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Fractal View and Thermal Behavior of Fractional Metallic Porous Fins 
in Response to Changing Convective Conditions  
Hafiz Muhammad Younas∗, Muhammad Mohy-U-Din Liaqat, Shahzad Anjum, 
Emaan Afzal, Sumbal Shahzadi, and Reha Salman 

RIPHAH International University, Faisalabad, Pakistan 
ABSTRACT Porous, permeable, and structured fins enhance heat transfer due to their 
thermophysical properties. Understanding the thermal gradients in these fins is critical for 
a variety of engineering applications. This study applies the Homotopy Perturbation 
Method (HPM) to nonlinear fractional differential equations describing porous fins, 
focusing on factors such as porosity, permeability, and convection. Thermal analysis with 
an insulated tip of a copper alloy reveals that porosity has the greatest impact on heat 
transfer. The study highlights the effectiveness of HPM  in analyzing these thermal 
systems. The system's porosity is found to be more influential than any other factor.  

INDEX TERMSconvection, heat transfer, fins, fractional analysis, Homotopy 
Perturbation Method  (HPM), permeability, porous, thermal.   

I. INTRODUCTION  

The investigation of thermophysical 
properties in convective flow through a 
porous permeable medium is crucial for 
various engineering challenges. Porous 
permeable metallic and ceramic materials 
find extensive industrial and biomedical 
applications. Their potential as advanced 
materials is evident due to their wide range 
of uses. Numerous mathematical and 
experimental studies have been conducted 
to provide a deeper understanding of the 
mechanisms of heat transfer within porous 
permeable media. Such media have 
numerous applications including catalytic 
bed reactors, enhancing drying efficiency, 
filtration, separation, and petroleum 
recovery processes. Thermionic conductive 
porous permeable materials are utilized to 
improve forced convective heat transfer in 
various technological applications, such as 
reactor design, thermal components 
including heat exchangers, and parabolic 
solar plate heaters [1]–[5]. 

 
∗Corresponding Author: hmy.maths@gmail.com 

Swift advancement of electronic equipment 
has led to significant developments in these 
areas. In various manufacturing, business, 
and ecological enterprises, advancements 
have been paralleled by improvements in 
heat dissipation (cooling) methods. 
Enhancing natural convection has been, 
and will remain, essential to optimize the 
performance of heat dissipation systems in 
integrated circuit technology. A wonderful 
functional element to improve heat 
transmission from the heated areas and 
surfaces is a fin or stretched surface. It has 
been widely used in automobiles, heat 
transfer equipment, and atmospheric heat 
conditioning, among other applications. 
Several studies have aimed to eliminate the 
fin-based system's material cost and 
dimensional/geometrical viewpoints [3]–
[8]. The improvement of heat dissipation in 
extended surfaces or fins has been focused 
in research and development, leading to the 
exploration of porous fins. This area of 
study has seen extensive investigation into 
the use of porous finned structures (PFS). 
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Two key factors in these systems are 
permeability (which refers to the 
interconnectivity and scale of the pores in 
PFS) and the convective load. [7], [8] 
conducted a preliminary investigation on 
heat transfer in fins. They studied the heat 
transfer characteristics of fins and found 
that using porous fins enhances heat 
transfer due to their geometrical 
advantages. Such fins can improve heat 
dissipation for a given area while reducing 
material mass by incorporating holes and 
cavities. It is important to note that Kiwan 
and Al-Nimr [9] were the first to propose 
the concept of using porous fins to enhance 
heat dissipation. Additionally, Kiwan [10] 
introduced the Darcy approach to model the 
solid-gas/air interfaces in porous fin 
structures. Khaled [11] investigated heat 
dissipation in quadrangular porous fins and 
found that these fins improved the heat 
dissipation rate. Kiwan and Zeitoun [12] 
demonstrated that cylindrical porous fins 
enhance thermionic transitions. Ghasemi et 
al. [13] also contributed to this field. Kiwan 
[14] examined the impact of thermionic 
radiation on heat dissipation in PFS. E. 
Cuce and P. M. Cuce [15] effectively 
utilized HPM to evaluate the efficiency and 
performance of quadrangular permeable 
fins. Ma et al. [16] employed a numerical 
approach to study the thermal capacity of 
convective-radiative permeable fins. 
Moradi et al. [17] used an HPM model to 
analyze convective capacity and thermal 
dissipation in movable porous permeable 
fins. Bhanja et al. [18] developed an 
analytical model to determine fin 
performance and optimize geometric 
design constraints for a movable porous-
structured fin in a convective-radiative 
environment. Additionally, Das [19] 
validated the inverse results of the 
convection-radiation approach for 
cylindrical porous permeable fins. 
Numerous applications are related to the 

parameters of permeability, porosity, and 
internal heat evolved/generated in the 
system.  

