

 Innovative Computing Review (ICR)
Volume 1 Issue 2, Fall 2021

ISSN(P): 2791-0024 ISSN(E): 2791-0032

Journal DOI: https://doi.org/10.32350/icr

Issue DOI: https://doi.org/10.32350/icr/0102

Homepage: https://journals.umt.edu.pk/index.php/icr

Article:
ReqSpecOnto: Investigating Explicit Software

Requirements Specification

Author(s): Usman Ahmed1, Amjad Farooq2, Tayyaba Farhat3

Affiliation:

1Foundation University Islamabad, Pakistan
2University of Engineering and Technology, Lahore, Pakistan

3Superior University, Lahore, Pakistan

Citation:

A, Usman, F. Amjad, and F. Tayyaba, “ReqSpecOnto:

Investigating Explicit Software Requirements Specification”,
Innova Comput Rev, vol. 1, no. 2, pp. 44–70,

2021. https://doi.org/10.32350/icr/0102/03

Copyright

Information:

This article is open access and is distributed under the terms

of Creative Commons Attribution 4.0 International License

Journal QR

Article QR

A publication of the

School of Systems and Technology

University of Management and Technology, Lahore, Pakistan

https://doi.org/10.32350/icr
https://doi.org/10.32350/icr/0102
https://journals.umt.edu.pk/index.php/icr
https://doi.org/10.32350/icr/0102/03
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

45
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

ReqSpecOnto: Investigating Explicit Software

Requirements Specification

Usman Ahmed1*, Amjad Farooq2, Tayyaba Farhat3

ABSTRACT: The specification

of customers’ need as software

requirements in natural language

create ambiguities (in the

requirements) and may fail the

software project. Generally,

customers are unable to define their

needs due to the lack of domain

understanding, technological

constraints, and knowledge gap

between the stakeholders and the

requirements analysts. One of the

most effective approaches to

minimize these gaps and

ambiguities for requirements

specification and validation is the

use of ontologies. However, the

current approaches are mostly

limited to the translation of

ambiguous software requirements.

This paper discussed, analyzed and

compared the current usage of these

ontologies and found that these

approaches are time-consuming

and create complexities in the

overall development process. It

presented a requirements

specification ontology

1Foundation University Islamabad, Pakistan
2University of Engineering and Technology, Lahore, Pakistan
3Superior University, Lahore, Pakistan
*Corresponding Author: usman.ahmed@fui.edu.pk

(ReqSpecOnto), bypassing the need

for creating an ambiguous Software

Requirement Specification (SRS).

The upper software requirements

ontology is defined in Ontology

Web Language (OWL) which can

be applied to different software

scenarios. A case study of budget

and planning system for a state

physics lab was selected to specify

its requirements as derived

ontology from the upper ontology

created. The results are validated

through HermiT and Pellet

reasoners to verify the defined

relationships and constraints.

Finally, SPARQL queries were

used to obtain the necessary

requirements.

INDEX TERMS: ontology

engineering, requirements

specification ontology, semantic

relations, software requirements,

upper ontology

I. INTRODUCTION

In software development,

requirements engineering is a

mailto:usman.ahmed@fui.edu.pk

ReqSpecOnto: Investigating Explicit…

46 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

complex and time-consuming

process. The requirements are

specified and documented in a

software requirements

specification (SRS) document.

While the main focus in the

documentation is on building a

bridge between the vague

concepts collected from

customers and the requirements of

the engineering team. Non-

technical customers are unable to

explain the exact requirements to

the technical, experienced

analysts due to lack of proper

domain knowledge. These vague

concepts are documented using

natural language that is

ambiguous in itself. So, one

cannot get a clear and concrete set

of requirements for the system

development. If these ambiguities

are not properly identified and

corrected timely, the

consequences can be devastating.

For instance, any

misunderstanding of the exact

needs of customers and

stakeholders will need a lot of

revision after deployment of the

system. Multiple studies have

shown that maintenance costs may

increase up to 90% of the total

development cost of the entire

project because of requirement

errors most of them occur due to

miscommunication, ambiguities

and implicit requirements [1], [2].

Identification and resolution of

these problems during the

maintenance phase need

painstaking work which not only

increases the cost of development

but also results in less satisfied

clients [3].

The use of modelling

languages, however, within the

specification document that

provides semi-formal

representation, does reduce some

level of ambiguity. Additionally,

modelling languages are still tied

to natural language for labelling

and this can cause e two major

problems. Firstly, naming

elements with terms or labels

using natural language can

introduce multiple interpretations.

This limits the use of models as a

way of communicating

knowledge among the phases of

software development. Secondly,

the use of natural language

delivers semantics that is not

machine-process-able. This can

cause problems in validating or

querying data in modelling tools

and restrict the logical reasoning

since processes cannot logically

retrieve a requirement

specification that is not explicitly

documented. Therefore, the

requirements are validated for

consistency and accuracy as a sub-

task within requirements

engineering. In the past, the

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

47
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

collaboration between

stakeholders has long been a focus

by several researchers but most of

their approaches are downsided

[4].

An effort has been made to

reduce ambiguities in the SRS

through natural language

processing (NLP) tools [5]. The

researchers either try to find

ambiguities in the requirements

document or generate models

from them. A study was aimed at

employing the rule based NLP

techniques to find quality defects

from industrial based natural

language requirements that are

annotated by domain experts [6].

