (SVMs) and random forests, 
which make use of handcrafted features. 
These techniques can make dramatic 
progress in segmentation quality but need 
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large annotated datasets to train and can be constrained by feature engineering. 

TABLE V 
EDGE, REGION, AND CONTOUR-BASED SEGMENTATION 

Methods Automation 
Level Advantages Disadvantages 

Contour-based 
segmentation [33] 

Semi-
automatic 

Works for various 
tumors Limited 3D support 

Region growing [9] Semi-
automatic 

Reduces over- and 
under-segmentation 

Seed selection is 
challenging 

Edge-based 
segmentation [6] 

Fully 
automatic Simple Produces thick 

boundaries 
Edge (Fuzzy + K-

means) [5] 
Fully 

automatic 
Improves threshold 

setting 
Computationally 

heavy 

Hybrid edge–region 
DL [42], [45] 

Fully 
automatic 

Combines cues; 
achieves better 

accuracy 

Needs large 
annotated datasets 

Deep active contours 
[71] 

Semi-/Fully 
automatic 

Handles complex 
boundaries 

Computationally 
expensive 

Region–edge fusion 
(Transformer) [3], 

[59] 

Fully 
automatic 

Achieves SOTA 
Dice; robust to noise High training cost 

F. MORPHOLOGICAL AND 
CLUSTERING APPROACHES 

Table VI outlines the deep learning-based 
methods which have recently become the 
most potent brain tumor segmentation 
algorithms. Convolutional Neural 

Networks (CNNs) and their variations 
show state-of-the-art behavior in 
automatically learning hierarchical 
features, but require large amounts of 
computational resources and large-scale 
annotated datasets. 

TABLE VI 
MORPHOLOGICAL AND CLUSTERING APPROACHES 

Methods Automation 
Level Advantages Disadvantages 

Morphological 
segmentation [8] 

Fully 
automatic 

Accurate on low-
intensity images 

Requires multiple 
iterations 

SOM [23] Semi-
automatic 

Integrates gray and 
spatial pixel 
information 

High computational 
complexity 

Vector Quantization 
via SOM [24] 

Fully 
automatic 

Separates damaged 
vs. normal tissues 

Perfect mapping is 
difficult 

Watershed 
segmentation [11] 

Fully 
automatic 

Marker-controlled; 
improves accuracy 

Requires precise 
marking 

Morphology + DL 
fusion [36], [54] 

Fully 
automatic 

Produces better 
boundaries 

Sensitive to 
hyperparameters 
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Methods Automation 
Level Advantages Disadvantages 

Deep clustering [40] Fully 
automatic 

Learns robust 
embeddings 

Needs large labeled 
datasets 

Hybrid Watershed + 
U-Net [29], [36] 

Fully 
automatic 

Preserves edges; 
reduces over-
segmentation 

Computationally 
expensive 

G. HYBRID AND MISCELLANEOUS 
APPROACHES 

Lastly, Table VII shows the hybrid and 
miscellaneous techniques, which combine 
several techniques or include manual 

references, such as human raters. They are 
strong and versatile solutions, a fusion of 
various methods, but can be associated with 
more extended training periods or 
inaccurate hand judgments. 

TABLE VII 

HYBRID AND MISCELLANEOUS APPROACHES 

Methods Automation 
Level Advantages Disadvantages 

Hybrid method [27] Fully 
automatic Accurate and robust Longer training time 

Human Rater 
(manual) [72] Manual 

Serves as a benchmark 
for algorithm 

evaluation 
Interrater variability 

Hybrid CNN + 
Clustering [53] 

Fully 
automatic 

Achieves top BraTS 
performance 

Computationally 
intensive 

Attention-guided 
Hybrid U-Net [29] 

Fully 
automatic 

State-of-the-art 3D 
MRI segmentation 

Complex network 
design 

Transformer + 
CNN Hybrids [3], 

[55] 