The properties of the linked solid 
components and the fluids contained in 
porous membranes and structures have 
been used to examine the various 
physiothermal characteristics of such 
structures in metals and ceramics [20]–
[29]. A comprehensive overview of 
convective heat transfer of nanofluids in 
porous media is given by Mohammad 
Hemmat Esfe et al. [30]. Liaqat Ali et al. 
[31] investigated the thin-film flow of a 
magnetohydrodynamic (MHD) fluid over a 
porous, constantly stretching surface with a 
magnetic field and radioactive heat 
fluctuation in the presence of thermal 
conductivity and variable viscosity. L. 
Ndlovu [32] examined the temperature 
distribution and fluctuation and fin 
efficiency in a porous moving fin of a 
rectangular partner. Fractional calculus, 
encompassing the concepts of nonintegral 
order differentiation and integration, 
extends the principles of classical calculus. 
Over recent years, numerous 
mathematicians, researchers, and scientists 
have recognized the significant role of non-
integer operators in describing the 
characteristics of various physical 
phenomena [33]–[37]. Fractional 
differentiation and integration have been 
effectively employed to elucidate many 
procedures and apparatus. Comparative 
studies between classical models and 
fractional models have been conducted 
extensively [20]–[25]. HPM has emerged 
as a rapidly convergent technique, 
compared to others. Its reliability and 
effectiveness have been well documented 
in literature across diverse applications in 
science and engineering. This paper is 
divided into four sections. Section 2 
formulates the governing equation based on 
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the heat transfer equation. Section 3 
provides computational remarks for the 
solution using HPM. 

II. GOVERNING EQUATION   

In this study, a quadrangular fin contour, as 
illustrated in Figure 1, has been chosen to 
analyze the behavior of convective effects. 
The system's convection is described using 
a differential equation. The geometric 
dimensions of the fin are specified as 
follows: length is represented by "L,"  
width by "w," and thickness by "t." The 
fin's cross-sectional area remains constant 
and is not subject to variation. Due to its 
distinctive porosity, the heat stream can 
flow through this fin. The system is 
analyzed using Darcy's porous-medium 
approach and the total energy balance of the 
system is represented as follows:  

𝑞𝑞(𝑥𝑥)  −  𝑞𝑞(𝑥𝑥 +  ∆𝑥𝑥)  +  𝑞𝑞 ∗  𝐴𝐴∆(𝑥𝑥)
=  𝑚𝑚 ∗ 

 𝐶𝐶(𝑝𝑝)[𝜏𝜏 –  𝜏𝜏∞]  + ℎ(𝑝𝑝) ∆𝑥𝑥 [𝜏𝜏 −  𝜏𝜏∞].    (1) 

In contrast, the mass flow rate of the 
convective fluid streaming PFS is given as 
follows:  

𝑚𝑚 ∗ =  𝜌𝜌. 𝑣𝑣.𝑤𝑤(𝑥𝑥)  △ (𝑥𝑥).                      (2) 

Velocity as flow-steam is given as follows:  

    Uw = 𝑔𝑔𝑔𝑔𝑔𝑔(𝜏𝜏−𝜏𝜏∞)
𝑈𝑈

.                                 (3)  

It is assumed in this system that the fin's 
heat energy changes with temperature. 
Here, the steady state condition is 
determined using the idea of energy 
balance  
  𝑑𝑑𝛼𝛼𝑈𝑈
 𝑑𝑑 𝑥𝑥𝛼𝛼

− 𝑆𝑆ℎ𝑈𝑈2(𝑥𝑥) −𝑚𝑚2𝑈𝑈(𝑥𝑥) + 𝑚𝑚2𝐺𝐺(1 +
𝜀𝜀𝑈𝑈) = 0,                                               (4) 

where  

𝑈𝑈 =  (τ −τ∞)
 (τb −t∞)