Another approach refers to the

application of the code smells

concept to requirements

engineering for identification of

defects in requirements [7] but is

subjective and employs multiple

reviews. One of the main

contributions of most NLP tools is

to automate the extraction and

translation of natural language

specified requirements into

conceptual models so they can be

manually validated by analysts

themselves [8], [9]. This results in

a lack of precision because it is

still manual and dependent on

humans to identify and verify

errors. While these NLP tools are

individual efforts to find

ambiguities, they are not aimed at

promoting the interoperability of

knowledge in multiple phases of

software requirements

engineering and development.

Rather they only support a

representation of knowledge of

requirements. Hence, a

representation for specifying

software requirements that can

allow machine-process-able

semantics in the first place is

positively required. This will

reduce extra work and make it

possible to resolve the ambiguities

in requirements. Researchers of

semantic web and linked data

have been trying to produce a

mechanism that can reduce the

ambiguities and make

requirements testable. Ontologies

and their use in several domains

have been effective in recent

times because of their semantic

and syntactic characteristics.

Ontologies arrange items or

concepts of data in such a way

whereby meaning is created

among them by using relations,

restrictions between data terms,

making vocabulary and

taxonomies more meaningful,

hence fulfilling the overall

objectives. In software

engineering, its popularity has

increased for two main reasons to

provide machine reasoning, and to

facilitate semantic interoperability

[10].

ReqSpecOnto: Investigating Explicit…

48 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

Contributions have been made

in multiple phases of requirements

engineering to resolve

inconsistencies and ambiguities in

the requirements specification. A

detailed systematic literature

review [11] identified the trend of

the application of ontologies for

supporting requirements

specification. Most of the work on

the application of ontologies in

requirements specification

focuses on converting or

translating previously developed

paper-based SRS into ontology for

checking consistency and

correctness of the document.

These approaches are not only

time consuming and complex but

are also prone to introduction of

ambiguities in the specified

requirements. Solutions that

support the process models in

requirement engineering phases as

inter-connected and inter-

communicating are needed for

better requirement specification,

and can contribute to a generic

framework in all projects. This

can only be achieved if we rely

entirely on ontologies for their

specification in an attempt to shift

the paradigm from trying to give

semantics to ambiguous specified

requirements to an approach of

defining the semantics from the

base that can be related to each

project. In this paper, a

requirements ontology has been

developed for the proposed

framework to generalize the

concepts of requirements

engineering. An instance is

derived from the requirements

ontology of the specific domain of

the system to be developed called

as domain ontology that is related

to the domain of the particular

software being considered. The

reasoning and use of SPARQL

have been applied to validate the

requirements and inference check

for conflicting requirements. The

primary aim and contribution of

this paper are to present a

framework which is based on

model-driven requirements

engineering that is used to define,

specify and validate software

requirements in the form of

ontologies. This will entirely

replace the use of paper-based

SRS with ontologies and the

validated specification can be

reused to support and automate

other software engineering

phases. We have formulated the

following four research questions.

CQ-1: How software requirements

can be formally specified in

ontologies?

CQ-2: Can software requirements

be validated through ontologies?

CQ-3: How can we extract the

requirements to meet the needs of

the software engineering team?

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

49
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

The rest of the paper is

organized as follows: Section 2

represents literature review.

Section 3 describes the

methodology adopted to resolve

the problem. This is further

divided into sub-sections; the

discussion on the collection of

glossaries, taxonomies and the use

of Protégé tool for developing the

ontology. The experiment,

discussion of results and

conclusion are described in

Sections 4 and 5 respectively.

II. LITERATURE REVIEW

Requirements engineering is

the process of systematically

eliciting, analyzing, specifying,

validating and managing

requirements for a software

system [12]. The process of

requirements elicitation involves

tacit or implicit knowledge which

results in ambiguous

requirements. Therefore, it

involves the risk of

misunderstanding [13].After the

requirements have been gathered

through elicitation, these are

documented as a software

requirements specification (SRS)

document which includes

requirements in the form of

natural language and is

represented as conceptual

model[14]. The SRS needs to be

validated and verified to identify e

conflicts and to gather agreed-

upon solutions to resolve them.

The specification of requirements

is a challenging task that must be

properly managed during the

process of requirement

engineering.

Firstly, every detail acquired

in the elicitation phase is included,

and if a minor detail of the

specification is missed, the

development team either skips the

additional functionalities or adds

what was not required by the

customer. In both cases, according

to the Kano Model [14], the

developed system will be unable

to satisfy the customer. Therefore,

extra costs will be spent during the

maintenance phase. The

requirements management also

needs to be considered throughout

the software development process

specifically in requirements

engineering due to frequent

changes in the requirements.

Ontologies were first

developed by Artificial

Intelligence researchers [15].

They are used to provide machine-

processable semantics so that they

can be shared among several other

software and tools. Ontology is a

formal explicit specification of a

shared conceptualization[16].

Ontologies have also been used in

requirements engineering for

ReqSpecOnto: Investigating Explicit…

50 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

solving several problems like

specifying more accurate and

unambiguous requirements,

managing requirements

knowledge, automating the

generation of test cases and

domain modelling [10], [17], [18].

