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ABSTRACT Currently, healthcare sector is the most dynamic sector in terms of 
introducing new technologies and services. An innovative advancement in this sector is the 
remote or portable monitoring of patients, which is proving to be very beneficial in a world 
with a rapidly expanding population, rising health issues, and limited access to medical 
facilities. A patient monitoring equipment is often used to quantitatively measure a patient's 
vital signs, including blood pressure, temperature, ECG, heart rate, and SpO2. This study 
attempts to enhance the future of healthcare by developing such a patient monitoring 
system. The ECG dataset was downloaded from CPEIC. The device created for this study 
can measure four parameters, namely ECG, SpO2, heart rate, and body temperature. The 
values are displayed on an LCD screen and the device is IoT-based, allowing data 
transmission to a web application for easy and universal access. To address the issues 
encountered, the device is designed to be cost-effective, dependable, and portable. The 
ECG output of this IoT-based model was thoroughly examined and tested using a deep 
learning model known as Inception V3 to determine the accuracy and dependability of the 
network. The model obtained phenomenal training loss of 0.1315 and a training accuracy 
of 96.66%. On the validation set, it achieved a validation loss of 0.1146 and a validation 
accuracy of 96.90%. Two-dimensional Gaussian elimination was used to remove noise 
from ECG images.  

INDEX TERMS computer vision, Gaussian filter, healthcare, health management 
systems, IOT, machine learning, patients, vital signs 

I. INTRODUCTION 

Deep learning (DL) models rely on 
Artificial Neural Networks (ANNs), 
modeled after the structure of the human 
brain. Each layer in these networks consists 
of interconnected nodes (neurons) that 
process input data. As the data moves 
through these layers, the network gradually 
learns to recognize increasingly complex 
patterns. For example, in image 
recognition, the first layers may detect 
edges, while deeper layers identify shapes 
or specific objects [1]. 

 
∗Corresponding Author: asif.raza@ssuet.edu.pk  

The widespread use of E-health or mobile 
health has significantly impacted the global 
healthcare business. Doctors and healthcare 
professionals are opting for these solutions 
to address issues such as the scarcity of 
equipment, hospital resources, and patient 
overload. This research was undertaken to 
provide an effective solution to the above 
challenges by focusing on the Patient 
Monitoring System (PMS) or 
multiparameter monitor, which is the most 
often used piece of equipment. 
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SpO2 recording, also known as pulse 
oximeter, is a technique used to measure 
blood gases and detect medical problems, 
including hypoxemia. Oxygen is the 
primary gas tested in the blood non-
invasively by pulse oximetry. This 
approach is often used in occupational 
therapy, Intensive Care Units (ICUs), 
clinics, and is also advised for 
incorporation into the everyday routines of 
some individuals with coronary heart 
problems [2]. Blood oxygen saturation is 
quantified as a percentage. The typical 
blood oxygen saturation level is between 
95% and 100%. Some sources indicate that 
levels beyond 92% may potentially be 
acceptable in certain situations, but 
anything below this threshold is considered 
to be life-threatening [3]. Optical sensors, 
including an LED and a phototransistor, are 
used to measure blood oxygen saturation 
via the process of light absorption [4], [5]. 

Heart rate is the measurement of the 
number of heart beats per minute. Heart rate 
is a crucial factor in assessing heart health, 
cardiovascular conditions, cardiovascular 
risk, and atherosclerosis [6]. Heart rate may 
be measured in several ways. One approach 
involves measuring the heart rate 
physically. 

A method used for the said purpose is 
counting pulse on the patient’s wrist for one 
minute. Another modality uses a pulse 
sensor that can tell the frequency of 
heartbeats by measuring the amount of light 
absorbed by the circulating blood. In the 
third method, ECG is used for measuring 
the heart rate based on counts per minutes. 
Usually, the heart rate for an individual at 
rest ranges from 60 to 100 beats per minute, 
however, it may slightly differ in males and 
females. When a person exercises, their 
heart rate goes up and down [7]. ECG is one 
of the most important part of the 
examination of a patient. Compared to the 

past, it has significantly improved the early 
detection and prognosis of cardiovascular 
diseases and general health. ECG has 
played a vital role in pushing cardiology 
forward [8], [9]. 

