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ABSTRACT The outbreak of SARS and, more recently, COVID-19 has highlighted the 

need for accurate and quick diagnosis of chest diseases for pandemic prevention. While the 

handling of the COVID-19 pandemic has drawn attention to the weaknesses in the 

healthcare systems worldwide, it has also enabled us to fully utilize the massive amounts 

of data at our disposal in order to devise strategies for better handling outbreaks in the 

future. Chest infection is a crucial symptom used to diagnose COVID-19 cases. 

Moreover, it may also lead to various other diseases, including pneumonia, asthma, and 

bronchitis. Researchers have been working on automatic chest infection detection for the 
last few decades. In this study, we present oGoogleNet, a deep learning architecture for 

chest infection detection, developed by optimizing GoogleNet through the addition of 

layers and the modification of activation functions. The oGoogleNet is compared with the 

existing state-of-the-art deep networks on eight standard chest infection datasets, 

containing 12,389 radiographs (with 777 COVID-19 radiographs). The experiments 

demonstrate that oGoogleNet outperforms the other systems and achieves an accuracy of 

91.25%. 

INDEX TERMS Convolution’s Neural Networks (CNN), Deep Learning (DL), o 

GoogleNet 

I. INTRODUCTION 

The COVID-19 pandemic has disrupted 

the world’s economy in a way not seen in 
the recent past. The economies are on the 

verge of collapse worldwide. 

Unemployment rate has shot up drastically, 

GDP growth has been adversely affected, 

and there has been an increase in deaths 

caused by both COVID-19 as well 

subsequent lock-down-related suicides [1]. 

In short, the abrupt and rapid spread of the 

novel virus has caused massive uncertainty. 

On March 18th 2020, the International 

Labor Organization reported a 4.936-
5.644% increase in the unemployment rate 

worldwide [2]. It further said that this 

increased rate would also increase the 
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suicide ratio from 2135 to 9570 per year, 

respectively. Their previous study is based 

on public data from 63 countries. 
Furthermore, suicide risk has increased 

now by 20-30% as compared to the last 

decade, especially during the 2008 

recession [3]. 

Coibion et al. in 2020 reported 

extraordinarily high figures of 

unemployment, that is, 16.5 million due to 

the COVID-19 virus [4]. They predicted an 

increase of 6-7 million per week in the 

unemployment rate starting from April 

2020. As compared to the pre-COVID-19 
condition, the percentage increase in the 

rate of unemployment is 12.2% as 20 
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million people lost their jobs. 

The scale of COVID-19’s socio-economic 

impact is enormous as compared to the past 

era’s pandemic. For instance, H5NA 

(Avian Influenza) was caused by poultry-
hum interaction and it caused 400 deaths 

in 2008 [5]. The Middle East Respiratory 

Syndrome (MERS) epidemic caused more 

than 400 deaths in the Middle East in 2012 

and 150 deaths in South Korea in 2015 [6]. 

During the COVID-19 pandemic, the 

USA’s death rate has been 0.02% as of June 

1st, 2020 [6]. From February 29th 2020 to 

June 5th 2020 in England, around 23.6% 

(44,736) deaths were registered as COVID-
19-related. For Wales, in the same period, 

the figure was close to 20.3% (2,294) [7]. 

The country-wise death rate from 

pneumonia, grouped by age from 2010 to 

2017, is shown in Figure 11. 

 

FIGURE 1. World death rate caused by pneumonia from 2010 to 2017 

Nowadays, there is an urgency to find 

effective mechanisms for the diagnosis and 

treatment of COVID-19 pandemic. It is a 

multifaceted re- search effort bringing in 

scientists from diverse fields including 

health, pharmaceuticals, and ML and data 

sciences. Still, other rooms are open for 

technical visions and resolution of this 

pandemic in Artificial Intelligence (AI), 
Deep Learning (DL), and big data [8]. 

Careful testing, accurate diagnosis, and 

proper treatment are essential in this current 

COVID-19 pandemic. The RT-PCR 

(Reverse transcription-polymerase chain 

                                                   
1https://ourworldindata.org/grapher/pneum

reaction) is an important examination for 

COVID-19 [9]. A quick, efficient, and 

economically reasonable test for this 

pandemic is chest radiographs. It detects 

pneumonia symptoms, which reflect the 

possibility of the coronavirus [10]. Chest 

radiographs illustrate visual guidance 

related to COVID-19 pandemic [11]. 