The detailed review by [11]

accounts for the work of

ontologies in software

engineering. Here, ontologies are

divided into two basic categories;

ontologies of domain and of

software artefacts. The first

category consists of those

ontologies that attempt to

conceptualize the domain

knowledge of software

engineering domains or sub-

domains. The second category

consists of functionalities and

characteristics of the development

process or that of the functioning

of the software thereby supporting

its artefacts. Among these

domains, ontologies are very

generic like in the work of Abran

and Mendes who created a 4000-

concept ontology on the basis of

SWEBOK guide which attempts

to conceptualize the whole body

of knowledge of software

engineering [19]. Although we

have also employed SWEBOK

guide in our taxonomy building

among other sources, but this

approach is nevertheless more

generic and attempts to

conceptualize the entire software

engineering knowledge to target

multiple applications. On the

contrary, our ontology differs

from this approach since we are

focused on requirements

specification and their validation

instead of encompassing

knowledge of the entire software

engineering domain.

An ontology for SQL was

developed for the abstraction of

the standard database query

language [20].Similarly, an MIT

project called SIMILE created an

ontology for java concepts, while,

a lot of work is done in ontologies

used as software artefacts.

According to Ruiz et al.,[11] most

of the work in SE relating to

ontologies is focused on their

application in domain modelling.

The requirements specification of

resolving ambiguities and

inconsistencies in software

requirements focuses on either

finding the consistency and

correctness, or ensuring the

quality of the requirements

specification document by

converting the SRS into

ontologies [21].

The requirements ontology for

a specific domain was created to

improve the quality of SRS by

converting the requirements into

the ontology. Their approach

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

51
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

develops a hierarchy of functions

followed by relationships of

functional requirements and their

attributes[22], [23], presenting

how the requirements can be

analyzed using domain ontologies

in order to find deviations from

the requirements document. The

proposed method focuses on

domain ontologies where the

author argues that it is essential in

the process of requirements

engineering. The analyst knows

very little about the domain and

therefore gets help from the

domain experts. According to the

study, domain experts can be

replaced by using domain

ontology so that analyst can refer

to the ontology for domain-

specific knowledge using

inference rules.

Ismail [24] considered a semi-

automated approach and created

system specification ontology

(SSO) to convert the previously

developed SRS into ontology.

Nevertheless, previous ontology

learning approaches like

CRCTOL, Text2Onto adopt

methods that only extract concepts

and their relationships. Therefore,

an approach was proposed, which

can learn ontology along with

individuals and their concepts as a

major contribution of their study.

Avdeenko et al. [25]presented an

approach or guideline using the

Protégé tool known as DL Query

to validate the correctness of an

SRS.

Mahmud et al. [26] created a

language called ReSA that allows

requirements specification use a

domain ontology, and apply it to

an automotive domain for

requirements specification of a

component of that domain.

However, this work is different

from using an upper ontology in

combination with domain

ontologies which would be our

approach. The creation and use of

an upper ontology to support

requirements engineering

activities have benefits over using

a language to specify

requirements. But, on the other

hand, researchers are more

interested in creating a framework

for developing requirements

specification directly from

elicitation without the need for an

intermediary ambiguous and

inconsistent SRS document. A

recent study conducted by [17] as

part of their project called,

OSTAG or simply, Ontology-

based Software Test Case

Generation, presents a guideline

for developing a requirements

ontology to support other software

development phases. The main

focus of this work was to create an

ontology from the software

requirements specification

ReqSpecOnto: Investigating Explicit…

52 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

documents which can involve

ambiguities and complexities. A

study was conducted by[18] who

pointed out how it is important to

have a formal specification using

an ontology to support domain

modelling specifically for

complex domains. The proposed

approach uses an ontology to

extract knowledge to create

models and then evaluate the

result on specified requirements.

They have provided an approach

of generating test cases using

inference rules from ontology

[17].The inference rules are coded

in Prolog so ontology is serialized

in functional style OWL syntax to

Prolog using Python code.

According to Zong-yong et al.

[27], most of the studies on using

ontologies in requirements

elicitation focus on using a single

global ontology which cannot be

reused. Therefore, they presented

a multiple ontologies framework

based on KADS modelling with

combining top-level, task, domain

and application ontologies to

facilitate requirements elicitation

and reuse. Amarilis et al. [28]

provided an ROF which is the rule

based framework of ontology for

automatically generating

requirements. In this framework

they focus on documenting

standardized version of SRS in

IEEE format and applied it at a

university system to document

teacher workload. Conformity to

the ambiguous SRS standard

format can again introduce

inconsistencies later even after the

explicit specification.

Furthermore, there has been a

trend of following ontologies and

semantic web in requirements

engineering for representing

knowledge to support a very

minor product or project-specific

scenarios and domains. It should

be noted that ontologies are surely

domain-specific that can be used

to support communication among

sub-domains of the same domain.

The use of this approach of

creating ontologies to cope with a

specific problem in a project can

restrict their reuse and

communication among other such

smaller ontologies. The concept of

ontologies was to support

interoperability and

communication among multiple

process models. According to

W3C, ontologies are used to

communicate knowledge within

process models. According to [29]

requirements engineering of

Model-Driven Development

(MDD) that uses model

transformations to automate, the

software development process

lacks complete solutions to

requirements models. This review

also discusses that models are

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

53
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

used not only to describe

requirements in the MDD context,

but also in structured or

unstructured natural language.