This study contributes Remote Patient 
Monitoring (RPM) technologies, enabling 
healthcare providers to track patients' 
health remotely through wearable devices 
and sensors. This is especially useful for 
patients with chronic conditions such as 
diabetes and hypertension, since it supports 
continuous health management and helps 
prevent hospital readmissions. By offering 
real-time monitoring, RPM can catch early 
warning signs and allow for timely 
interventions, ultimately improving patient 
outcomes and reducing the need for 
frequent in-person visits. In this study, a 
prototype is created with integrated sensors 
to collect crucial data. It was connected to 
the Internet of Things (IoT) which 
expanded its capabilities and sent real-time 
data to healthcare professionals.  

This article is organized into five key 
sections. Section I ‘Introduction’ provides 
a general overview of the topic, 
highlighting its importance and outlining 
the primary objectives of the research. 
Section II ‘Related Work’ reviews previous 
studies and existing research in the field. 
Section III ‘Methodology’ explains the 
methods, tools, and procedures used in this 
research, detailing how data was collected 
and analyzed. Section IV presents the 
findings, using tables, charts, and other 
visual aids to interpret the data and discuss 
the outcomes. Finally, Section V 
‘Conclusion’ summarizes the key insights, 
reflecting on the results and their 
implications, and suggests potential 
directions for future research. 
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II. RELATED WORK 

An ECG illustrates the heart's electrical 
activity via a wave pattern that details each 
stage of a single beating. ECG aids in 
diagnosing various cardiac diseases 
including arrhythmia and ischemia [10]. 
Body temperature is a critical sign that 
should be regularly monitored to assess the 
illness's severity, since a higher 
temperature indicates a more significant 
impact of the disease on the body [11].  

The healthcare sector is making 
technological advancements rapidly, 
leading to the development of various 
patient monitoring systems. These systems 
involve constant checking of physical 
parameters by a handheld method and 
notifying healthcare specialists of any 
serious conditions [12]. Emphasizing the 
significance of remote health and its 
practical applications in meeting consumer 
demand and cost efficiency is beneficial for 
the design and development process [13].  
Applications include heart rate monitors, 
employing smartphones, and hemoglobin 
meters. Literature has examined the current 
apps for monitoring infants [14]. Health 
monitoring systems are categorized into 
two classes, namely advanced systems and 
traditional systems. Comparing various 
health monitoring systems revealed flaws 
and shortcomings in the current systems. 
Smart systems use wireless and remote 
health monitoring technology, while 
conventional systems rely on wired health 
monitoring equipment [15]. 

Advanced systems have discovered 
particular qualities via their development 
tools, such as the prototype medical 
equipment known as electrocardiography. 
This device was coupled with a mobile 
phone to provide a quicker and more 
efficient analysis of findings [16]. Kim. C. 
and Soong. A. performed research on 

healthcare apps using IoT. The poll 
intended to offer in-depth insights on how 
RFID, multi-agent, and IoT technologies 
may enhance people's technological access, 
improve health facilities, and streamline the 
healthcare procedures [17]. These 
technologies are also used to improve the 
process of transferring data from a device 
to a web application and provide several 
options for data storage [18]. Certain IoT 
solutions are more beneficial and useful for 
assessing, using, and applying data in the 
healthcare sector, for instance, 
telemedicine and mobile medical treatment 
[19]. Moreover, some systems might be 
beneficial by offering enhanced 
consultation and clinical monitoring via 
telemedicine, various media, and modern 
technology [20]. Health department may 
oversee patient activities, collect patients' 
data, and transmit it remotely over the IoT. 
Securing data transfer is crucial to maintain 
this relationship. IoT in healthcare is 
implemented by designing the technology 
using robust and diverse communication 
protocols. An information-rich health 
application is managed by using a resource-
based data recovery technique. This 
technology is integrated with a smart box to 
track patient actions, functioning as a 
medical system. Soni said that the IoT 
deployment involves maintaining four 
protocol layers. Systems at the physical 
layer are linked to sensors and transmitters. 
The sensors relay signals to the web portal 
via a network layer. The middle layer has 
the capability to store data in the web portal 
and provides access to the data. Diagnostic 
and analytic procedures occur at the 
application layer. The substantial 
employment rate of IoT indicates the 
significant role of the medical technology 
sector in the European economy. By 
contrast, the European pharmaceutical 
sector has a workforce of 740,000 
individuals [21].  
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RPM systems offer significant 
opportunities to improve patient care. 
However, they also present several research 
gaps, limitations, and challenges that must 
be addressed to ensure effective 
implementation and scalability. 