 𝐴𝐴𝐴𝐴𝐴𝐴 𝑋𝑋 = 𝑥𝑥
𝐿𝐿
.        (5)  

Porous value  𝑆𝑆𝑔𝑔 = 𝐷𝐷𝑎𝑎 𝑅𝑅𝑎𝑎   
𝑔𝑔

( 𝐿𝐿
𝑡𝑡
),  while the 

convection parameter  𝑚𝑚 = (ℎ𝑃𝑃
𝑔𝑔𝐴𝐴

)
1
2.  In this 

case, S is a porosity-related metric that 
describes the buoyancy effect and the 
porous structure's permeability. The larger 
interconnected porousness of PSF or larger 
buoyantic forces are indicated by a higher 
value of Sh. The result of convection from 
the fin's surface is indicated by the 
convective parameter m. The requirements 
for the task are for a fin of finite length with 
an insulated tip 𝑈𝑈(0) = 1, 𝑑𝑑𝑈𝑈

𝑑𝑑𝑥𝑥
|𝑋𝑋=1 = 0.  

The perturbation approach has been used 
with the concept of homotopy to tackle 
non-linear issues. Kiwan and Al-Nim [9] 
carried out an investigation by applying 
HPM. Marinca et al. developed a unique 
method that they call HPM [29]. HPM has 
the advantage of establishing its 
convergence criteria more pliablely than 
HAM. The three-dimensional (3D) analysis 
for Casson-nanofluid and Carreau-
nanofluid flows caused by a flat body in  
MHD flow is provided by R. Kumar [38]. 
HPM is used by Nawaz et al. [39] to solve 
a linked system of nonlinear partial 
differential equations (PDEs). [40]–[44]  
demonstrate the value, generalizability, and 
reliability of this approach in a number of 
publications. They also produce solutions 
that can be relied upon and provide 
significant applications in science and 
engineering. This study presents an 
articulated concept of HPM. It offers 
rational and reliable solutions to PDEs and 
differential equations that are time-
dependent, linear, non-linear, and fractional 
in space and time. 
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III. BASIC DEFINITIONS OF 
FRACTIONAL CALCULUS 

We provide some elementary definitions of 
real valued functions in this section. A real-
valued function 𝑓𝑓(𝑡𝑡),  where 𝑡𝑡 >  0 , is 
defined as follows : 𝑐𝑐𝜇𝜇 , µ ∈  𝑅𝑅 . Precisely 
defined as [44], [45], 

 f(t) =  𝑡𝑡𝑝𝑝𝑓𝑓1(t),  

where 𝑓𝑓1(𝑡𝑡)  ∈  𝑐𝑐(0,∞) is presumed to be 
in space 𝑐𝑐𝜇𝜇𝑚𝑚 if and only if 

𝑓𝑓𝑚𝑚∈ 𝑐𝑐𝜇𝜇,m ∈  𝑁𝑁.  

The fractional order 𝛼𝛼 >  0, µ ≥
 −1 Riemann-Liouville sense integral 
operator of a function 𝑓𝑓 ∈  𝑐𝑐𝜇𝜇 is defined as  

𝑅𝑅𝑅𝑅𝐷𝐷𝑎𝑎,𝑡𝑡
−𝛼𝛼𝑓𝑓(𝑡𝑡) = 1

Γ(α)∫  (t −𝑡𝑡
𝑎𝑎

 µ)α−1 f (µ) d µ, t >  0, a   0, k − 1 <
 α <  k, k ∈  𝑍𝑍+.                                    (6) 

For a function f(t) of fractional order α > 
0, the Riemann-Liouville sense derivative 
operator is defined as  

𝑅𝑅𝑅𝑅𝐷𝐷𝑎𝑎,𝑡𝑡
𝛼𝛼 𝑓𝑓(𝑡𝑡) =

1
Γ(n − α)

𝐴𝐴𝑔𝑔

𝐴𝐴𝑡𝑡𝑔𝑔
�(t 
𝑡𝑡

𝑎𝑎
−  µ)k−α−1  f (µ) d µ, a 
>  0, t >  0, k − 1 
<  α <  k, k ∈  𝑍𝑍+.  (7) 

Caputo sense derivative operator of a 
function f(y) of fractional order α > 0 is 
defined as 