Another recent approach [30]

was to combine NLP techniques

and ontologies for the purpose of

bridging the gap between trained

and untrained users from

elicitation of requirements to the

specification of those

requirements. Previous efforts of

NLP techniques to translate the

requirements into models were

made to understand and interpret

natural language statements to

uncover their meaning and

semantics. Combination of these

techniques and technologies with

ontologies for the same purpose of

understanding specified

requirements is also the same

thing with the addition of previous

records being managed as a

knowledge base in a way that their

relationships are understood.

However, these efforts can only be

considered as individuals in

ontologies which are only project

or product-specific in terms of

solving problems. Hence, we need

an approach that can cater to the

needs of maximum projects within

a domain, reducing ambiguities in

the requirements engineering

process and ultimately the cost of

development.

III.ONTOLOGY ENGINEERING

OF REQUIREMENTS

SPECIFICATION

ONTOLOGY

In ontology engineering, the

ontology development process is

driven by scenarios that result

from problems that arise in

applications or existing

ontologies. They also include

possible solutions to those

problems. According to [31], any

proposal of new ontology must

include these scenarios and

possible solutions that describe

the problem stories or scenarios,

the semantic objects and relations

between them. In this paper, the

problem scenario arises from the

requirements specification where

requirements are documented in

natural language in the form of

SRS. These are subject to multiple

interpretations and ambiguities

that are neededto be specified and

validated in ontologies.

A. Use Cases

The scenario is the budget and

planning system of a state physics

lab in the United States. The

selected requirements including

multiple roles and requirement

types are as follows:-

UC-1. End users have viewed into

workflow to assess current status,

bottlenecks and next steps

ReqSpecOnto: Investigating Explicit…

54 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

UC-2. End user can configure its

own view.

UC-3. Admin can configure views

of users.

UC-4. Users can request resources

and admin can approve those

requests.

UC-5. End user can add notes to

workflow.

UC-6. All users as per their

security role can see forecasts.

UC-7. End user can select reports

from predefined reports.

UC-8. Admin can add due dates in

calendar that contains lab-level

project planning activities.

UC-9. Users have security roles

for access to data that are

configured by the main admin.

UC-10. End users can drill down

from hierarchical data in reports

for analysis.

B. Vocabulary

A general vocabulary of

software requirements to build

upper requirements specification

ontology was needed. We

collected all terms possibly from

the requirement engineering field

which are used in the process of

requirements specification. The

first choice for collecting the

terms was a glossary published by

the International Requirements

Engineering Board of 128

Terminologies. All them were not

useful for our purpose. However,

another useful source was the

SWEBOK (Software Engineering

Body of Knowledge). Most of the

meanings and terms that were

unavailable in the IREB glossary

were derived from the SWEBOK.

It defines the body of knowledge

of the software engineering field

and the practices used. The

resulting 103 glossary terms have

been created for our taxonomy.

Table.1 shows the vocabulary of

main classes and their sub-classes.

TABLE 1

VOCABULARY REPRESENTATION OF ONTOLOGY

Classes Object

Properties

Data

Properties

Sub-Classes Individuals Data

Types

System has

Requirement,

ConsistsOf

Context

andResource,

has View and

System

Status

name, system

domain,

programming

language,

estimated

completion

time

Requirement,

Context,

Resource

Budget and

Planning

System

xsd:

string

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

55
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

Classes Object

Properties

Data

Properties

Sub-Classes Individuals Data

Types

Requirement has Source,

Can be

Functional

Requirement,

 and Non-

Functional

Requirement

requirement

priority

Functional

Requirement,

Non-

Functional

Requirement

Report, Lab-

Level

xsd :

string

Stakeholder has influence

on

Requirement

name,

address, age,

email

Customer,

Supplier,

User

 xsd :

string

Source Can be

Customer,

Can be User,

Can be

Document,

Can be

Existing

System

source name,

source

location

Document,

Existing

System

Requirements

Definition

Document,

Oracle

Implementation,

etc.

xsd :

string

Non-

Functional

Requirement

 weight, non-

functional

priority

Architectural,

Development,

Quality of

Service

Bottlenecks,

Security Role,

etc.

xsd :

string,

xsd

:int

User has View,

states

Requirement

status, type,

name,

address,

email

Admin, End

User

Service Admin,

View User,

Power User, etc.

xsd :

string

Functional

Requirement

Incorporates

Functional

Requirement,

incorporates

Non-

Functional

Requirement

functional

priority

Report, Action,

View, Request

User View,

Portal, Resource

Requests,

Monthly

Reports, etc.

xsd :

string

C. Taxonomy

Taxonomies have proven

successful in resolving several

problems in computerized

systems used in different sciences.

They have also been used in

software requirements analysis to

understand several concepts and

to resolve particular

problems[32]. They provide basis

for the implementation of

ontology. For our taxonomy,

several published taxonomies on

requirements engineering were

studied, analyzed and used. The

ReqSpecOnto: Investigating Explicit…

56 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

most difficult task was the

placements for NFRs (non-

functional requirements) due to

different views in software

engineering by several

researchers. Among the most

popular or relevant was an

information system requirements

taxonomy [33] by Chen et al.

Afreen et al. [34]classifies

NFRs in conflicted NFRs that can

help understand the relations and

the conflicts. In other words, it is

important to establish the

properties of the object at a later

stage and the disjoints to define

which entities are different or

related to each other. Another

taxonomy by Odeh et al.

