Performance Monitoring Framework for Personal Software Processes

Muhammad Naeem Ahmed Khan', Mirza Aamir Mehmood?, Mohammad Imran?,
and Raja Asif Wagan®

Tndependent Researcher, Pakistan

*Department of Computer Science, Faculty of ICT, Balochistan University of
Information Technology, Engineering & Management Sciences, Quetta, Pakistan
3Department of Information Technology, Faculty of ICT, Balochistan University
of Information Technology, Engineering & Management Sciences, Quetta,
Pakistan

ABSTRACT To reduce defect density in Personal Software Process (PSP), the current
study introduced a novel PSP. Experiments were conducted using sample software codes
to determine how to improve developers’ productivity. Tasks performed by the developers
were recorded into a log file on a daily basis to evaluate their performance. The
experimental results helped formulate pertinent guidelines which can be used to improve
software quality, performance, productivity, and efficiency of the developers. The study
also defined distinct process levels, each equipped with comprehensive scripts, checklists,
and templates to help developers adopt the mandatory steps in the PSP environment. The
proposed framework may help automatically schedule and list activities of the individual
developers. This study proposed a framework designed for consistent performance
monitoring of software engineers within the PSP environment. For this purpose, a
prototype time-logging model has also been developed under the Java platform that
captures keystrokes and mouse clicks to automatically analyze the productivity of software
engineers with respect to the tasks assigned to them.

INDEX TERMS performance monitoring, quality management, time-logging

LINTRODUCTION engineers by helping them to plan, manage,
and quantify their work. The key reason to
The Personal Software Process (PSP)

; using PSP is to build products with zero
serves as a structured methodology aimed

‘ defects without time and cost overrun by
at ephancmg 'Fhe performance of software helping software engineers to evaluate their
engineers. Being a software development

- performance and improve it using historical
process, PSP helps software engineers gty Therefore, historical data serves as a
improve their performance by using an

5 . core facet to analyze, measure, and improve
orderly and daya-drlvgn technique. In other process performance. The four main
words, PSP is basically a method for qjements supported by PSP data collection
sowaare engineers to discover and develop ;. ude measures, scripts, standards, and
their own development process [1]. PSP ¢ ..o
depends heavily on gathering and
investigating personal data as a part of PSP, as an individual software
operative process execution. It helps development — methodology, requires
professionals assess their performance regular performance monitoring of
when they are working in a self-directed ~ software engineers to ensure timely
environment. Furthermore, it provides completion of the projects. PSP has
disciplined personal structure to software specifically been designed to assist

70 ICR Innovative Computing Review
Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Khan et al.

software engineers to improve their
personal software development processes
so that they may produce high-quality
products. By following the specific PSP
guidelines, software engineers can
determine process deficiencies by
performing meticulous analysis and then
may produce a reliable estimate of product
quality. This necessitates the support of an
automated tool to collect reliable data as
well as to address deficiencies of manual
data recording, such as context-switching
problems. In this regard, time-logging is an
important aspect to measure productivity of
software engineers engaged in designing,

developing, reviewing, and testing
software.
PSP comprises various methodologies

which help software engineers in several
steps of software development, such as
development of software plans, quality

measurement, and for effective
organization of software products.
Furthermore, PSP assists software

engineers in effectively executing tasks
encompassing software planning, software

architecture, development of software,
software test, and evaluation. PSP
technology is tailored for individual

developer work and is particularly suitable
for workplaces that emphasize individual
software development culture. The PSP
methodology has been developed by
Software Engineering Institute (SEI). It
brings regulatory measures into the sphere
of individual software development
practices, aiming to enhance the value and
prediction of systems heavily reliant on
software. It involves fresh perspectives to
enhance productivity and work quality, as
the primary objective of PSP is to deliver
software products free of defects,
completed on time, and within the allocated
budget. As a self-improvement framework,
PSP encompasses a defined set of

School of Systems and Technology
Volume 4 Issue 2, Fall 2024

operations, along with assessment and
analysis techniques. The PSP methodology
is structured to be readily applicable across
various stages of the process of software
development. Likewise, this method can be
utilized in context of several programming
languages and software design practices
including elicitation = of software
requirements, definition of processes,
execution of evaluations, and defects
removal. However, usage of PSP [1] should
be complemented with Team Software
Process (TSP) [2] to realize the overall aims
and objectives of the software development
activities. The quality of software products
is closely linked to the quality of processes
utilized during the software development
phase [3], [4]. PSP offers a structured
framework for the development of
software, assisting the programmers in
gauging and enhancing their personal
productivity [4]. The PSP framework
involves multiple levels, with each stage
building upon the previous one through the
addition of supplementary processes.

The current study proposed a framework
designed to analyze the performance of
software engineers in PSP environment.
This study aimed to highlight the
importance of time-logging-based
performance metrics throughout the PSP
software development process. Moreover,
it also proposed a framework adapted to
effectively monitor the performance of a
development team. The study proposed a
framework to monitor the performance of
PSP team during the planning, designing,
development, reviewing, and testing
phases. The proposed framework is based
on capturing keystrokes and mouse clicks
during a specific time span for all the
members of the software development
team. The keystroke information is
maintained in the form of structured logs
that are analyzed automatically to

-y
-7

UMT — 71

Performance Monitoring Framework...

determine the amount of work done by
different team members. The framework
also generates alerts if the performance of
any of the team members drops below the
predefined minimum threshold.

The current study was conducted as a
motivation to help facilitate software
engineers to enhance their time
management at work as well as to assist
project managers to effectively monitor the
performance of their team members,
particularly in the PSP environment. The
existing models pertaining to PSP
performance monitoring software
development activities in general, and the
monitoring of individual performance in
particular have been meticulously analyzed
to propose a simple and easy-to-implement
framework. The proposed framework is
flexible enough to be scaled up to
accommodate other performance-related
considerations. The detailed description of
the proposed model is explained in the next
section. The current study aimed to
measure performance, efficiency, and
productivity of professionals as well as
improved the overall output of a project.