𝐶𝐶𝐷𝐷𝑎𝑎,𝑡𝑡
𝛼𝛼 𝑓𝑓(𝑡𝑡)

=  
1

Γ(n− α)�  (t 
𝑡𝑡

𝑎𝑎

−  µ)k−α−1  𝑓𝑓𝑔𝑔(µ) d µ,α >  0, t >  0, k − 1 <  α <  k, k ∈  𝑍𝑍+ . (8)
       

 

𝐼𝐼𝑓𝑓 𝑗𝑗 − 1 <  𝛼𝛼 <  𝑗𝑗, 𝑎𝑎𝐴𝐴𝐴𝐴  𝑓𝑓 ∈  𝑐𝑐 𝜇𝜇  
𝑚𝑚 , 𝜇𝜇 ≥

−1, 𝑡𝑡ℎ𝑒𝑒𝐴𝐴      𝑅𝑅𝑅𝑅𝐷𝐷𝑎𝑎,𝑡𝑡
−𝛼𝛼 �𝐶𝐶𝐷𝐷𝑎𝑎,𝑡𝑡

𝛼𝛼 𝑓𝑓(𝑡𝑡)� = 𝑓𝑓(𝑡𝑡) −

∑ 𝑓𝑓𝑖𝑖(𝑎𝑎)𝑗𝑗−1
𝑖𝑖=0

(𝑡𝑡−𝑎𝑎)𝑗𝑗

Γ(i+1)
, > 0.                           (9)  

IV. FRACTIONAL ORDER HEAT 
TRANSFER MODEL APPLICATIONS 
𝑑𝑑𝛼𝛼𝑈𝑈
𝑑𝑑𝑥𝑥𝛼𝛼

− 𝑆𝑆ℎ𝑈𝑈2(𝑥𝑥) −𝑚𝑚2𝑈𝑈(𝑥𝑥) + 𝑚𝑚2𝐺𝐺(1 +
𝜖𝜖𝑈𝑈) = 0,    (10)    

where  𝑈𝑈 =   (τ −τ∞)
 (τb −t∞)

 𝑎𝑎𝐴𝐴𝐴𝐴 𝑋𝑋 = 𝑥𝑥
𝐿𝐿
 ,   

𝑈𝑈(0) = 1   ,      
𝐴𝐴𝑈𝑈
𝐴𝐴𝑥𝑥

|𝑥𝑥=1 = 0. 

Using the HPM approach, we can create an 
ideal homotopy in the given equation as 
follows: 

𝑈𝑈𝛼𝛼 + 𝑃𝑃[−𝑆𝑆𝑈𝑈2 − 𝑚𝑚2è + 𝑚𝑚2𝐺𝐺(1 + 𝜖𝜖𝑈𝑈)] =
0. (11) 

𝐼𝐼𝐴𝐴 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑓𝑓𝐴𝐴𝑓𝑓, 𝑝𝑝0, 𝑝𝑝1,𝑝𝑝2, 𝑎𝑎𝐴𝐴𝐴𝐴 𝑝𝑝3 are 
problems of the zeroth, first, second, and 
third orders. 

𝑝𝑝0: 
𝑑𝑑𝛼𝛼𝑈𝑈0
𝑑𝑑𝑥𝑥𝛼𝛼

= 0                            (12) 

 𝑝𝑝1: 
𝑑𝑑𝛼𝛼𝑈𝑈1
𝑑𝑑𝑥𝑥𝛼𝛼

= 𝑆𝑆(𝑈𝑈0)(𝑈𝑈0) + 𝑚𝑚2𝑈𝑈0 − 𝑚𝑚2𝐺𝐺(1 +
𝜖𝜖𝑈𝑈0)          (13) 

𝑝𝑝2: 
𝑑𝑑𝛼𝛼𝑈𝑈2
𝑑𝑑𝑥𝑥𝛼𝛼

= 𝑚𝑚2(𝑈𝑈1) − 𝐺𝐺𝑚𝑚2𝜖𝜖(𝑈𝑈1)+2(𝑈𝑈0)(𝑈𝑈1) 

 (14) 

  𝑝𝑝3: 
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𝑑𝑑𝛼𝛼𝑈𝑈3
𝑑𝑑𝑥𝑥𝛼𝛼

= 𝑆𝑆(𝑈𝑈1)2 + +𝑚𝑚2𝑈𝑈2 − 𝐺𝐺𝑚𝑚2𝜖𝜖𝑈𝑈2 +
2𝑆𝑆(𝑈𝑈0)(𝑈𝑈2)       (15) 

In the following, 𝑈𝑈0 ,𝑈𝑈1 ,𝑈𝑈2, 𝑎𝑎𝐴𝐴𝐴𝐴 𝑈𝑈3  are 
zeroth-order, first-order, and third-order 
solutions. Using these three solutions in 
equation 12, we get U solution. 