[22]based on a service-oriented

view of software requirements

was more appropriate to our

scenario, and was therefore used

for the placements of the main

classes of NFRs although not all

of its structure was used.

Therefore, we took three of the

main classes as shown here: QoS,

Development and Architectural

(Constraints) for the classification

of NFRs in our taxonomy.

Another confusion was the exact

number of classes because their

previous standard (i.e. ISO-9126)

has been replaced now with the

ISO-25010 standard. And both the

standards are slightly different

with the removal of some classes

and an addition of some new

classes in the new standard. Some

of the weaknesses of ISO-9126

standard for NFRs are reported in

literature[35].For this purpose, we

removed all the sub-classes not

included in the latest standard.

Similarly, we added the new sub-

classes to the placements where

they were exactly required.

Mostly, privacy and security are

considered as a single entity. But

according to [36]confidentiality or

security is erroneously equated

with privacy by some security

practitioners. So, it is established

that security and privacy are two

different entities. Therefore, we

considered security and privacy as

different sub-classes of Quality of

Service class in our taxonomy.

1) Stakeholder Taxonomy:

The stakeholder sub-class of

person class in the ontology is

divided into three sub-classes,

namely, customer, user and

supplier as shown in Fig. 1. The

customer can be any individual or

organization that requires

software whereas, the supplier is

the team of requirements

engineers, software developers

and project managers. The User

sub-class has two types of users;

Admin and the End User.

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

57
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

Fig. 1. Stakeholder Taxonomy

2) System Taxonomy: System

sub-class consists of three sub-

classes namely context,

requirement and resource, as

shown in Fig. 2. The context sub-

class can be changed according to

the system. The requirement is

further divided into Functional

and Non-functional Requirement

sub-classes. The Resource can be

Hardware, Software and Data.

Fig. 2. System Taxonomy

3) Functional Requirement

Taxonomy: The Functional

Requirement class has some of the

generic sub-classes like Action,

View, and Report. that can be

reused in many scenarios. This

ReqSpecOnto: Investigating Explicit…

58 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

class can be altered to create other

sub-classes to suit the exact

scenario like we have created

Workflow, Forecast, and Calendar.

shown in Fig. 3. The individuals

shown here are also representing

the requirements of a particular

system under consideration.

Fig. 3. Functional Requirement Taxonomy

4) Non-functional Requirement

Taxonomy: This is the largest

class in our ontology consisting of

all the ISO-25010 standard quality

constraints or non-functional

requirements divided into three

sub-classes namely, Architectural,

Quality of Service, and

Development, shown in Fig. 4.

They can be used to create object

properties with other functional

requirement classes in ontology to

define exact system requirements.

Fig. 4. Non-functional Requirement Taxonomy

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

59
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

D. Semantic Relations

Most of the semantic relations

of requirements specification

ontology concepts and considered

scenarios are shown in Fig. 5.

These concepts are shown as their

positions in the taxonomy.

Fig. 5. Semantic relations in ontology

E. Scenario Constraints

In the scenario, view user is an

end user individual. Functions of

this role are defined in the system,

CanDrillDownFrom Hierarchical

Data, PerSecurityLevelCanSee

Forecasts, has User View, has

Security Role, CanSelect Reports.

The restrictions are represented as

negative object property

assertions in Fig. 6 which state

that the View UserCanAssess

Bottlenecks or Current Status,

CanSee Resource Request,

CanApprove Resource Request,

CanEstablishDueDatesIn

Calendar, CanConfigure User

View, CanConfigure Security

Role and CanAddNotesTo

Workflow. These negative object

property assertions are all the

restrictions on View User or the

functions that this user cannot

perform.

ReqSpecOnto: Investigating Explicit…

60 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

Fig. 6. Constraints of view user

The Planner is also an End User

individual in the scenario. In Fig.7

functions of this role are defined

as, CanSee Workflow,

CanAddNotesTo Workflow,

PerSecurityLevelCanSee

Forecasts, CanSelect Reports,

CanAssess Next Steps, CanAssess

Current Status, CanPersonalizeIts

User View, has Security Role,

CanDrillDownFrom Hierarchical

Data, has User View, CanAssess

Bottlenecks. Whereas, the

constraints and restrictions are:

CanConfigure Security Role or

User View, CanSee Resource

Request and CanApprove Resource

Request.

Fig. 7. Constraints of Planner

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

61
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

Fig. 8. Constraints for Power User

Power User, in Figure 8, is the

individual of Admin class and its

functions are defined as: has

Security Role, CanSelect Reports,

PerSecurityLevelCanSee

Forecasts, CanDrillDownFrom

Hierarchical Data and has User

View. On the contrary, the

restrictions are: CanConfigure

User View and CanConfigure

Security Role. Similarly, all the

roles in ontology are defined as

the requirements of the system.

IV. EXPERIMENT AND

RESULTS

Protégé is a tool that helps

researchers build ontologies to

support expert systems [37]. To

validate the ontologies, it provides

third-party reasoners like HermiT,

FaCT++ and others [38].

Reasoners provide validation of

the ontologies by knowledge

discovery and by detecting and

finding inconsistencies or

contradictions. These reasoners

are based on mathematical

models. They provide logical

deductions based on inference

rules that are defined and

specified in description logic.