This study is structured into five sections.
Section I provides an overview of the PSP
methodology, emphasizing its significance
in the design and development of software
processes and significance of time-logging-
based performance monitoring of software
engineers. Section II presents a review of
the current literature on tools and
techniques related to PSP. The proposed
framework for performance monitoring
along with its validations and study results
is described in the third section followed by
an elaborated discussion in the fourth
section. Finally, the conclusion section
summarizes the key findings and outlines
potential future research directions.

II. RELATED WORK

Software process improvement tools and
techniques help reduce failure rate of IT
projects [5]. Most of such techniques also
account for issues pertaining to
organizational structure and its working
procedures. It is a widely accepted fact that
projects mainly fail due to time and cost
overruns. In this perspective, PSP can help
developers detect mistakes at early stages
— as the foremost quality objective in PSP
is to find and fix defects before the first
compilation of a program. PSP pertains to
the philosophy of CMM at an individual
level to support continuous process
improvement [6]. Development and
practicing the process performance models
are considered as high maturity practices in
CMML. Six Sigma tools are also useful to
monitor the performance of processes and
can be incorporated in PSP/TSP
environment to enhance the overall process
efficiency [7]. Monitoring process
performance can be accomplished by
aligning Six Sigma tools with various PSP
tasks. However, this strategy becomes
complex due to Six Sigma's diverse data
requirements across different processes.
Therefore, it is important to carefully select
appropriate Six Sigma tools for defect
control, such as KANO analysis, scatter
plots, and cause-and-effect diagrams.
Control theory can aid in identifying
critical factors that influence the evolution
of PSP [8]. However, it requires the
evaluation model to function as a PSP
software development prototyping model,
encompassing planning of schedules, tasks,
reviews, and iterative code development.

Automatic time tracking of the PC
activities has become a necessity for
organizations to effectively monitor the
hours spent by their employees on various
tasks. The “PSP Time Logger” by
DonationCoder.com is a freeware utility to

Innovative Computing Review

»JCR

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Khan et al.

record the time spent on development tasks.
It allows users to tag various activities
through user-defined labels, such as code
reviews, documenting requirements, and
team meetings. Moreover, several other
web-based and cloud-based tools that
support time tracking and screenshot
recording are commercially available. For
instance, [9] introduced AppDOSI, a web-
based application for PSP that enables
software engineers to control and track
their performance. AppDOSI is made up of
three elements, that is, software
development repository, software
development collection and tracking, and
software development expertise. Software
development repository contains personal
data, team data, and organizational data,
while management and monitoring data is
stored in software development collection
monitoring. Analysis data is depicted in a
range of formats in the software
development expertise component of
AppDOSI. Some of the famous tools in this
category of software are Editorial
Manager® and ProduXion Manager® from
Aries Systems Corporation etc. Though
most of the available tools allow editable
labels to track all the phases of SDLC; the
majority of such tools are designed for
small businesses.

Researchers in [4] and [6] and studied
challenges faced by students in the
adaptation of PSP methodology in contrast
to the ordinary software development
techniques. The methodologies of top-
down and bottom-up approaches for
process enhancement are addressed in [7].
Top-down approaches involve enhancing
software processes from the organizational
level down to the individual level.
Whereas, bottom-up approaches follow the
reverse order, starting from the individual
level and progressing upwards. A PSP
supporting tool Jasmine [10] facilitates

School of Systems and Technology
Volume 4 Issue 2, Fall 2024

automatic planning, data collection,
tracking, and analysis. It utilizes an
experience repository to store and
disseminate time logs, defect records, and
schedule planning information. In this
study, [11] developed a method for
extracting exact software process activities
based on the association between events
and activities. The software process activity
classier for PSP is proposed to create event-
activity mapping relationships from
software development event streams, to
reveal activity attributes, and to relate the
activity to the original SVN log. The
proposed method extracts activity from the
SVN log based on semantic features and
incorporates a novel technique based on a
naive Bayes technique to dynamically
connect event activities.

The matter of acceptance of PSP within the
software engineering domain has
consistently been a significant concern
[12]. [13] explored factors influencing PSP
practices, highlighting the need for an
automated tool to support PSP adoption
within the software community. Expert
Visualization Agent (EVA) [14] has the
potential to aid in the development of an
automated and adaptable PSP tool. EVA
can establish connectivity to the web via
Ajax and PHP. It comprises different
agents, such as agents related to task,
search, and interface that collaborate to
provide software engineers with the ability
to conduct self-assessment of performance.
Accurately calculating the time allocated to
each activity is crucial for PSP users, as it
facilitates process improvement. To
achieve this objective, speech recognition
technology can be utilized to log the time
allocated to software development
activities [15]. Nevertheless, converting the
time log generated through speech
recognition may pose challenges, as the
system may not accurately discern the

-y
-7

UMT — 73

Performance Monitoring Framework...