  𝑈𝑈0 = 1    (16) 

 𝑈𝑈1 = 𝑆𝑆+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺)
Γ(α+1) 

𝑥𝑥𝛼𝛼        (17) 

𝑈𝑈2 = 𝑚𝑚2 �
𝑆𝑆 + 𝑚𝑚2(1 − 𝐺𝐺 − 𝐺𝐺𝜖𝜖)

Γ(2α + 1) 𝑥𝑥2𝛼𝛼� 

−𝐺𝐺𝑚𝑚2𝜖𝜖 �𝑆𝑆+𝑚𝑚
2(1−𝐺𝐺−𝐺𝐺𝐺𝐺)
Γ(2α+1)

𝑥𝑥2𝛼𝛼� +

2 �𝑆𝑆+𝑚𝑚
2(1−𝐺𝐺−𝐺𝐺𝐺𝐺)
Γ(2α+1)

𝑥𝑥2𝛼𝛼�          (18) 

𝑈𝑈3

= 𝑆𝑆 �
𝑆𝑆 + 𝑚𝑚2(1 − 𝐺𝐺 − 𝐺𝐺𝜖𝜖)

Γ(α + 1) �
2 Γ(2α + 1)
Γ(3α + 1) 𝑥𝑥

3𝛼𝛼 

+𝑚𝑚4 �𝑆𝑆+𝑚𝑚
2(1−𝐺𝐺−𝐺𝐺𝐺𝐺)
Γ(3α+1)

𝑥𝑥3𝛼𝛼� −

𝐺𝐺𝑚𝑚2𝜖𝜖 �𝑆𝑆+𝑚𝑚
2(1−𝐺𝐺−𝐺𝐺𝐺𝐺)
Γ(3α+1)

� +

2 �𝑆𝑆+𝑚𝑚
2(1−𝐺𝐺−𝐺𝐺𝐺𝐺)
Γ(3α+1)

𝑥𝑥3á�                            (19) 

𝑈𝑈 = 1 + 2𝑦𝑦2𝛼𝛼(𝑠𝑠+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺))
Γ[1+2𝛼𝛼]

+
𝑚𝑚2𝑦𝑦2𝛼𝛼(𝑠𝑠+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺))

Γ[1+2𝛼𝛼]
−

𝐺𝐺𝑚𝑚2𝑦𝑦2𝛼𝛼𝐺𝐺(𝑠𝑠+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺))
Γ[1+2𝛼𝛼]

+
2𝑦𝑦3𝛼𝛼(𝑠𝑠+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺))

Γ[1+3𝛼𝛼]
+

𝑚𝑚4𝑦𝑦3𝛼𝛼(𝑠𝑠+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺))
Γ[1+3𝛼𝛼]

−
𝐺𝐺𝑚𝑚2𝑦𝑦3𝛼𝛼𝐺𝐺(𝑠𝑠+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺))

Γ[1+3𝛼𝛼]
+

𝑠𝑠𝑦𝑦3𝛼𝛼(𝑠𝑠+𝑚𝑚2(1−𝐺𝐺−𝐺𝐺𝐺𝐺))2Gamma[1+2𝛼𝛼]
Γ[1+𝛼𝛼]2Γ[1+3𝛼𝛼]

+
𝑦𝑦𝛼𝛼(𝑠𝑠+𝑚𝑚2[1−𝐺𝐺−𝐺𝐺𝐺𝐺])

Γ[1+𝛼𝛼]
    (20) 

 

A. RESIDUAL OF FRACTIONAL 
ORDER METALLIC POROUS FIN ON 
VARYING CONVECTIVE LOADS  

𝑅𝑅 =  𝑑𝑑
𝛼𝛼𝑈𝑈
𝑑𝑑𝑥𝑥𝛼𝛼

− 𝑆𝑆ℎ𝑈𝑈2(𝑥𝑥) −𝑚𝑚2𝑈𝑈(𝑥𝑥) +
𝑚𝑚2𝐺𝐺(1 + 𝜖𝜖𝑈𝑈)                 (21) 