A. RESEARCH GAPS AND 
LIMITATIONS 

1) INTEGRATION AND 
INTEROPERABILITY 

A key gap in RPM research is the need for 
better integration between various devices 
and systems. The lack of interoperability 
among devices from different 
manufacturers makes data sharing difficult, 
which can hinder comprehensive patient 
monitoring [22].   

2) DATA SECURITY AND PRIVACY 

3) Since RPM systems handle sensitive 
patient data, research is needed to 
strengthen cyber security. This includes 
developing secure protocols to prevent data 
breaches and ensuring adherence to 
regulations such as HIPAA and GDPR 
[23].  

3) USER-CENTRIC DESIGN 

Many RPM systems are not designed with 
the end user in mind, leading to low 
adoption rates by patients and healthcare 
providers. Research should focus on 
creating user-centered designs that cater to 
the unique needs of diverse patient 
populations [24].   

To conclude, while RPM systems hold the 
promise of transforming patient care, 
addressing these research gaps, limitations, 
and challenges is essential for their 
successful implementation and broader 
adoption in healthcare. 

 

 

III. METHODOLOGY 

The materials utilized to create a functional 
prototype included sensors and 
components. The study utilized a 
microcontroller as the central component, a 
DS18B20 temperature sensor for 
temperature monitoring, a custom heart rate 
sensor for heart rate recording, a custom 
SpO2 sensor for blood oxygen saturation 
sensing, an LCD for displaying results, and 
a Node ESP32. 

A. DEVICE FUNCTIONALITY  

Custom sensors are used to record the 
biological signals emitted by the human 
body. Flowcharts depict the sequential 
process of the machine, starting with 
detecting the bio signals of the patient's 
body, passing through signal filtering, and 
transforming them into microcontroller-
readable signals before displaying them on 
the screen and web application. Figure 1 
illustrates the device's operation, detailing 
the processing of bio signals from the body 
and the presentation of findings on screen 
using a block diagram, as well as the 
streaming of data to web. 

 
FIGURE 1. Device Functionality 

B. SPO2 MEASUREMENT 

Flow chart illustrates the comprehensive 
operation of the SpO2 sensor and 
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microcontroller collaborating to produce 
the intended result. Figure 2 illustrates the 
process of measuring SpO2 from the finger. 
The SpO2 measurement is carried out using 
a specialized module built with the IC 
Max30100, which is capable of measuring 
both pulse rate and SpO2 levels. However, 
in this study, it is exclusively utilized for 
SpO2 measurement. IC integrates both 

LED and infrared (IR) light as the source 
and detector, simplifying the circuit design. 
To function properly, it requires a set of 
minimal supporting components mounted 
on a board. It also demands a pull-up 
resistor and capacitor connected to data 
communication pin, with power supplied as 
specified in the datasheet.  

 
FIGURE 2. Structure of SpO2 data recording 

C. TEMPERATURE RECORDING 

The flowchart shows how body 
temperature and microprocessor work 
synchronously in order to reach the 
particular goal. Figure 3 illustrates the 
temperature sensor in operation and starts 
from sensing voltage fluctuations caused by 
ambient heat and terminates by providing 
the final temperature. 