The study of a chest radiograph is a 
challenging task. It is error-prone and 

requires an expert system that can assist 

pathologists in properly diagnosing it [12]. 

Each year, millions of people develop 

onia-mortality-by-age?year=latest 
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thoracic diseases, such as lung cancer and 

tuberculosis. An accurate interpretation of 

a chest radiograph is very crucial to 

diagnose these diseases. The process of 

interpreting the radiographs is time-
consuming and does not allow much 

margin for error. In recent years, DL-based 

radiograph interpretation seems to bring 

promising results. In the case of DL, feature 

extraction is performed in a different but 

systematic way, requiring lesser human 

intervention [13]. 

This study proposed a DL architecture, 

oGoogleNet. This automatically detects 

abnormalities in radiographs, especially 

from COVID-19 datasets and assists in 

automated interpretation of the disease. 
Large data sets of chest radiographs from 

different sources have been used to train 

and test this algorithm. The classification 

accuracy and running time of the approach 

are compared with other state-of-the-art 

Deep Learning Algorithms (DLA’s) 

including AlexNet, Inception-V3, ResNet-

152, and VGG16. 

The remainder of the paper is organized as 

follows: Section II describes the related 

work, while Section III explains the 
proposed methodology. Section IV 

describes the dataset. Section V presents 

various experiments of oGoogleNet using 

different datasets, while t h e  conclusion 

and future work are given in Section VI. 

II. RELATED WORK 

In July 2020, Yoo et al. examined the 

diagnostics of COVID-19 from CXR 

images by applying a Decision Tree (DT) 

classifier based on DL [14]. The classifier 

presented in the study comprised three 

binary tree classifiers. Each tree’s training 
was done by applying a PyTorch-based DL 

model with a Convolutional Neural 

network (CNN). The first and second DTs 

yielded an accuracy of 98% and 80%, 

respectively, while the third dt achieved 

95%. The DT classifier, based on DL, may 

be applied for rapid decision-making and 

for carrying out triage in pre-diagnostic 

testing of patients when the results of RT-

PCR are delayed. 

In 2018, Razzak et al. discussed the modern 

and cutting-edge architecture and 

optimization of DLAs [15]. The disease, 

that is, Diabetic Retinopathy (DR), can be 

detected and classified using Deep 

Convolutional Neural Network (DCNN) at 

its initial stages [16]. Moreover, DCNN can 

also be used to detect colon cancer nuclei 

cells using histological images [17]. CNN 

has also been applied for the extraction of 

features from endoscopy images [18]. This 
diagnostic process has 80% accuracy. 

There is also a need to develop techniques 

in order to handle a tremendously large 

quantum of data relating to the healthcare 

system. Since access to the annotated 

dataset is not familiar and comfortable, the 

data resources must be shared with various 

service providers of healthcare. 

In the year 2020, Peng et al. forecasted 

the top 12 countries severely affected by the 

quantum of COVID-19 cases by utilizing 
the support vector regression [19]. Various 

non-linear assemblies were tested by 

applying Kernel functions. While 3-D 

interpolated surfaces were used to carry 

out the sensitivity analysis of the model’s 

performance regarding their forecasting 

ability. These results helped in the practical 

evaluation of basic data analysis 

concepts. Moreover, it was also 

demonstrated that attentiveness is required 

while using Machine Learning (ML) 

models to support decision-making in the 
real world regarding the COVID-19 

challenges. Liu et al. proposed an excellent 

optimized model of CNN architectures 

[20]. However, it has a problem with the 

pre-processing of data. 

https://ojs.umt.edu.pk/index.php/jmr
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Esteva et al. proposed a model to rectify 

two types of skin cancers, common and 

deadly, in clinical skincare images [21]. 

Rajpurkar et al. proposed a model for the 

detection of pneumonia that contains 121 
CNN layers [22]. Murphey et al. selected 

chest radiographs from Jeroen Bosch 

Hospital and used AI classifier to identify 

COVID- pneumonia with 81% accuracy 

[23]. However, they collected the whole 

data from a single institute. 