specific ~ tasks initiated. Software
inspections are the most effective review
techniques as these can be performed in the
initial stages of the development cycle.
Processing the activity time is an overhead
for the PSP users. [15] extracted PSP time-
log from speech recognition sensor and
suggested that heuristic-based trees can be
used to generate alternative solutions for
time-log. Mouse clicks have also been
employed for behavioural biometrics, for
instance, researcher in [16] performed
mouse activity analysis for user
verification. [3] emphasized the influence
of code reviews and design reviews on
software quality, which can directly affect
both the cost and time of the software
development process. Therefore, an
important consideration in this regard is to
track the time allocated to daily activities.
Automated and sensor-based task time
collection methodologies [17] may serve
this purpose. However, the practical
application of such an approach requires
continuous operation of a speech sensor in
the background to record the start and end
of activities. By using a PSP tool, the
information gathered not only facilitates
defect resolution but also enables the
assessment of developers' efficiency.
Another study [18] proposed incorporating
multi-agents into PSP-automated tools for
enhanced flexibility and privacy during the
process of PSP data collection. A survey
report by [19] identified twenty
performance prediction and measurement
approaches for component-based software
systems and assessed their applicability.
Substandard software quality may lead
towards project failure and financial losses.
The responsibility to ensure the quality of
software products rests with software
engineers and project managers. One key
feature of PSP and TSP is the self-directed
management approach, which supports
software engineers to plan, track, and

monitor their own tasks and projects.
However, PSP’s self-directed management
approach would be useless without
effective monitoring of the productivity of
the development teams besides the progress
being made on the development project.
This necessitates the support of an
automatic performance monitoring tool so
that both software engineers and project
managers can periodically evaluate their
performance without any hassle. The study
proposed using a sensor for Integrated
Development Environments (IDE), such as
Eclipse, Emacs, and Ant etc. The activity
time spent can be collected by measuring
the time spent on doing the development in
the IDEs. In order to collect this time, a
sensor can be embedded in the IDE itself
which should record the bugs and other
errors generated by the IDE along with their
time.

Researchers in [20] reviewed data analysis
methods used for software process
improvement and provided insights into
best practices and challenges. However,
their study lacked specific guidelines for
practical implementation of data analysis
techniques. Moreover, they did not address
the integration of data analysis with other
process improvement methodologies. In
their study, [21] discussed innovations in
system, software, and service process
improvement and highlighted emerging
trends and areas for further research.
However, researchers in [21] did not
explicitly focus on individual developer
productivity improvement. [22] proposed a
framework to facilitate specifically the
adoption of DevOps in software
development. They emphasized
collaboration, automation, and continuous
improvement. However, their proposed
framework did not fully address the unique
challenges of DevOps adoption in different
organizational contexts. [23] explored how

Innovative Computing Review

“{CR

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Khan et al.

balanced scorecard can enhance software
process improvement. In their study, they
demonstrated practical implementation of
their scorecard method in a small
organization. The case study of [23] did not
generalize well to larger software
organizations. Moreover, it did not delve
into the specific challenges faced by small
software organizations during the process
of improvement. [24] introduced a novel
case search method based on activity
factors. Their objective was to enhance
process improvement efforts by identifying
relevant cases. However, the proposed case
search method of [24] did not cover all
relevant factors affecting software process
improvement. [25] presented a theoretical
mapping that examined the evolution of
software process improvement over the last
decade. They identified research gaps and
suggested future directions. However,
theoretical mapping may lack practical
implementation guidelines. Moreover, it
does not directly address the role of

individual developers in the overall process
of improvement.

To overcome these limitations, the
proposed PSP framework offers specific
guidelines for defect reduction and
productivity improvement. It emphasizes
individual developer performance
monitoring and task management.
Moreover, the proposed framework enables
automatic scheduling and activity listing
for individual developers.

III.PROPOSED FRAMEWORK

This section presents the framework
proposed by the current study. The main
goal of the proposed framework was to help
developers produce quality products within
the budget and specified time frame. The
proposed framework (Figure 1) may help
professionals understand the flow of time
spent on the development activities to
improve their productivity, efficiency, and
quality of work.

Sensor and GUI Forms based data

collection

1

Database

Engineer Personal, and
Login Time information

Timer

+

Analysis and Reporting

Activity
Information

Personal Time off]

—-(Development]
——(Dependent Task]

Independent Task]

[Time Logging

|

'[Developed Function]

[Productivity

Development
Information

)
[Efficiency]
)
)

[Quality of work

[
)} ==
-)/

{ Estimated Time

FIGURE 1. Performance monitoring framework for PSP

School of Systems and Technology

Volume 4 Issue 2, Fall 2024

-y
@
Rl

UMT 75

Performance Monitoring Framework...

JIRA is a proprietary product which is used
for project planning, management, and
tracking applications. In the framework
proposed by this study, it was used to assign
tasks to the developers. Usually, managers
assign tasks to the team members and also
mention the estimated time of its
completion. In the proposed framework,
whenever a developer accomplishes the
assigned task, he/she would automatically
get another task from JIRA.

Once a developer is assigned a task, then
he/she will have to log every activity
defined in the proposed framework. For this
purpose, the framework proposed in this
study used Graphical User Interface (GUI)
forms to obtain information related to
development activities. These activities are
organized into four categories: personal
time off, development time, dependent task
time, and independent task time. This time-
logging data is used to monitor developers'
time management. Developers would log
development details in terms of how many
functions they have developed along with
the complexity of these functions and their
estimated completion time. This
information is stored into a database for
measuring quality of work, efficiency, and
productivity of the developers.

To address the issue of performance
monitoring of software engineers and
developers, the study proposed a time-
logging based framework that is capable
not only of monitoring the time spent by a
software engineer but also verifies his/her
availability at the workplace. The
methodology is designed so that if a
software engineer does not interact with the
IDE for a certain period, it stops logging
and generates an alert. To accomplish this
technique, the study integrated an
Application Programming Interface (API)
with the IDE of the software development
tool. This API functions similarly to a

standard keylogger that automatically
collects and measures the time spent on
planning, software designing,
development, code reviewing, testing, and
documentation tasks within the IDE’s
milieu. However, an unambiguous criterion
is required to gauge the performance of
developers. For instance, if one developer
spent one hour and produced 100 Lines of
Code (LOC) with no defects, and another
developer spent 30 minutes and also
produced 100 LOC with 10 defects. In such
a scenario, the key question is to determine
who performed better.