D. RECORDING OF ECG SIGNALS 
AND HEART RATE VALUES 

The diagram (Figure 4) illustrates how 
ECG, microcontroller, and heart rate sensor 
collaborate to produce the required  

ECG and heart rate output. Figure 4 
illustrates the operation of the ECG and 
heart rate sensor, starting with recording the 
voltage change following the cardiac cycle 

to capturing the heart rate and generating 
the result. 

 

 
FIGURE 3. Body Temperature Recording 
Structure 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr


Ahmed et al. 

57 School of Systems and Technology 
Volume 4 Issue 1, Spring 2024 

 
FIGURE 4. ECG and Heart Rate Recording Structure 

 
FIGURE 5. (a, b, c) 
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E. WEB PORTAL  

A web portal is created to display real-time 
data and save it in a SQL database, as seen 
in Figures 5 (a), (b), (C) 

IV. RESULTS 

A. CARDIAC RHYTHM FINDINGS  

Each one of the three volunteers underwent 
three heart rate tests using the planned 
prototype and a CE registered pulse 
oximeter. The tests included obtaining a 
continuous heart rate reading for about 2 
minutes from the prototype. Table 1 and 
Table 2 compare the heart rate data, 
whereas Figure 6 displays the results from 
the prototype and Figure 7 shows the 
reading from the pulse oximeter. 

TABLE I 
PULSE READINGS OF PATIENTS 

ID. 1st 

Reading 
2nd 

Reading 
3rd 

Reading Difference 

Patient 1 76 77 76 76.3 
Patient 2 79 80 80 79.6 
Patient 3 65 66 66 65.6 

TABLE II 
OXIMETER PULSE RATES 

ID. 1st 
Reading 

2nd 

Reading 
3rd 

Reading Difference 

Patient 1 78 78 78 78 
Patient 2 82 82 82 82 
Patient 3 68 67 67 67 
 

 
FIGURE 6. Results 

 
FIGURE 7. Pulse Oximeter with CE Marking 
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B. BODY TEMPERATURE RESULTS 

All three individuals had their body 
temperature measured three times using 
both the created prototype and a mercury 
thermometer for a continuous measurement 
duration of 120 seconds using the 
prototype. Table III and Table IV provide a 
thorough comparison of body temperature 
readings. Figure 8 shows the body 
temperature readings from the device, 
while Figure 9 displays the results from the 
mercury thermometer. 

 

 

 

TABLE III 
TEMPERATURE 

ID 
1st 

Reading 
(°c) 

2nd 
Reading 

(°c) 

3rd 
Reading 

(°c) 

Absolute 
Difference 

(°c) 
Patient 1 34.6 35.8 36.8 35.77 
Patient 2 36.9 36.4 35.1 36.13 
Patient 3 38.5 37.3 37.3 37.7 

TABLE IV 
MERCURY THERMOMETER 

RESULTS 
Subject 

No. 
1st 

(°c) 
2nd 
(°c) 

3rd 
(°c) 

Absolute 
Mean (°c) 

Sub 1 35.5 35.3 35.8 35.53 
Sub 2 37.3 37.5 37.9 37.56 
Sub 3 38.7 38.4 38.2 38.43 

 
FIGURE 8. Results for Body Temperature 

 
FIGURE 9. Mercury Thermometer Body Temperature  
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C. PRECISION  

Tables V, VI, and VII show the accuracy 
and precision of many parameters 
measured by the prototype in comparison to 
the CE approved devices. Table VIII 
displays the percentage of errors for each 
parameter.  

TABLE V 
BODY TEMPERATURE ACCURACY 

Patient 
No. 