Ming et al. proposed a literature review of 

the COVID-19 pandemic using test cases of 

chest radiographs from Shenzhen Hospital 

[24]. Chest radiographs were reviewed by 

two radiologists. Another technique to 

detect COVID-19 was proposed by 
Alqudah et al.  [25]. Their research was 

based on ML, where they implemented the 

Support Vector Machine (SVM), K-nearest 

neighbor, random forest, and softmax 

activation function, through which they 

were able to get a 98% accuracy. Hwang 

et al. proposed a DL–based Automated 

Detection Algorithm (DLAD) to categorize 

abnormal and normal radiograph images of 

thoracic disease (pneumonia, tuberculosis, 

active pulmonary, etc.) [26]. Gupta et al. 
proposed a deep network consisting of a 

dense block and 5 parallel classifiers for the 

identification of lung cancer through CT 

scan medical images and achieved an 

accuracy of 88.55% [27]. Fanelli et al. used 

public data from John Hopkins University 

to detect COVID-19 under different 

conditions [28]. 

Apostolopoulos et al. proposed VGG-19 

for the detection of COVID-19, achieving 

an accuracy of 98.75% [29]. They collected 

datasets from Cohen’s Github and pre-
processed them by removing the 

redundancy of images. Butt et al. 

implemented ResNet-23 and ResNet-18 to 

detect chest infection using CT scan images 

and achieved an accuracy of 86.7% [30]. 

However, their approach cannot work in 

real-time systems due to their reduced time 

efficiency. Choi et al. proposed an approach 

based on logistic regression to detect 

COVID-19 on radiograph images [31]. The 
limitations of their approach include small 

data sizes. 

Hameed et al. examined multi-system 

inflammatory syndrome in 35 children 

through chest radiographs and MRI 

images [32]. However, there are some 

limitations in the proposed system as it uses 

a lesser number of children in their 

experiment. Paul et al. applied a deep 

network on the COVID-19 chest 

radiograph dataset and achieved an 

accuracy of 89% [33]. However, there are 
some limitations as the availability of the 

COVID-19 radiograph is itself a barrier. 

Moreover, there is a lack of specificity in 

the model. This is because it is unable to 

differentiate COVID-positive CXR from 

the rest of the diseases, that is, alveolar 

pulmonary edema which causes air space 

opacities. 

III. PROPOSED METHODOLOGY 

The proposed approach used oGoogleNet 

which is our optimized version of 
oGoogleNet obtained by adding the 

convolution layer (7    7) and Max Pool 

Layer (3    3) along with the Stochastic 

Gradient Descent (SGD) optimizer and 

ReLU activation function. oGoogleNet is 

used for the identification of normal and 

abnormal chest radiographs. The 

oGoogleNet algorithm, introduced by 

Szegedy et al. [34], consists of 22 layers. 

The other most important characteristic is 

that it introduces the inception module. 

The accuracy of a neural network can be 
increased by increasing the number of 

layers. In the proposed structure, one more 

convolution layer and another 3×3 max- 

pooling layer was added as shown in Figure 
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2. This exercise increased the feature 

extraction of data. In the methodology, 

oGoogleNet module worked as data was 

passed as input into six layers (four 

convolution layers (1      1), (3      3), (5      
5), (7      7), and two max-pooling layers (3 

3), (3 3). The results were then 

concatenated with the end layer of the 

inception module. The convolutional layers 

extract various spatial information from the 

input data. Whereas, the other two max-

pooling layers extract feature parameters 

by revising the channel and size of the 

input data. The design of the inception 

module is based on a nested network 

structure which makes it different from the 
conventional network. By applying the 

ReLU function, which is a linear activation 

function, on the (1 1) convolution layer, the 

complexity in the calculation is reduced as 

shown in Figure 2. 

 

FIGURE 2. oGoogleNet model block 

The applied parameters of oGoogleNet are 

given in Table II which consists of 30 
layers and 10,479,110 parameters. 

oGoogleNet uses rectified linear unit 

(ReLU) activation function [35], which is 

fast in performance [36] and can easily be 

optimized due to its linear properties [36]. 

SGD optimizers simplify the learning rate 

as well as speed up convergence [37]. 

 

IV. DATASET 

Eight different datasets were used. In these 
datasets, 5027 normal, 12071 pneumonia, 

and 777 COVID-19 images were found as 

shown in Table I. All the images were 

combined to create one data set containing 

a total of 12,389 chest radiographs with 

7,825 abnormal (pneumonia, COVID-19) 

results and 4,564 chest radiographs with 

normal findings as shown in Figure 3. 
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FIGURE 3. Statistical breakdown of chest radiographs 

Since all datasets were taken from different 

sources, so the collected data was not 

uniform and the radiographs were not in the 

same format. Thus, all images were 

converted into a similar size of 224*224. 