The proposed methodology consists of six
predefined activity types (planning,
designing, development, reviewing,
testing, and documentation), three types of
user groups (software engineers, team leads
and managers), and three skill levels for
software engineers (novice, moderate, and
expert). However, the project manager can
include additional activity types, user
groups, and skill levels. In this proposed
framework, the managers and team leaders
would be able to define tasks for software
engineers and may also receive their
periodic performance reports for the
assigned tasks accordingly. Project-related
tasks or activities can be assigned to the
software engineers as per the Work
Breakdown Structure (WBS) created for
the project, or on a daily/weekly basis.
However, each task needs to be duly
supplied with the expected time duration to
complete it. For instance, a manager can list
down specific development tasks for the
developer ‘A’ on a particular day; define
list of documentation activities to be
performed by the software engineer ‘B’
during a specific time frame; mark out
testing activities to be undertaken by the
software tester ‘C’ for the stipulated time
and so on.

Innovative Computing Review

«JCR-

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Khan et al.

The proposed model in this study has a
provision to generate a time-based
performance report after the lapse of
specified time intervals set by the manager.
The time-based performance report
accounts for all the tasks assigned to
different software engineers. In case a
manager sets the report generation timer to
an hour, a performance report will be
generated every hour thereafter which
contains information pertaining to the total
lines of codes/documentation, number of
keys pressed, and number of mouse clicks
recorded from the specified software
engineer’s IDE during the last one hour.
The performance report would also draw
automatic analysis of the activities
performed by a software engineer against
the predefined minimum threshold level
corresponding to his/her skill level (i.e.,
novice, moderate or expert). If the
performance of a software engineer falls
below the specified minimum threshold
values, then the proposed model would
generate an alert to this effect.

The study proposed gathering only the
mouse clicks and keystrokes made by the
software engineer during project-related
tasks. This would help avoid unnecessary
collection of several types of logs and
snapshots. The idea is to integrate a key
logger utility with the API of the proposed
framework and make it available in the
form of a plug-in that runs in the
background on computer systems. The API
stores details of the keystrokes in a log file
and automatically calculates character and
word frequency, as well as maintains
counts of the LOC typed in by the software
engineer. The API also records the count of
deletes and backspace keys. After the lapse
of specified time set by the manager, the
API would perform a comparative analysis
of the keystrokes, words, and LOC count
against their corresponding pre-stored

School of Systems and Technology
Volume 4 Issue 2, Fall 2024

threshold values in the lookup tables. For
this purpose, lookup tables are linked to the
API to carry out comparative analysis.

The proposed methodology entails
performing two types of patterns matching
keystrokes and keywords specific to a
particular development environment. For
this purpose, two types of lookup tables or
data dictionaries were used: expected word-
count lookup table and expected keystroke-
count lookup table. The expected
keystroke-count lookup table stores the
expected count of different keys which are
typed in by a software engineer in a specific
time span. The expected word-count
lookup table contains names of standard
functions, constants and keywords of the
programming language(s), and tools being
used for the development. The specific
terminologies and acronyms indigenous to
the particular software project are also
required to be stored into the data
dictionary.

In the first phase, the analysis module
matches the keystrokes and words logged
in by the API with the corresponding
contents of lookup tables. The lookup
tables help evaluate whether the work
performed by a software engineer relates to
project-related activities or something else.
For this purpose, an expected yield count is
assigned to each word in the data dictionary
based on the average values calculated for
these words for a specific time duration of
the past project-related activities. However,
the initial expected yield count for the
words can be set based on the previous
project or the overall count recorded for
these words during the last month.

Nevertheless, the expected word count
needs to be adjusted in accordance with the
timer settings for generating performance
report; thereby, the term ‘average expected
word count’ is used. For instance, if a

i UMT— 77

Performance Monitoring Framework...

specific keyword is observed to have
appeared 300 times in the development
activities performed by a software engineer
during the last 20 working days; then, by
taking on average eight working hours per
day, the expected average value of that data
dictionary word would be 875 per hour.
The data dictionary can be periodically
updated so that it can commensurate
precisely with the current activities being
undertaken on a software development
project. Furthermore, the average expected
value for each data dictionary word can be
calculated for three distinct categories
based on the software engineer’s current
level of expertise, that is, expert, moderate
or novice.

However, the total count of all the words
would also be matched against the overall
average count of the words stored in the
data dictionary as it is very likely that,
depending on the nature of the work, many
of the words found in the data dictionary
would not have been typed in by the
software engineer during the stipulated
time period. In other words, the keywords
whose reported count is more than the
expected average count defined in the data
dictionary would compensate for those
keywords whose reported count is less than
the expected average count.

Likewise, the count of each keystroke
pressed by the software engineer during the
stipulated time period is matched with the
corresponding minimum threshold value
set for that keystroke. It helps find the
difference between the actual and the
expected count for each character (i.e.,
keyboard key). The difference would be a
negative value if the actual count of a
specific character falls below the expected
count for that character and vice versa. All
the resultant values thus obtained are then
aggregated and the sum of the delete and
backspace keys is subtracted from it to

generate the overall total weighted
difference. The methodology also keeps
records of the spread of the keystrokes to
eliminate the situation where software
engineers might press some keys randomly.
If the difference of the keystroke analysis
results in a negative value or considerably a
large positive value, then an alarm will be
generated. The former case indicates that
output of the software engineer was below
the expected level. Whereas, the latter
situation indicates that the software
engineer has simply tried to demonstrate
superior performance by fooling the system
by typing those keys whose weighted score
was higher. To provide cushion for
accidentally or arbitrarily striking certain
keystrokes by the software engineer, the
methodology offers necessary provisions
so that a manager can assign an error
margin value which could be up to 10% to
normalize the predictable keystroke count
differences. If 50% of keys listed in the
expected keystroke-count lookup table fall
below the amount set for their
corresponding minimum threshold value,
then it can be assumed that the software
engineer was not on his/her seat or was
busy in doing some other activity not
related to the project. A sample of expected
values for different keystrokes for three
distinct levels of the software engineer’s
skill level is provided in Table I.