Mean 
Device 

(°c) 

Mean 
mercury 

thermometer 
(°c) 

Accuracy 
% 

Mean 
accuracy % 
temperature 

Patient 1 35.5 35.7 100 98.11  % 
Patient 2 35.68 37.5 96.2  
Patient 3 37.34 38.4 98.15  

Table V presents temperature readings 
from both a mean device and a mercury 
thermometer for three patients. For Patient 
1, the mean device and the mercury 
thermometer recorded the same 
temperature of 35°C, resulting in 100% 
accuracy. Across all patients, the mean 
accuracy for body temperature was 
calculated to be 98.11%. However, for 
Patient 2, there is a slight discrepancy 
between the mean device's recording of 
35.6°C and the mercury thermometer's 
reading of 37°C, resulting in an accuracy of 
96.2%. Patient 3 shows a similar pattern, 
where the average device measurement is 
37.3°C, while the mercury thermometer 
reads 38°C, resulting in an accuracy of 
98.15%. The little variations in individual 
results do not significantly impact the 
overall dependability of the equipment for 
measuring body temperature, although 
some inconsistency persists across different 
patients. 

TABLE VI 
ACCURACY FOR HEART RATE 

ID. 
Mean 
device 
(bpm) 

Mean CE 
marked 
(bpm) 

Accuracy 
% Precision % 

1 76.25 78 97.8 97.11  % 

ID. 
Mean 
device 
(bpm) 

Mean CE 
marked 
(bpm) 

Accuracy 
% Precision % 

2 79.55 82 97.07  
3 65.71 68 96.4  

Table VII displays the heart rate readings 
from a mean device and a CE approved 
device for three distinct individuals. The 
average heart rate of Patient 1 measured by 
the device is 76.3 bpm, whereas the 
CE device recorded 78 bpm, resulting in an 
accuracy of 97.8%. The average accuracy 
rate for heart rate among all patients is 
97.11%. For Patient 2, there is a little 
difference between the average heart rate 
recorded by the device at 79.6 bpm and the 
reading of 82 bpm by the CE device, 
resulting in an accuracy of 97.07%. Patient 
3 has an average device heart rate of 65.6 
bpm, whereas the CE device shows a value 
of 68 bpm, resulting in an accuracy of 
96.4%. Although some differences in 
individual readings persist, the average 
accuracy indicates an overall dependability 
of the device for heart rate measurements, 
with variances seen across individuals. 

TABLE VII 
ACCURACY FOR SPO2 

Person 
/Patients 

Mean 
 

Mean 
marked 

CE 
% 

Accuracy 
% 

Mean 
accuracy % 

for spo2 

1st 97.9 98 99.8 99.73  % 
2nd 97.7 97 100  
3rd 98.4 99 99.3  

Table VII displays oxygen saturation 
(SpO2) levels for three individuals obtained 
from both an average device and a CE 
approved equipment. The mean SpO2 
value of Patient 1 is 97.9%, which closely 
aligns with the CE recognized device's 
reading of 98%, resulting in an accuracy of 
99.8%. The average accuracy rate for SpO2 
across all patients is 99.73%. The average 
device SpO2 value of Patient 2 is 97.7%, 
which aligns with the CE recognized 
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device's reading of 97%, achieving an 
accuracy of 100%. Similarly, the mean 
device SpO2 reading of Patient 3 is 98.4%, 
which is very close to the CE marked 
device's reading of 99%, yielding an 
accuracy of 99.3%. These results indicate a 
high level of accuracy for the mean device 
in measuring SpO2, with consistent 
performance across the patients sampled. 

D. DEEP LEARNING IN 
HEALTHCARE 

Deep learning has demonstrated significant 
potential in revolutionizing healthcare by 
facilitating more precise disease diagnosis, 
tailored treatments, and better patient 
outcomes. Key applications of deep 
learning in healthcare includes the 
following. 

1) MEDICAL IMAGING ANALYSIS 

Deep learning models are highly effective 
at analyzing medical images, such as X-
rays, CT scans, MRIs, and pathology slides 
to detect diseases, assess their severity, and 
predict patient outcomes. For instance, 
these models can accurately identify early 
signs of breast cancer, lung cancer, heart 
disease, and neurological disorders in 
medical images [25]. 

2) ELECTRONIC HEALTH RECORD 
(EHR) ANALYSIS 

By analyzing Electronic Health Record 
(EHR) data, deep learning can detect 
patterns to predict disease risks, identify 
adverse events, and recommend 

personalized treatments. These models can 
process both structured data, such as lab 
results and diagnoses, and unstructured 
data, such as clinical notes, to support more 
informed clinical decisions [26]. 