Fully 
automatic 

Provides better global 
context 

Training is 
computationally 

heavy 
Semi-supervised 

Hybrids [40] 
Semi-

automatic 
Utilizes unlabeled data 

effectively 
Sensitive to domain 

shift 

The qualitative analysis of the above seven 
tables shows that there has been a gradual 
shift to fully automated procedures. 
Further, with the development of 
algorithms, thresholding and region-based 
algorithms have been replaced with 
machine learning, and their accuracy, 
efficiency, and robustness have improved. 
CNNs have been shown to be effective. It 
is one of the most effective methods in 
response to the difficulties concerning brain 
tumor image segmentation, due to its ability 
to automatically learn complicated features 

on the basis of multimodal statistics. A 
multimodal 3D CNN-based segmentation 
scheme for glioma in MRI was developed 
[63]. They are based on the approach to 3D 
patches created using various MRI 
modalities as inputs and give them an 
efficient means of manipulating 4D data 
that incorporates spatial information of 
intensity across modalities. In an equally 
effective approach, a method was proposed 
to convert 4D information into a format 
compatible with conventional 2D CNN 
networks [60], which is an effective saving 
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of the computation cost, yet efficiency is 
guaranteed. But the results were achieved 
in both pieces of research with small 
datasets, which raises uncertainty about 
how they can be extrapolated. 

To address these constraints, a two-
pathway CNN cascaded architecture was 
introduced to process both smaller patches 
(33 × 33 pixels) and larger patches (65 × 65 
pixels) from various MRI modalities [25]. 
This approach yields much better 
segmentation accuracy and resilience by 
juxtaposing local tissue data against global 
contextual data. Moreover, it is easy to 
interact with to initialize, less sensitive to 
initialization errors, efficient to compute 
with, and independent of the tumor type. 
Continuing on the topic, a three-phase 
pipeline consisting of preprocessing, CNN-
based classification, and post-processing 
was proposed [48]. They introduced a 
specific approach to deal with various 
issues, such as changes in intensity, due to 
distortions in the bias field of MRI images 
which is likely to affect tissue 
classification. In a different approach, the 
problem of multifocal segmentation of 
gliomas was addressed using multiple 
tumor seed points and a tumor growth 
model, demonstrating good estimation of 
tumor shape even under adverse conditions 
[69]. It is also worth noting the role of 
human raters. Manual segmentation is 
challenging in any case, especially in 
challenging areas, such as the tumor core 
and active core, as seen in high-grade 
gliomas (Human Raters [72]. These are 
specific areas of improvement that have 
been demonstrated by algorithmic methods, 
being more reproducible and efficient than 
human performance. Lastly, a local 
structure prediction framework using 
Convolutional Neural Networks (CNNs) 
was proposed for 3D segmentation 
problems [62]. Their approach produced 

excellent results on dense anatomical 
annotation by directly modelling local 
anatomical structures and by avoiding 
preprocessing by Markov Random Fields 
(MRFs). In general, the recent development 
of CNN-based brain tumor segmentation 
methods shows that their innovative 
architecture and training methods can cope 
with the challenges of multimodal imaging. 
The further progress resulted in significant 
improvements in accuracy, efficiency, and 
robustness of segmentation, and, once 
again, the disruptive power of deep learning 
in this sector [45], [54], [59]. 

IV. CHALLENGES IN AUTOMATIC BRAIN 
TUMOR SEGMENTATION 

Automatic segmentation of brain tumors is 
not an easy task since accuracy must be 
very high when a clinical application is 
required. The shape, size, and location of 
the tumor are diverse and heterogeneous in 
all patients, making the segmentation of the 
tumor very difficult. Furthermore, the 
nonuniform and jagged edges of tumors 
restrict the success of the conventional 
edge- and region-based approaches. 
Clinical data obtained from routine scans or 
publicly available datasets introduces 
additional complexity, with variations in 
intensity biases, contrast levels, and 
imaging protocols across different MRI 
modalities further challenging 
segmentation efforts [7], [29], [45], [54], 
[59], [72]. 

A. CHALLENGES WITH MANUAL 
SEGMENTATION 

Manual segmentation is both very precise 
and very time-consuming, especially when 
dealing with large volumes of volumetric 
data, which can take hours to annotate on a 
slice-by-slice basis. Assessment of several 
axial sections is tedious and subject to inter- 
and intra-operative inconsistency. 
Segmentation results can also be affected 
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by the display quality, brightness, and 
contrast adjustment. Specialization is 
necessary yet changeable among 
radiologists, and this contributes to the 
drawbacks of manual segmentation [27], 
[72]. 

B. CHALLENGES WITH SEMI-
AUTOMATIC SEGMENTATION 

Semi-automatic techniques reduce the 
disadvantages of manual techniques by 
enabling user-specified seed points or 
region- of-interest (ROI) selection. 
Although it enhances uniformity and 
minimizes the overall effort, semi-
automatic algorithms, nevertheless, 
demand considerable human intervention, 
parameter optimization, and trial-and-error 
procedures. Although auto- mated 
segmentation is quicker than manual 
segmentation, there can be variance 
between users, which can affect 
reproducibility [2], [9], [11], [72]. 