TABLE
SAMPLE KEYS LIST

Keystrokes Experienced Trained Novice
Developer Developer Developer

A 34 30 22
B 19 15 10
(40 34 30
* 38 31 24
z 16 13 9

As mentioned earlier, a comparison was
also drawn based on count of the platform

Innovative Computing Review

»JCR-

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Khan et al.

specific keywords (i.e., keywords specific
to certain development tool e.g., Java, C#,
VB etc.) against the data dictionary words.
This information is obtained from the key
log file maintained by the framework. If the
words contained within the log file are
related to specific reserved terms of a
programming language (or development
tool), then their frequency of occurrence is
compared against the expected count as
defined by the manager in the expected
word-count data dictionary. If 50% of
keywords individually commensurate with
the pre-assigned keywords count and the
total word count in the key log file also
matches the required number of words to be
entered by the software engineer, the
system would infer that the developer is
engaged in development work, and no alert
will be triggered. Table II displays Java
keywords’ sample along with their
corresponding expected values for word-
count.

TABLE 11

SAMPLE KEYWORDS LIST FOR JAVA
Keywords Experienced Trained Novice

Developer Developer Developer
if 24 20 18
for 17 15 11
while 20 14 10
class 28 21 14
int 8 6 5

Additionally, a third type of comparison is
based on checking the LOC. The manager
would also determine the LOC value based
on the anticipated number of lines to be
typed by the software engineer within a
specific timeframe, such as one hour.
During comparison, it would aid in
identifying differences between LOC typed
by the software engineer and the
satisfactory level of LOC established by the
manager. Comparison of the total

School of Systems and Technology
Volume 4 Issue 2, Fall 2024

keystrokes, words, and the actual code
would be performed concurrently in one go.
If the typed LOC count lies within the
anticipated count range, as specified by the
manager, the development process would
be considered to align with the established
plan. Another test employed to evaluate the
developer’s performance involves logging
mouse clicks. The proposed framework
also retains distinct details regarding the
total mouse clicks within the IDE
environment.

If the comparison of keystrokes, keywords,
and LOC values are not in accordance with
the previously mentioned criteria, then a
popup message would be generated for
both the manager and the software
engineer. In addition, the project manager
would also receive a performance report for
that session for necessary probe, and the
software engineer will receive a dialogue
box message requiring his/her availability
on the seat. Whenever a warning message
is generated, the previously mentioned
details will also be logged for future record.

There is a provision in the proposed
framework to log the “off time” in case the
software engineer has to go out for a
personal work, or “time-out” in case he/she
has to attend the project meeting or any
other project-related task which cannot be
captured through IDE. However, such
atypical log entries would be required to be
either entered or verified by the manager.
The “off time” and “time-out” entries
would be sent to the manager for approval.
The current proposed framework aimed to
offer a solution that enables both managers
and software engineers to collaboratively
review assigned tasks and access
performance reports.

IV.EXPERIMENT AND ANALYSIS

To validate the model, the study applied
PSP level 1 activities to a small team of

i UMT— 79

Performance Monitoring Framework...

developers. PSP level 1 focuses on
estimating and evaluating professional
performance. Firstly, the current activities
of the professionals were captured to
understand how tasks are progressing. In
the first level, the amount of time spent on
each assigned task was measured. A
proforma was designed to log the
developers’ activities which consisted of
two parts. The first part was header which
contained individual’s basic information
(name, designation, department, and
project name). Whereas, the second part
was log area to enter information of the
task-related activities (activity description,
activity type, start time, time spent on the
activity). This format contained the
following information. A sample of this
proforma is shown in Table III.

TABLE III
PROFORMA FOR ACTIVITY TYPES

Any activity which is

Personal not related to office or
Time-off project, such as tea
visits etc.
. Activities related to
On job

official tasks

The sample proforma for activity types and
sub-activity types is provided in Table IV
and Table V, respectively.

TABLE IV
PROFORMA FOR SUB-ACTIVITY
TYPES
Task- Time spent on development
oriented tasks
Any task-related work, such
as client interaction,
Dependent . .
meetings, paperwork, calling
task . : . .
clients, discussion with
senior officers etc.
Independent Any activity Whlch is not
task related to assigned tasks,

such as official commitments

including some special work
assigned from senior
management, training,
attending conferences etc.

In this study, forty working hours per week
policy were assumed. Based on this
assumption, the activities of the individuals
were recorded on a daily basis. At the end
of the first week, project-wise activity logs
of the individuals were collected and
evaluated. The study estimated the
percentage of time each individual spent on
productive tasks. Then, the study focused
on the second level of PSP which is
concerned with planning and
measurements for professional
productivity, efficiency, and quality of
work. For this purpose, certain levels of
complexities were defined related to the
development tasks as shown in Table VI.

TABLE V
LEVELS OF COMPLEXITIES
RELATED TO THE DEVELOPMENT

TASKS
Complexity LoC (Line of Code)

1 1-20

2 21-50

3 51-100

4 101 —200

5 201 -300

6 301 — 400

7 401 — 500

8 Above 500

Following metrics were used to calculate

efficiency and productivity of the
individuals.
B ficiency = estimated time

actual time taken ><100 1)

If efficiency is greater than or equal to 100,
then work is done on or before time.

Innovative Computing Review

«JCR-

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Khan et al.