3) WEARABLES AND REMOTE 
MONITORING 

Deep learning algorithms can analyze data 
from wearable devices and home sensors to 
track patient health, detect irregularities, 
and anticipate adverse events. This enables 
early interventions and remote patient 
monitoring, improving care accessibility 
[27].  Despite the promise deep learning 
holds in healthcare, challenges related to 
data quality, model transparency, and 
regulatory approval persist. Ongoing 
research continues to address these 
challenges, working to integrate deep 
learning into clinical workflows to enhance 
patient outcomes and reduce healthcare 
costs. 

E. DEEP NEURAL NETWORK 
INCEPTION V3 

Inception-V3, developed by Google, is a 
convolutional neural network designed for 
image identification. It improves on 
previous inception models with better 
depth, speed, and parameter efficiency. By 
using convolution decomposition, it 
reduces processing costs by breaking down 
large convolutions into smaller, more 
manageable ones, allowing for faster 
inference without sacrificing performance 
[28].   
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FIGURE 10. Architecture of Inception-V3 

Model robustness is considered as the most 
vital part of the network. ECG pattern and 
images taken from CPIEC [28] were 
classified into four (04) different classes for 
testing and validation. Feature extraction 
was performed through a deep leaning 
model called Inception V3. Gaussian 
elimination filter was applied to remove 
image noise. 

 
FIGURE 11.  Accuracy 

Figure 11 represents performance 
validation and training accuracy of a 

machine learning model, likely Inception 
V3, during training and validation phases. 
The training loss of 0.1315" indicates the 
average loss or error of the model's 
predictions on the training dataset, where a 
lower loss value suggests better alignment 
between predicted and actual values. The 
accuracy of “0.9666" signifies the 
proportion of correct predictions made by 
the model on the training data, as shown in 
Figure 11.  

 
FIGURE 12. Model Loss 
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On the other hand, validation loss of 0.1146 
represents the average loss of the model's 
predictions on a separate validation dataset, 
indicating its ability to generalize the 
unseen data in Figure 12. The validation 
accuracy is 0.9690", which denotes the 
accuracy of the model on the validation 

data, revealing its performance on new, 
unseen samples. These metrics collectively 
demonstrate that the model exhibits high 
accuracy and relatively low loss values, 
both during training and on unseen 
validation data, suggesting effective 
learning and generalization capabilities. 

  
FIGURE 13.  Validation 

 
FIGURE 14.  Training 
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A total of 64 instances of ‘Abnormal 
Heartbeat’ were accurately diagnosed using 
01 Myocardial Infarction (MI) 
classification. MI had 41 accurately 
classified cases and 06 misclassified 
instances. There were 65 cases of 
accurately classified MI with no errors in 
classification, indicating a good level of 
accuracy in detecting this heart condition. 
Normal ECG properly recognized 80 
occurrences with just one misclassification. 
The analysis shows that the model is very 
accurate in detecting MI but needs 
refinement in classifying other conditions 
such as abnormal heart beat and historic 
MI, where errors were made. 

 
FIGURE 15. ROC / AUC 

The table presents the ROC curve values 
for various classes. For "Abnormal 
Heartbeat" and "MI (Historical)", the 
values of ROC curve are 0.02 and 0.33, 
respectively. For "MI (Current)", the value 
of ROC curve is 0.56, while it is 0.99 for 
"Normal ECG". The value selected for each 
class gives a measure of differential 
performance for the particular class. A 
larger value indicates better differentiation 
between classes. 