B. AVERAGE VELOCITY AND FLOW 
RATE 

𝑊𝑊 = � 𝑢𝑢(𝑥𝑥)𝐴𝐴𝑥𝑥
1

0
 

𝑊𝑊 = 1 + 𝑠𝑠
Γ[2+α]

+
�−2+𝑚𝑚2(−1+𝐺𝐺 𝐺𝐺)� (−𝑠𝑠+𝑚𝑚2(−1+𝐺𝐺+𝐺𝐺 𝐺𝐺))

Γ[2+2 α]
−

�2+𝑚𝑚4−𝐺𝐺𝑚𝑚2𝐺𝐺� �−𝑠𝑠+𝑚𝑚2(−1+𝐺𝐺+𝐺𝐺𝐺𝐺)�

Γ[2+3 α]
+

4𝛼𝛼 𝑠𝑠 �𝑠𝑠−𝑚𝑚2(−1+𝐺𝐺+𝐺𝐺𝐺𝐺)�
2

 Γ�12+𝛼𝛼�

√𝜋𝜋 Γ[1+ α] Γ[2+3 α]
+ 𝑚𝑚2(1−𝐺𝐺 (1+∈))

Γ[2+α]
       

(22) 

The fractional metallic porous fin on 
varying convective loads Jeffery-Hamel 
flow’s average velocity 𝑈𝑈� Is  determined by  

𝑢𝑢� = 𝒘𝒘 

The fractional Jeffery-Hamel flow result, as 
shown graphically.  

FIGURE 1. The result's behavior observed 
at 𝑠𝑠 = 3,𝐺𝐺 = 0.4,𝑚𝑚 = 0.1,∈=
0.6, 𝑎𝑎𝐴𝐴𝐴𝐴 𝛼𝛼 = 1. 
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V. RESULTS AND DISCUSSION    

Without using any spatial discretization, 
the HPM algorithm for the temporal 
fractional order heat transfer equation 
described in Sec. 3 and the formulation 
explanation given in Sec. 4 yield incredibly 
valid solutions. It is not necessary to 
compute higher order answers while using 
HPM. Material property values are derived 
from [33]. Da = 0.0003; L/t = 10, Ra = 
10000, Kr = 954, ε = 0.5, Ks = 411. Tables 
2, 4, 6, 8, and 10 represent the approximate 
results which also represent the validity and 
accuracy of the method.         

A. CASE 1 (DIFFERENT VALUES OF 
α)  

Fractional thermal analysis for α 
fluctuations is provided in this instance. 

Regarding 2, 𝑤𝑤𝑓𝑓𝑡𝑡ℎ 𝑚𝑚 = 0.1, 𝑠𝑠 = 3,𝐺𝐺 =
0.4,∈= 0.6.

 
FIGURE 2. 2D Temperature Gradient 
Analysis for Case 1  

TABLE I 

RESULTS OF CASE 1 (DIFFERENT VALUES OF α) 
X α = 1.2 α =1.4 α = 1.6 α = 1.8 α = 2 
0.1 1.18141663906182 1.0984704278  1.0532846382428  1.0285103606638  1.0150433589880  
0.2 1.454156682204560  1.2713641407  1.1650490167101  1.1003435974915  1.0604889697639  
0.3 1.826278280854757 1.5095481482  1.3264887670270  1.2118930395974  1.1373676284255  
0.4 2.332170890627507 1.8269586813  1.5420107346364  1.3649270693253  1.247677977344 
0.5 3.016423605847851 2.2482467334  1.8232366180731  1.5649264368583  1.3948074784765  
0.6 3.931330828423049  2.8073040662  2.1887805960676  1.8214901935378  1.584121776004 
0.7 5.135830421546348 3.5469882460  2.6648158229219  2.1491817538552  1.8237224482930  
0.8 6.694882891059962  4.5191565779  3.2858657279452  2.5685834056658  2.1253731491840  
0.9 8.679044449553565 5.7847993381  4.0956729919871  3.1074860593097  2.5055941386030  
1 11.16414484687868  7.4142059099  5.1480952315169  3.8021821809219  2.9869252025 