. Developed function complexity| — average time utilization by the developers
Productivity = g , X .o
Development task time as shown in Figure 2.

e overall summary for a team of three
100 @ T 1l ry fi f th
Based on the statistical data collected for ~ developers is shown in Figure 3.

one week, the study obtained the following

Time Persentage

50
42.23

40

30 28.96

20 16.04

10 8.75
- 4.02
o EEE

Personal Development Dependent Independent idle time
Time Off Task Task

B Time Persentage
FIGURE 2. Time utilization of an individual developer

Overall summary of first week activities

M Personal Time Off m Development B Dependent task
M Independent Task " Idle Time
100%
80%
60%

40% ,

FEN R R

e, EE o B
Professional | Professional Il Professional Il

FIGURE 3. Overall summary of first week activities

The study observed the following e Development tasks need more

interesting information from the results concentration as it was merely 29% of
collected: the total office time.
e Availability was not 100%. To overcome these issues, following

specific guidelines were made to increase
efficiency of the developers which were
implemented for the rest of the duration of

@ |UMT— 81

e The dependent task ratio was high.

School of Systems and Technology
Volume 4 Issue 2, Fall 2024

Performance Monitoring Framework...

the project. Furthermore, these guidelines
helped better manage the project, and the
overall productivity of the development
team considerably improved.

e Availability time should be 100%, that
is, the developers should work 8 hours
per day.

e Personal off time should be maximum
10%.

e The development time ratio should be
at least 50%.

e The dependent task ratio, such as
meetings, trainings, and attending
conferences should not exceed 30% of
the overall time.

e The independent task time ratio should
not be greater than 10%.

V.DISCUSSION

The study developed a prototype model in
Java and stored the lookup tables in
MySQL database. The model was
evaluated for a web-based development
project executed by a software house. The
project team consisted of a manager, two
team leaders, two DBAs, five developers,
two software testers, two support staff
members, and one technical writer. The
model was evaluated by storing arbitrary
expected count values for keystrokes and
Java keywords based on ingenuity and past
experience of the project manager of a
similar software project. However, initially,
the expected count values were being
updated on a weekly basis for the first
month by extracting the original count
values of the project-related activities
stored in the log files. After the lapse of four
weeks, the expected count values stored in
the lookup tables became more realistic and
the performance monitoring software was
moved from test stage to production stage.

The current study aimed to solve the
problem of time-log processing, daily
schedule tracking, and automatic LOC
counting. The proposed technique
addressed the challenge of the absence of
procedures for monitoring the performance
of software engineers, especially within the
PSP environment. In any PSP tool, there
has been a lack of comprehensive attention
to performance monitoring. While some
performance monitoring activities have
been previously proposed, none of them
have been integrated with the Integrated
Development Environment (IDE). The
earlier performance monitoring tools
require to be installed separately and
capture logs or snapshots of the
development process at different intervals
of time. Similarly, in certain previous non-
PSP techniques, desktop monitoring of
developer windows has been previously
implemented. In certain techniques, a time-
based snapshot of the computer screen is
captured. However, the snapshot concept
consumes a significant amount of space on
the hard disk, even for a single server or
monitoring unit. As snapshots are captured
at short intervals, analyzing such a large
volume of screenshots can become a
tedious task. This presents a significant
drawback of such techniques, as the
manager is required to review the entirety
of the snapshots to monitor the
performance of a software engineer.
However, we believe that a summarized
report may suffice for this purpose.
Moreover, it is plausible that the developer
may be busy with work when the snapshot
is taken but it could be possible that he/she
would have switched back to the assigned
task a few moments before when the
snapshot was taken. Conversely, this
scenario could also unfold in the opposite
manner. However, in both cases, the
outcome of such monitoring is inadequate.
In the first scenario, the developer may

Innovative Computing Review

»JCR

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr

Khan et al.

inadvertently evade monitoring, while in
the second scenario, they may face undue
scrutiny. In a desktop sharing method, the
project manager is required to continuously
monitor the developers’ screens.
Generating performance reports in such
methodologies always presents a
significant challenge.

The proposed time-logging-based
performance monitoring solution incurs
minimal overhead in terms of Central
Processing Unit (CPU) and disk storage,
which is typical for any log-generating tool.
Moreover, the proposed technique
alleviates any stress on the software
engineer during work, as it operates in the
background, and alerts are only triggered if
the software engineer's performance falls
below the expected level. Conversely, in
monitoring methodologies involving
CCTYV or capturing snapshots of the screen,
developers often experience psychological
stress and pressure while performing their
tasks. Furthermore, the proposed technique
is not labor-intensive, as the automated tool
autonomously analyzes the statistics
gathered from the software engineer's
computer and generates alerts only when
their performance falls below the
predefined threshold. The managers can
easily see the current statuses of the
projects, for instance, percentage of the
work done; the time spent on writing code,
and count of LOC in the source code.
Nonetheless, the proposed technique is
quite simple to implement and offers a cost-
effective solution. Furthermore, the
proposed technique can also be used for the
entire development team. The proposed
methodology can also be used to find traces
of software malfunctions and to conduct
digital forensic analysis in the event of
misuse of a system. The methodology can
also be tailored to accommodate defect logs
to ensure better quality PSP products.

School of Systems and Technology
Volume 4 Issue 2, Fall 2024

A. CONCLUSION AND FUTURE
WORK

PSP designates that an organized,
controlled, and measured PSP can provide
direction and feedback needed to help
engineers improve their personal
performances. The experiments in this
study show that developers can -easily
improve their capabilities for size and effort
estimation, defect density, and
productivity. This study aimed to elucidate
the concepts of PSP-related techniques,
practices, and tools, while also introducing
a novel performance monitoring
framework tailored for the PSP
development environment.

The current study presented a novel
technique encompassing multiple methods
for automatic data collection and analysis
to evaluate the performance of software
engineers during certain period of time.
This study proposed a performance
monitoring model based on PSP and a
prototype framework to implement the
monitoring model. Furthermore, the study
aimed to tackle the challenges associated
with continuous recording of time-logging,
a feature that other tools typically do not
address. In summary, a time-logging-based
performance monitoring framework has
been introduced that may be seamlessly
integrated into a PSP tool. In this proposed
model, the manager manually sets the
expected number of characters and
keywords to be typed by a software
engineer within a specified timeframe.
However, this approach can be enhanced by
automating the process based on specific
statistical criteria. For instance, if a
multitude of performance scenarios are
available from previous projects, a
statistical analysis can be conducted to
determine the recommended values for the
number of characters, words, and LOC
which are expected to be entered within a

UMT 83

-y
-7

Performance Monitoring Framework...

certain interval of time. This approach
would facilitate determination of the
suitable range of values for each character
and keyword, tailored to the varying skill
levels of the software engineers.