C. ADVANTAGES OF FULLY 
AUTOMATIC SEGMENTATION 

The fully automatic segmentation would 
reduce the interaction with the user and 
minimize the segmentation time, as well as 
increase the consistency of the results. 
These techniques do not rely on display 
screen effects on image quality, which 
increases their applicability to the clinic. 
High-end automated techniques use 
machine learning [73], skeleton-based ones 
[74], probabilistic graphical models [17], 
[68], and deep neural networks [25], [29], 
[46]–[48], [52], [55], [59], in order to 
overcome the limitation of manual and 
semi-automatic approaches. 

D. IMAGE MODALITY AND 
PROCESSING CHALLENGES 

Several imaging modalities (MRI, CT, 
PET) present imaging modality challenges. 
MRI images can be affected by RF noises, 

bias field artifacts, and motion-related 
distortions; the CT images could contain 
streak artifacts or beam hardening effects. 
The artifacts are harmful to the quality of 
the image and consistency, which is 
challenging to automated segmentation [7], 
[27], [45], [54], [72], [73]. 

E. PATIENT- AND ANATOMY-
RELATED CHALLENGES 

Anatomical differences in patients that are 
not unique to the patient and depend on age 
and pathology, as well as natural 
differences in structure, also make 
segmentation more challenging. The 
artifacts of movement, particularly in 
dynamic organs or owing to natural 
movement during acquisition, bring about 
blurring and ghosting effects which are a 
challenge to segmentation algorithms [29], 
[51], [69], [72], [75]. 

F. APPLICATION-SPECIFIC 
CHALLENGES 

Medical imaging does not have 
standardized algorithms and benchmark 
datasets, which are major obstacles to the 
use of automatic segmentation tools. 
Performance comparison and 
benchmarking across studies is challenging 
due to the absence of a universal truth [27], 
[29], [45], [59], [72], [73]. 

Although tremendous progress has been 
made in the automatic segmentation 
methods, there are still difficulties in 
imaging modalities and patient variations, 
as well as clinical applications. To resist 
them, it is necessary to keep on creating 
strong algorithms that can withstand them 
by managing a wide variety of imaging 
conditions, anatomical complexities, and 
data heterogeneity. The overall survey and 
analysis, as shown in Tables 1-7, indicate 
that there is no single standardized method 
that can be used to deal with all the 
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challenges in brain tumor segmentation. 
Segmentation algorithms are effective 
depending on image quality, user 
interaction needed, imaging modality, and 
tissue homogeneity. Additional features 
might be required in developing fully 
automatic segmentation methods that can 
be applied to clinical tasks, e.g., in multi-
scale feature extraction, deep learning-
based context awareness, and hybrid model 
structures. Table 1-7 points out the different 
degrees of the necessary user intervention, 
as well as the merits and demerits of the 
various state-of-the-art segmentation 
methods. After discussion, the main 
difficulties related to each approach are 
revealed, and recommendations are made 
in order to focus future research, with a 
special focus on a comparative analysis of 
the manual, semi-automatic, and fully 
automatic segmentation methods [46], [47], 
[49], [52], [55]. 

V. CONCLUSION AND FUTURE WORK 

Automated detection of brain tumors in 
patients is essential for better outcomes; 
however, it requires the development of 
reliable machines that can be clinically 
implemented. Segmentation, particularly in 
multi-modal 3D MRI, remains challenging. 
Although there has been considerable 
improvement, performance still varies 
across methods. Fully automatic techniques 
do not involve human intervention but 
usually require high-quality data and large 
computational resources, while semi-
automatic ones reduce the workload but 
still require human involvement. MRI is 
primarily used because of its superior tissue 
contrast and relatively low noise, though 
inter-scanner, inter-protocol, and inter-
patient variability hinder generalization. In 
future studies, the focus should be on 
rigorously validated and fully automatic 
pipelines with robustness and uncertainty 
quantification; data-efficient learning 

approaches (self-, weak-, semi-supervised, 
active, or federated) to reduce annotation 
costs and address domain shift; and 
efficient multi-modal processing. Within 
clinical latency and memory constraints, 
3D fusion methods (e.g., CNN–
Transformer hybrids) should provide 
interpretable, well-calibrated predictions 
integrated into workflows and cross-center 
assessments, including standardized 
reporting. Advancements in these 
directions may lead to more accurate, 
faster, and reliable tumor segmentation 
with broader clinical applications. 
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