TABLE II 

RESULTS OF CASE 2 (DIFFERENT VALUES OF ∈) 
X ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 ϵ = 1 

0.1 1.246171036091  1.1326976308343  1.0715759160454  1.0382137470857  1.0201249365328  
0.2 1.630274209212  1.3687350143266  1.2223267972172  1.1346168755348  1.0809453437043  
0.3 2.188825094631  1.7044746144583  1.4429212958127  1.2850210971390  1.1839957080697  
0.4 3.003056035754  2.1741481263384  1.7449888973438  1.4936456415518  1.3324924866776  
0.5 4.175719791817  2.8338715761896  2.1543086887152  1.7717558733778  1.5323225762543  
0.6 5.826865697324  3.7601244220463  2.7116666124526  2.1392060551031  1.7934271700622  
0.7 8.091812826761  5.0497513307491  3.4747142455356  2.6266805857285  2.1315810024318  
0.8 11.11986699685  6.8203218331082  4.5200857922846  3.2783087802730  2.5705669809675  
0.9 15.07339357763  9.2105830090151  5.9455845125925  4.1545449301636  3.1447462064277  
1 20.12709603131  12.380926140017  7.8723761260065  5.3352630527308  3.9020233802777  
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B. CASE 2 (DIFFERENT VALUES OF 
∈)  

In this case, fractional thermal analysis for 
variations in ∈ is given. 𝐹𝐹𝑓𝑓𝐹𝐹 ∈=
 1 𝑤𝑤𝑓𝑓𝑡𝑡ℎ 𝑚𝑚 = 0.3, 𝑠𝑠 = 4,𝐺𝐺 = 0.4,𝛼𝛼 = 1.4. 

 
FIGURE 3. 2D Temperature Gradient 
Analysis for Case 2  

C. CASE 3 (DIFFERENT VALUES OF 
G) 

In this case, fractional thermal analysis for 
variations in G is given. For G=1 with 
m=0.3, s=5, ∈=0.6, α = 1.4  

 
FIGURE 4. 2D Temperature Gradient 
Results for Case 3  

TABLE III 
RESULTS OF CASE 3 (DIFFERENT VALUES OF G) 

X = 0.4 = 0.6 = 0.8 = 1 
0.1 1.16653535378245 1.1645948744811394 1.1636250249942968 1.1626554356166625 
0.2 1.4670439387307608 1.4613146182142676 1.4584535326313142 1.4555948301652226 
0.3 1.910296468580126  1.8982678908884087 1.8922680098111981 1.8862777339130858 
0.4 2.563543874724515  2.5410409277095947 2.529830108296882 2.518646391614001 
0.5 3.533476230842525 3.4938352155470347 3.4741080242660383 3.4544430438962057 
0.6 4.965047416136141 4.8982796898985335 4.865082685257754 4.832010252935658 
0.7 7.042067895942152 6.933996549445583 6.880300256272839 6.826830216483786 
0.8 9.988155594407614 9.819524485829396 9.735781693331614 9.652420742028042 
0.9 14.06773941802519  13.813296279039129 13.686987500041873 13.561287248041793 
1 19.587032347996864 19.214588000396848 19.02975509653562 18.845848372633565 

D. CASE 4 (DIFFERENT VALUES OF 
m) 

In this case, fractional thermal analysis for 
m fluctuations is provided. Regarding 𝑚𝑚 =
0.4 𝑤𝑤𝑓𝑓𝑡𝑡ℎ 𝐺𝐺 = 0.4, 𝑠𝑠 = 3,∈= 0.6,𝛼𝛼 = 1.6. 

 
FIGURE 5. 2D Temperature Gradient 
Results for Case 4  

E. CASE 5 (DIFFERENT VALUES OF  
𝑺𝑺𝒉𝒉) 

In this case, fractional thermal analysis for 
fluctuations in S is provided.  

For S of 5 with 𝐺𝐺 = 0.4,𝑚𝑚 = 0.3,∈=
0.6,𝛼𝛼 = 1.4. 