The framework presented in this study can
help software engineers to practice PSP
processes effectively and get feedback on
their performance in a timely manner. In
addition, the incorporation of framework
features would not only help increase the
usability of the PSP tool but may also help
both the developer and the manager to

evaluate their performance and
productivity.
CONFLICT OF INTEREST

The authors of the manuscript have no
financial or non-financial conflict of
interest in the subject matter or materials
discussed in this manuscript.

DATA AVAILABILITY STATEMENT

Data supporting the findings of this study
will be made available by the
corresponding author upon request.

FUNDING DETAILS

No funding has been received for this
research.

REFERENCES

[1] W.S.Humphrey, Introduction to the
Personal Software Process.
Addison-Wesley Professional, 1996.

[2] W.S.Humphrey, Introduction to the
team software process (sm).
Addison-Wesley Professional, 2000.

[3] C.F.Kemererand M. C. Paulk, "The
impact of design and code reviews
on software quality: An empirical
study based on PSP data," [EEE
Trans. Software Eng.,vol. 35, no. 4,
pp. 534-550, 2009, doi:

[4]

[5]

[6]

[7]

[8]

https://doi.org/10.1109/TSE.2009.2
7.

S. K. Lisack, "The personal software
process in the classroom: Student
reactions (an experience report)," in
30th Conf. Software Eng. Edu.
Train., Austin, TX, USA, 2000, pp.
169-175, doi:
https://doi.org/10.1109/CSEE.2000.
827035.

I. Etxaniz, "Software Project
Improvement through Personal
Software Process in a R&D Center,"

in EUROCON 2007-Int Conf
Comput Tool, Warsaw, Poland,
2007, pp- 413418, doi:

https://doi.org/10.1109/EURCON.2
007.4400502.

R. F. Grove, "Using the personal
software process to motivate good
programming practices," in Proc.
oth Annual Conf. Teach. Comput.
The 3rd Annual Conf. Integr.
Technol. Comput. Sci. Edu. Chang.
Delivery Comput. Sci. Edu., Ireland,
1998, pp- 98-101, doi:
https://doi.org/10.1145/282991.283
046.

Y. Park, H. Park, H. Choi, and J.
Baik, "A study on the application of
six sigma tools to PSP/TSP for
process improvement," in Sth
IEEE/ACIS Int. Conf. Comput. Info.
Sci. Ist IEEE/ACIS Int Workshop
Component-Based Software Eng.

Software Arch. Reuse (ICIS-
COMSAR06), Honolulu, HI, USA,
2000, pp. 174-179, doi:

https://doi.org/10.1109/1CIS-
COMSAR.2006.13.

Y. Yingying, Z. Xianzhong, and W.
Wang, "A perspective of PSP

Innovative Computing Review

84 R

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://doi.org/10.1109/TSE.2009.27
https://doi.org/10.1109/TSE.2009.27
https://doi.org/10.1109/CSEE.2000.827035
https://doi.org/10.1109/CSEE.2000.827035
https://doi.org/10.1109/EURCON.2007.4400502
https://doi.org/10.1109/EURCON.2007.4400502
https://doi.org/10.1145/282991.283046
https://doi.org/10.1145/282991.283046
https://doi.org/10.1109/ICIS-COMSAR.2006.13
https://doi.org/10.1109/ICIS-COMSAR.2006.13

Khan et al.

[9]

[10]

[11]

[12]

[13]

modeling based on control theory,"
in 2010 Int. Conf. Network Sensing
Control, Chicago, IL, USA, pp. 342—
345, doi:
https://doi.org/10.1109/ICNSC.201
0.5461508.

N. Denwattana, A. Saengsai, and E.
Charoenchaimonkon, "AppDOSI:
An application for analyzing and
monitoring the personal software
process," in 2019 4th Int. Conf. Info.
Technol., Bangkok, Thailand, 2019,
pp- 280-283, doi:
https://doi.org/10.1109/INCIT.2019
.8911993.

H. Shin, H. J. Choi, and J. Baik,
"Jasmine: a PSP supporting tool," in
International Conference on
Software Process, Berlin,
Heidelberg, 2007, pp. 73-83, doi:
https://doi.org/10.1007/978-3-540-
72426-1 7.

R. Zhu, Y. Dai, T. Li, Z. Ma, M.
Zheng, Y. Tang, et al., "Automatic
real-time mining software process
activities from SVN logs using a

naive Bayes classifier," [EEE
Access, vol. 7, pp. 146403—-146415,
Oct. 2019, doi:

https://doi.org/10.1109/ACCESS.20
19.2945608.

D. Gotterbarn, "Cleanroom, PSP,
and the software development
impact statement: Developing the
right attitude," in Software Eng. Edu.
Train. Conf., 1EEE Computer
Society, 1999, p. 80.

M. H. N. M. Nasir, A. A. Norman,
and N. H. Hassan, "Towards a
flexible tool for supporting data
collection & analysis in personal
software process (PSP)," WSEAS

School of Systems and Technology

[14]

[15]

[16]

[17]

[18]

Transactions on Information
Science and Applications, vol. 5, no.
6, pp. 1067-1076, 2008.

H. Hassan, M. H. N. M. Nasir, and
S. S. M. Fauzi, "Incorporating
software agents in automated
personal software process (PSP)
tools," in 2009 9th Int. Symp.
Commun. Info. Technol., Icheon,
Korea (South), 2009, pp. 976-981,
doi:
https://doi.org/10.1109/ISCIT.2009.
5340991.