They either use forward or

backward chaining to perform

inference [39]. We have used

HermiT and Pellet reasoners in

our research. HermiT is based

upon hypertableau calculus and

provides reasoning for OWL

based ontology files.

The developed requirement

specification ontology formally

defines the software requirements.

Inconsistencies can be detected

and prevented. Therefore, it

answers our RQ-2 by defining the

classes Admin, End User,

Functional Requirement, Non-

Functional Requirement and their

individuals and then performing

reasoning on them.

ReqSpecOnto: Investigating Explicit…

62 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

A. SPARQL Validation

SPARQL is a SQL like query

language that is used with

ontologies. For our validation, we

made a few questions to retrieve

different requirements in different

manners. Queries are used to

answer questions and received in

the form of data retrieved from our

ontology. The queries are written

in the DL Query portion in

Protégé. They can be used to

extract requirements from the

ontology. In the following figures,

we have presented different style

of software requirements

elicitation according to software

engineering team. In Fig. 9,

information is retrieved from

requirements specification

ontology on all the users who

should have a user view in the

system.

Fig. 9. Users having User View Requirement

SPARQL query extracts all

individuals having a user view

that are, View User, Planner,

Power User and Service

Administrator. Now let’s consider

that the software engineering team

needs to extract requirements

related to a particular functionality

e.g. all roles that can approve the

resource requests in the system.

Fig. 10 shows that only one

role, the Identity Domain

Administrator in the system

CanApprove the Resource

Requests. In this way we can get

requirements related to a single

functionality or object property.

Now let’s consider that all

requirements related to a

particular user are required. Then

such applied SPARQL query has

yielded the following result.

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

63
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

Fig. 10. Extracting Users for a Particular Functionality

Fig. 11. All Requirements of a User

Therefore, in Fig. 11, all the

requirements related to

Service_Administrator -- has

Security Role, has User View,

CanAssess Bottlenecks, Next

Steps and Current Status,

CanDrillDownFrom Hierarchical

Data,CanAddNotesTo Workflow,

CanSee Workflow,

PerSecurityLevelCanSee

Forecasts,

CanEstablishDueDatesIn Calendar

and CanSelect Reports -- are

retrieved using a simple SPARQL

query. In other words, we have

retrieved all its requirements for

ReqSpecOnto: Investigating Explicit…

64 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

the system under consideration.

Lastly, we are interested in

extracting requirements related to

a single individual like

Bottlenecks.

In Fig. 12, SPARQL extracts

all users and their functionalities

related to the Bottlenecks

individual, Planner and Service

Administrator CanAssess

Bottlenecks.

Fig. 12. Requirements related to Bottlenecks

This concludes our section of

SPARQL validation and proves

our RQ-1 and RQ-3 defined in the

beginning. Therefore, results

indicated that the software

requirements can be defined

through ontologies and extracted

from ontology through SPARQL

to meet the needs of the software

engineering team.

V. CONCLUSION

Software requirements

specification process creates

ambiguous software requirements

specification document (SRS)

which can result in failure of the

entire project due to the

ambiguous requirements. The

notion that ontologies are used to

specify knowledge in a machine-

processable form seems

promising keeping in view its

utilization in computers, medical

sciences, and many other

domains. This form of

specification also promises to

remove ambiguities that occur in

natural languages. However, the

current approaches of translating

paper-based SRS to ontology are

complex and time-consuming

since they need to deal with

ambiguous requirements. Our

approach of semantically

specifying software requirements

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

65
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

using a generic software

requirements specification upper

ontology minimizes the

complexities that occur in

translating paper-based SRS in

ontologies. It creates a validated

knowledge base of semantically

specified requirements that can be

used to access them, conveniently.

Additionally, as it is not restricted

to a single domain, generic

ontology can be used in many

scenarios to capture a particular

system’s requirements to support

other software engineering phases

as well. The upper ontology uses a

glossary of common concepts

needed in specifying requirements

related to the users, as well as

functional and non-functional

requirements and system

components to create a domain

ontology of a particular system as

upper ontology’s individuals.

In this paper, we specified ten

different requirements for budget

and planning system of a state

physics lab, including multiple

user types, functionalities and

constraints. For this purpose,

HermiT and Pellet reasoners were

employed to verify relationships

and constraints defined in the

ontology. SPARQL was used to

validate our competency

questions. In the future, we intend

to expand this ontology and apply

it to multiple systems for the

specification of their

requirements.

REFERENCES

[1] Sayed Mehdi Hejazi

Dehaghani and N. Hajrahimi,

“Which factors affect software

projects maintenance cost

more?,” Acta Informatica

Medica, vol. 21, no. 1, p. 63,

2013.

[2] D. M. Fernández et al.,

“Naming the pain in

requirements engineering,”

Empir Software Eng, vol. 22,

no. 5, pp. 2298–2338, Oct.

2017, doi: 10.1007/s10664-

016-9451-7.

[3] J.-C. Chen and S.-J. Huang,

“An empirical analysis of the

impact of software

development problem factors

on software maintainability,”

Journal of Systems and

Software, vol. 82, no. 6, pp.

981–992, Jun. 2009, doi:

10.1016/j.jss.2008.12.036.

[4] U. Ahmed, “A review on

knowledge management in

requirements engineering,”

in 2018 International

Conference on Engineering

and Emerging Technologies

(ICEET), Feb. 2018, pp. 1–5.

doi: 10.1109/ICEET1.2018.