F. ACCURACY METRIC 

The statistics for ‘Abnormal Heartbeat’ 
denote a true positive, false positive, true 
negative, and false negative of 0.919. The 

respective values of true positives = 57, 
false positives = 5, true negatives = 190, 
and false negatives = 5. For MI, accuracy is 
1.0, the recall value is 0.84, and the F1-
score is 0.913. This estimated output would 
have 42 true positives, zero false positives, 
207 true negatives, and 8 missed diagnoses. 
The metrics determine the model's 
performance at differentiating classes, 
highlighting the strong points and those 
which carry lower classification accuracy. 
The model developed for MI has an 
accuracy of 0.945, a recall value of 1.0, and 
an F1-score of 0.972, respectively. The 
class contained 69 correct positives, 4 
mistakes, 184 correct negatives, and 0 
missed negatives. With a precision score of 
0.938 and a recall value of 0.987, Normal 
ECG achieved an F1-score of 0.962. The 
data consisted of 75 true positives, as well 
as 5 false positives. It also contained 176 
true negatives, along with 1 false negative. 
Using these metrics, the model evaluation 
process is completed with the measuring of 
the model's ability to precisely identify the 
cases of MI and Normal ECG and 
determine what still needs to be improved. 
Accuracy levels and ECG classification are 
shown in Figure 17. 

TABLE VIII 
PERCENTAGE OF ERRORS FOR 

EACH PARAMETER 

Metrics for 
Abnormal Heartbeat: 

Metrics for 
Historic MI 

Precision: 0.91 Precision: 1.0 
Recall: 0.91 Recall: 0.84 
F1-Score : 0.91 F1-Score: 0.91 
TP: 57 TP: 42 
FP: 5 FP: 0 
TN: 190 TN: 207 
FN:5 FN: 8 
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Metrics for 
Myocardial 
Infarction 

Metrics for 
Normal ECG 

Precision: 0.945 Precision: 
0.9375 

Recall: 1.0 Recall: 0.986 
F1-Score: 0.971 F1-Score: 0.961 
TP: 69 TP: 75 
FP: 4 FP: 5 
TN:184 TN: 176 
FN: 0 FN: 1 

 
FIGURE 16. Metrices 

G. GAUSSIAN ELIMINATION 
FUNCTION 

A Gaussian low-pass filter, which is a 
common technique in image processing to 
lower noise and mimic the Gaussian blur 
effect for photo smoothening, was used for 
the said purpose. This filter takes off high-
frequency elements from the image and 
thus decreases the amount of noise. This 
technique is more likely to be used when 
the portraits of human faces need to be 
improved, such as the reduction of such 
imperfections as wrinkled or freckled areas 
to improve the overall look, especially in 
connection with social networking sites. 
Gaussian smoothing is the underlying 
operation in a number of computer vision 
applications by virtue of segmenting the 
image data in various scales. The masking 
process of Gaussian low-pass filtering is 
achieved by means of a Gaussian function, 
which is then utilized to compute the 
transformation applied to every point that 
comprise the image, leading to a 
comprehensive and clear technique to 
refine the image [29]. 

 
FIGURE 17.  ECG Classification 
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H. DATASET COLLECTION 

This study was conducted on two different 
datasets; one gathered during the 
prototype's implementation on 13 patients. 
Due to the unavailability of visual ECG 
images, public ECG images dataset [30] 
was incorporated. ECG data contained 04 
classes, namely Abnormal Heartbeat (233 
patients), Historic MI (172), Myocardial 
Infarction (239), and Normal ECG (284). 
The Inception V3 machine learning model 
was applied to evaluate accuracy metrics 
and robustness. 

V. CONCLUSION 

This study focused on the development and 
manufacturing of a device that would 
record the required four key parameters. 
The investigation unearthed the fact that the 
design of the device and its development 
already matched with the objectives of the 
project as they/the device achieved the 
targeted four vital signs and ensured IoT 
integration. This study not only contributes 
to the advancement of the healthcare 
industry but also provides an efficient and 
cost-effective solution. The generated data 
indicates that the device has a good 
readability to its target application. 
Unfortunately, the prototype failed to 
incorporate advanced level sensors because 
of their high cost. The image of this 
operational prototype is shown below. 
Prototype implementation and designing is 
also mentioned below. 

 
FIGURE 18. ECG for Patient 1 

 
FIGURE 19. ECG for Patient 2 

 
FIGURE 20. ECG for Patient 3 

 
FIGURE 21. Image for the Working 
Prototype 
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