A. Ibrahim and H. J. Choi, "An
approach for PSP time log
processing," in Proc. 2008 3rd Int.
Conf. Convergence Hybrid Inf.
Technol., vol. 2, 2008, pp. 676—679,
doi:

https://doi.org/10.1109/ICCIT.2008.
333.

T. Wesolowski, M. Palys, and P.
Kudlacik, "Computer user
verification based on mouse activity
analysis," in New Trends Intell. Info.
Database Syst., Springer, 2015, pp.
61-70, doi:
https://doi.org/10.1007/978-3-319-
16211-9 7.

A. Ibrahim and H. J. Choi, "A
Framework for analyzing activity
time data," in 2008 [EEE Int. Symp.
Service-Oriented Syst. Eng., Jhongli,
Taiwan, 2008, pp. 14-18, doi:
https://doi.org/10.1109/SOSE.2008.
32.

M. H. N. M. Nasir, S. S. Hamid, M.
K. M. Noor, Z. M. Kasirun, and M.
K. Othman, "Using agents to
improve the usability of the PSP
automated tool," Int. J. Phy. Sci.,
vol. 6, no. 21, pp. 4977-4989, 2011.

Volume 4 Issue 2, Fall 2024

S UMT— 85

https://doi.org/10.1109/ICNSC.2010.5461508
https://doi.org/10.1109/ICNSC.2010.5461508
https://doi.org/10.1109/INCIT.2019.8911993
https://doi.org/10.1109/INCIT.2019.8911993
https://doi.org/10.1007/978-3-540-72426-1_7
https://doi.org/10.1007/978-3-540-72426-1_7
https://doi.org/10.1109/ACCESS.2019.2945608
https://doi.org/10.1109/ACCESS.2019.2945608
https://doi.org/10.1109/ISCIT.2009.5340991
https://doi.org/10.1109/ISCIT.2009.5340991
https://doi.org/10.1109/ICCIT.2008.333
https://doi.org/10.1109/ICCIT.2008.333
https://doi.org/10.1007/978-3-319-16211-9_7
https://doi.org/10.1007/978-3-319-16211-9_7
https://doi.org/10.1109/SOSE.2008.32
https://doi.org/10.1109/SOSE.2008.32

Performance Monitoring Framework...

[19] H. Koziolek, "Performance
evaluation of component-based
software systems: A survey,"
Perform. Eval., vol. 67, no. 8, pp.
634-658, Aug. 2010, doi:
https://doi.org/10.1016/j.peva.2009.
07.007.

[20] J. Mejia, F. Iiliguez, and M. Muiioz,
"Data analysis for software process
improvement: A systematic
literature review," in Recent Adv.
Info. Syst. Technol. WorldCIST
2017. Adv. Intell. Syst. Comput., vol.
569, Springer, Cham, 2017, doi:
https://doi.org/10.1007/978-3-319-
56535-4_5.

[21] M.Biré, R. Colomo-Palacios, and R.
Messnarz, “Advances in system,
software and service process
improvement and innovation,” J.
Software Evol. Proc., vol. 31, no. 1,
2019, Art. no. 2146, doi:
https://doi.org/10.1002/smr.2146.

[22] J. A. V. M. K. Jayakody and W. M.
J. 1. Wijayanayake, “Process
Improvement Framework for
DevOps Adoption in Software
Development,” in 2023 Int. Res.
Conf. Smart Comput. Syst. Eng.,
Kelaniya, Sri Lanka, 2023, pp. 1-7,
doi:

[23]

[24]

[25]

https://doi.org/10.1109/SCSE59836
.2023.10214992.

B. Karahodza, E. Avdagi¢-Golub,
and A. Colakovi¢, “Applying
balanced scorecard in software
process improvement: a case study
of small software organization,” in
2023 46th MIPRO ICT Electr.
Conven., Opatija, Croatia, 2023, pp.
1697-1702, doi:
https://doi.org/10.23919/MIPRO57
284.2023.10159756.

Y. Konno and H. Ogasawara,
“Proposal of a case search method
based on software process
improvement activity factors,” in
2021 10th Int. Cong. Adv. Appl
Info., Niigata, Japan, 2021, pp. 737—
742, doi:
https://doi.org/10.1109/11AI-
AAT53430.2021.00130.

A. AL-Ashmori, P. D. D. Dominic,
S. Basri, Q. Al-Tashi, A. Muneer,
and E. A. A. Ghaleb, “Software
process improvement during the last
decade: A Theoretical Mapping and
future avenues,” in 2021 Int. Congr.
Adv. Technol. Eng., Yemen, 2021,
pp. 1-5, doi:
https://doi.org/10.1109/ICOTENS52
080.2021.9493426

Innovative Computing Review

«ICR-

Volume 4 Issue 2, Fall 2024

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://doi.org/10.1016/j.peva.2009.07.007
https://doi.org/10.1016/j.peva.2009.07.007
https://doi.org/10.1007/978-3-319-56535-4_5
https://doi.org/10.1007/978-3-319-56535-4_5
https://doi.org/10.1002/smr.2146
https://doi.org/10.1109/SCSE59836.2023.10214992
https://doi.org/10.1109/SCSE59836.2023.10214992
https://doi.org/10.23919/MIPRO57284.2023.10159756
https://doi.org/10.23919/MIPRO57284.2023.10159756
https://doi.org/10.1109/IIAI-AAI53430.2021.00130
https://doi.org/10.1109/IIAI-AAI53430.2021.00130
https://doi.org/10.1109/ICOTEN52080.2021.9493426
https://doi.org/10.1109/ICOTEN52080.2021.9493426

	I. INTRODUCTION
	II. RELATED WORK
	III. Proposed Framework
	IV. Experiment and Analysis
	V. Discussion
	A. Conclusion and Future Work
	References