Data augmentation with rotation range 10 

was also performed to increase the 

diversity of images. 

TABLE I 

STATISTICAL DESCRIPTION OF DATASETS WITH SOURCE 

 COVID-19 Normal Pneumonia 

OCT CHXRAY [38] - 1575 4266 

COVID CHXRAY [39] 296 ˜ 77 

COVID RADIO DB [40] 219 1341 1345 

COVID CHXRAY [40] 262 1583 4273 

MNTG COUNTY [41] - 58 80 

SHENZHEN HOSPITAL [41] ˜ 326 336 

CHESTXRAY [42] 

NIH CHXRAY [43] 
˜ 144 144 

˜ ˜ 1500 

Total 777 5027 12021 

V. EXPERIMENTS AND 

DISCUSSION 

oGoogleNet is compared with state-of-the-

art existing deep networks including Alex-

Net, Inception-V3, VGG-16, and ResNet-

152 in terms of percentage accuracy and 

time efficiency on 12,389 chest 

radiographs with a split ratio of 80 and 

20. The accuracy and loss rate of 

oGoogleNet is shown in Figure 4. It can 

be inferred that the accuracy increases 

with the increase in the number of epochs 

and vice versa.   
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FIGURE 4. oGoogleNet accuracy and loss parameters 

TABLE II 

PARAMETRIC RESULTS OF VARIANTS OF THE PROPOSED AP PROACH 

Optimzer 
oGoogleNet-

Adam 

oGoogleNet-

RMSProp 

oGoogleNet-

Adam 

oGoogleNet-

SGD 

oGoogleNet-

RMSProp 
oGoogleNet 

Accuracy 89.68 87.90 88.88 90.88 87.1 91.25 

Time 

(sec) 
1389 1357 1165 10020 1300 10080 

Batch-

Size 
16 16 32 32 32 16 

A. EXPERIMENT 1: COMPARISON IN 

TERMS OF ACCURACY 

oGoogleNet outperforms the Alex-Net, 
Inception-V3, VGG- 16, and ResNet-152 

in terms of percentage accuracy as can be 

seen in Figure 5. The reason includes the 

addition of convolutional and pool layers in 

oGoogleNet architecture. The dataset of 

radiographs has high intra-class variations 

due to the presence of various chest 

diseases including pneumonia, 
tuberculosis, COVID-19, and active 

pulmonary. The SGD, an important 

optimization module of oGoogleNet, 

speeds up the convergence method on this 

dataset. 
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FIGURE 5. Comparison of oGoogleNet with existing state-of-the-art deep networks 

in terms of percentage accuracy with a split ratio of 80:20 

B. EXPERIMENT 2: COMPARISON IN 

TERMS OF EXECUTION TIME 

It can be observed in Figure 6 that 

oGoogleNet is 1.71, 1.75,1.0 times faster 

than VGG-16, ResNet-152, and AlexNet, 

respectively. oGoogleNet uses an SGD 

optimizer that increases the convergence of 

deep network on this dataset and hence, 

improves its time efficiency. 

FIGURE 6. Comparison of oGoogleNet with existing state-of-the-art deep net- works 

in terms of time efficiency with a split ratio of 80:20 
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C. EXPERIMENT 3: VARIANTS OF 

PROPOSED APPROACH 

Table II shows the comparison of 

oGoogleNet with its vari- ants. These 

variants are obtained by changing the 
optimizers and batch size of oGoogleNet 

to see their effect in percent- age accuracy 

and time efficiency. It can be observed that 

oGoogleNet outperforms its variants in 

terms of percentage accuracy. It exhibits 

comparable time efficiency as compared to 

oGoogleNet-SGD. Its other variants exhibit 

better time efficiency at the cost of 

percentage accuracy. 

VI. CONCLUSION AND FUTURE 

WORK 

The current study proposed a novel 
framework for the classification of 

pneumonia and COVID-19 chest 

radiographs using the optimized GoogleNet 

(oGoogleNet) model of DL. In this 

architecture, by adding one convolutional 

layer (7x7) and one MaxPool layer, feature 

extraction parameters were enhanced. The 

proposed architecture achieved 91.25% 

accuracy and outperformed other state-of-

the-art architectures including AlexNet, 

VGG-16, Inception-V3, and ResNet-152. In 
future, the proposed model can be made 

more efficient both in terms of percentage 

accuracy and time efficiency. The addition 

of large data repositories would definitely 

help to improve the model. 
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