8338650.

ReqSpecOnto: Investigating Explicit…

66 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

[5] L. Zhao et al., “Natural

Language Processing (NLP)

for Requirements

Engineering: A Systematic

Mapping Study,” arXiv e-

prints, vol. 2004, p.

arXiv:2004.01099, Apr.

2020.

[6] A. Ferrari et al., “Detecting

requirements defects with

NLP patterns: an industrial

experience in the railway

domain,” Empir Software

Eng, vol. 23, no. 6, pp. 3684–

3733, Dec. 2018, doi:

10.1007/s10664-018-9596-7.

[7] H. Femmer, D. Méndez

Fernández, S. Wagner, and S.

Eder, “Rapid quality

assurance with Requirements

Smells,” Journal of Systems

and Software, vol. 123, pp.

190–213, Jan. 2017, doi:

10.1016/j.jss.2016.02.047.

[8] D. Popescu, S. Rugaber, N.

Medvidovic, and D. M. Berry,

“Reducing Ambiguities in

Requirements Specifications

Via Automatically Created

Object-Oriented Models,” in

Innovations for Requirement

Analysis. From Stakeholders’

Needs to Formal Designs,

Sep. 2007, pp. 103–124. doi:

10.1007/978-3-540-89778-

1_10.

[9] S. Ghosh, D. Elenius, W. Li,

P. Lincoln, N. Shankar, and

W. Steiner, “ARSENAL:

Automatic Requirements

Specification Extraction from

Natural Language,” in NASA

Formal Methods, Jun. 2016,

pp. 41–46. doi: 10.1007/978-

3-319-40648-0_4.

[10] V. Castaneda, L. Ballejos, M.

L. Caliusco, and M. R. Galli,

“The Use of Ontologies in

Requirements Engineering,”

Global Journal of Research

In Engineering, vol. 10, no. 6,

Nov. 2010, Accessed: Jan.

27, 2018. [Online].

Available:

https://www.engineeringrese

arch.org/index.php/GJRE/art

icle/view/76

[11] F. Ruiz and J. R. Hilera,

“Using Ontologies in

Software Engineering and

Technology,” in Ontologies

for Software Engineering and

Software Technology,

Springer, Berlin, Heidelberg,

2006, pp. 49–102. doi:

10.1007/3-540-34518-3_2.

[12] G. Kotonya and I.

Sommerville, Requirements

Engineering: Processes and

Techniques, 1st ed. Wiley

Publishing, 1998.

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

67
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

[13] V. Gervasi et al., “Unpacking

Tacit Knowledge for

Requirements Engineering,”

in Managing Requirements

Knowledge, Springer, Berlin,

Heidelberg, 2013, pp. 23–47.

doi: 10.1007/978-3-642-

34419-0_2.

[14] K. Pohl, Requirements

Engineering: Fundamentals,

Principles, and Techniques,

1st ed. Springer Publishing

Company, Incorporated,

2010.

[15] D. Fensel, “Ontologies,” in

Ontologies, Springer, Berlin,

Heidelberg, 2001, pp. 11–18.

doi: 10.1007/978-3-662-

04396-7_2.

[16] T. R. Gruber, “A translation

approach to portable

ontology specifications,”

Knowledge Acquisition, vol.

5, no. 2, pp. 199–220, Jun.

1993, doi: 10.1006/knac.

1993.1008.

[17] V. Tarasov, H. Tan, M.

Ismail, A. Adlemo, and M.

Johansson, “Application of

Inference Rules to a Software

Requirements Ontology to

Generate Software Test

Cases,” in OWL: Experiences

and Directions – Reasoner

Evaluation, Springer, Cham,

2016, pp. 82–94. doi:

10.1007/978-3-319-54627-

8_7.

[18] I. Dubielewicz, B.

Hnatkowska, Z. Huzar, and

L. Tuzinkiewicz, “Domain

Modeling Based on

Requirements Specification

and Ontology,” in Software

Engineering: Challenges and

Solutions, Springer, Cham,

2017, pp. 31–45. doi:

10.1007/978-3-319-43606-

7_3.

[19] A. Abran, J. J. Cuadrado, E.

García-Barriocanal, O.

Mendes, S. Sánchez-Alonso,

and M. A. Sicilia,

“Engineering the Ontology

for the SWEBOK: Issues and

Techniques,” in Ontologies

for Software Engineering and

Software Technology,

Springer, Berlin, Heidelberg,

2006, pp. 103–121. doi:

10.1007/3-540-34518-3_3.

[20] C. Calero and M. Piattini,

“An Ontological Approach to

SQL:2003,” in Ontologies for

Software Engineering and

Software Technology,

Springer, Berlin, Heidelberg,

2006, pp. 197–215. doi:

10.1007/3-540-34518-3_7.

[21] D. Dermeval et al.,

“Applications of ontologies

in requirements engineering:

ReqSpecOnto: Investigating Explicit…

68 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

a systematic review of the

literature,” Requirements

Eng, vol. 21, no. 4, pp. 405–

437, Nov. 2016, doi:

10.1007/s00766-015-0222-6.

[22] Y. Odeh and M. Odeh, “A

NEW CLASSIFICATION

OF NON-FUNCTIONAL

REQUIREMENTS FOR

SERVICE-ORIENTED

SOFTWARE

ENINEERING,” May 2018.

[23] H. Kaiya and M. Saeki,

“Using Domain Ontology as

Domain Knowledge for

Requirements Elicitation,” in

14th IEEE International

Requirements Engineering

Conference (RE’06), Sep.

2006, pp. 189–198. doi:

10.1109/RE.2006.72.

[24] M. Ismail, “Ontology

Learning from Software

Requirements Specification

(SRS),” in Knowledge

Engineering and Knowledge

Management, Nov. 2016, pp.

251–255. doi: 10.1007/978-

3-319-58694-6_39.

[25] T. Avdeenko and N.

Pustovalova, “The ontology-

based approach to support the

completeness and

consistency of the

requirements specification,”

in 2015 International

Siberian Conference on

Control and Communications

(SIBCON), May 2015, pp. 1–

4. doi:

10.1109/SIBCON.2015.7147

184.

[26] N. Mahmud, C. Seceleanu,

and O. Ljungkrantz, “ReSA:

An ontology-based

requirement specification

language tailored to

automotive systems,” in 10th

IEEE International

Symposium on Industrial

Embedded Systems (SIES),

Jun. 2015, pp. 1–10. doi:

10.1109/SIES.2015.7185035.

[27] L. Zong-yong, W. Zhi-xue,

Y. Ying-ying, W. Yue, and L.

Ying, “Towards a Multiple

Ontology Framework for

Requirements Elicitation and

Reuse,” in 31st Annual

International Computer

Software and Applications

Conference (COMPSAC

2007), Jul. 2007, vol. 1, pp.

189–195. doi:

10.1109/COMPSAC.2007.2

16.

[28] A. P. Yanuarifiani, F.-F.

Chua, and G.-Y. Chan,

“Feasibility Analysis of a

Rule-Based Ontology

Framework (ROF) for Auto-

Generation of Requirements

Specification,” in 2020 IEEE

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Ahmed et al.

69
School of Systems and Technology

Volume 1 Issue 2, Winter 2021

2nd International Conference

on Artificial Intelligence in

Engineering and Technology

(IICAIET), Sep. 2020, pp. 1–

6. doi:

10.1109/IICAIET49801.202

0.9257838.

[29] G. Loniewski, E. Insfran, and

S. Abrahão, “A Systematic

Review of the Use of

Requirements Engineering

Techniques in Model-Driven

Development,” in Model

Driven Engineering

Languages and Systems, Oct.

2010, pp. 213–227. doi:

10.1007/978-3-642-16129-

2_16.

[30] L. van Rooijen, F. S. Bäumer,

M. C. Platenius, M. Geierhos,

H. Hamann, and G. Engels,

“From User Demand to

Software Service: Using

Machine Learning to

Automate the Requirements

Specification Process,” in

2017 IEEE 25th

International Requirements

Engineering Conference

Workshops (REW), Sep.

2017, pp. 379–385. doi:

10.1109/REW.2017.26.

[31] M. Grüninger and M. S. Fox,

“Methodology for the Design

and Evaluation of

Ontologies,” 1995.

[32] J. D. Palmer, Y. Liang, and L.

Want, “Classification as an

Approach To Requirements

Analysis,” Advances in

Classification Research

Online, vol. 1, no. 1, pp. 131–

138, Oct. 1990, doi:

10.7152/acro.v1i1.12472.

[33] B. Chen and Q. Dong, “A

Taxonomy System for

Information System

Requirements,” in

Proceedings of the

International Conference on

Information Engineering and

Applications (IEA) 2012,

Springer, London, 2013, pp.

633–643. doi: 10.1007/978-

1-4471-4847-0_78.

[34] N. Afreen, A. Khatoon, and

M. Sadiq, “A Taxonomy of

Software’s Non-functional

Requirements,” in

Proceedings of the Second

International Conference on

Computer and

Communication

Technologies, Springer, New

Delhi, 2016, pp. 47–53. doi:

10.1007/978-81-322-2517-

1_6.

[35] R. E. Al-Qutaish, “An

Investigation of the

Weaknesses of the ISO 9126

International Standard,” in

2009 Second International

Conference on Computer and

ReqSpecOnto: Investigating Explicit…

70 Innovative Computing Review

Volume 1 Issue 2, Winter 2021

Electrical Engineering, Dec.

2009, vol. 1, pp. 275–279.

doi:

10.1109/ICCEE.2009.83.

[36] S. Pearson, “Privacy,

Security and Trust in Cloud

Computing,” in Privacy and

Security for Cloud

Computing, Springer,

London, 2013, pp. 3–42. doi:

10.1007/978-1-4471-4189-

1_1.

[37] J. H. Gennari et al., “The

evolution of Protégé: an

environment for knowledge-

based systems development,”

International Journal of

Human-Computer Studies,

vol. 58, no. 1, pp. 89–123,

Jan. 2003, doi: 10.1016/

S1071-5819(02)00127-1.

[38] H. Zhao, S. Zhang, and J.

Zhao, “Research of Using

Protégé to Build Ontology,”

in 2012 IEEE/ACIS 11th

International Conference on

Computer and Information

Science, May 2012, pp. 697–

700. doi: 10.1109/ICIS.2012.

126.

[39] S. Abburu, “A survey on

ontology reasoners and

comparison,” International

Journal of Computer

Applications, vol. 57, no. 17,

2012.

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

	3
	ICR 1(2)-3