 
FIGURE 6. 2D Solutions of Case 4 
Showing Temperature Variations with 
Different 𝑆𝑆ℎValues 
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TABLE IV 

RESULTS OF CASE 4 (DIFFERENT VALUES OF m) 
X m = 0.1 m = 0.2 m = 0.3 m = 0.4 

0.1 1.0532846382428058 1.0534818890689195 1.0538107327553794 1.0542713078505557 
0.2 1.1650490167101466 1.1656956791645614 1.1667743595732327 1.168286424752145 
0.3 1.3264887670270018 1.327863519888187 1.330158410111659 1.3333789072580462 
0.4 1.5420107346364944 1.544482530617304 1.5486122593651872 1.5544150892093296 
0.5 1.823236618073107 1.8273091055246455 1.8341193831132838 1.8437018387644573 
0.6 2.1887805960676987 2.1951386303131555 2.2057807324625442 2.220775426389054 
0.7 2.6648158229219474 2.6743770527180413 2.6903949338125925 2.7129941695811115 
0.8 3.2858657279452137 3.2998380905284477 3.323265510914866 3.3563600284112325 
0.9 4.095672991987155 4.1156183792085015 4.14908647984908 4.1964191716853865 
1 5.148095231516944 5.175999390567274 5.222854817126482 5.289189551127658 

TABLE V 
RESULTS OF CASE 5 (DIFFERENT VALUES OF 𝑆𝑆ℎ) 

X s = 2 s = 3 s = 4 s = 5 
0.1 1.0666129236604402 1.0994783376970565 1.1324505735876722 1.1655649840771904 
0.2 1.1828209849651685 1.2744268034611266 1.3679959193645521 1.464178086914083 
0.3 1.3397114847308156 1.5159322609431678 1.7029318115283956 1.9042773771447181 
0.4 1.5415669175905258 1.8384064623067462 2.1713297910602147 2.5522788498521387 
0.5 1.797298687391699 2.2671296074820617 2.8290763278568694 3.513624617739197 
0.6 2.1192941185027223 2.8367705564931804 3.752351960739738 4.931601266857996 
0.7 2.5231037459998724 3.5911148074485073 5.037631094211793 6.98791909600202 
0.8 3.0273566235063094 4.583102955116582 6.8020394205773425 9.903649119521399 
0.9 3.6537563782001836 5.874968580684206 9.183804454089717 13.94021358503357 
1 4.427109748413025 7.538408819146187 12.342720181974983 19.400347084217266 

A. CONCLUSION 

The fractional thermal porous fin model 
mentioned above is a second-order non-
linear ODE. This work uses HPM to 
illustrate the model solution numerically. It 
is shown that the HPM approach provides a 
straightforward, accurate, and suitable way 
to predict the consequences of heat 
dissipation in PFS when a thermionic 
system occurs. Here, the research on heat 
transmission is restricted to porous fins of 
finite length with insulated tips. We have 
two different situations that are susceptible 
to the fin's tip situation. The thermal 
gradients resulting from the dissimilarity of 
m with respect to the evolved heat energy 
and temperature propagation by varied 
values of α are depicted in Figure 1. 
Whereas, the thermal gradients that result 
from the differences in the evolution of heat 
energy and the propagation of temperature 

at different values are depicted in Figures 2 
and 3. Here, it is determined that, as 
indicated in Figure 4 provided in [19]–[24], 
when impacted by m, S value increases, 
temperature drops quickly, and the fin 
quickly meets the ambient temperature. 
Figure 5 illustrates how S primarily 
influences thermal gradients. S is mostly 
attributable to the Darcy factor, which is the 
primary driver of heat transfer rate in this 
thermal system. Along with explaining the 
dissimilarity behavior, the results also 
provide an explanation for fin porosity and 
solidity in terms of the heat transfer rate 
with parameter kr [45], [46]. The 
percentage of porous fin to solid fin heat 
transmission rate differs in both scenarios 
as kr increases. The findings indicate that 
the values and variations of Da and Ra have 
a significant impact on the thermal 
dispersion of metallic Cu-Al-Ag porous 

https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr


Younas et al. 

79 School of Systems and Technology 
Volume 4 Issue 1, Spring 2024 

structures. Figure 1 makes it clear that as 
the Darcy parameter decreases, the 
magnitude of thermal gradients and 
thermionic levels increases. As a result, the 
amount of dimensionless temperature 
decreases over the fin span. Here, it is 
determined that the S parameter mostly 
influences PFS because higher 
permeability results in increased 
convection and heat transferability. Greater 
heat transmission is possible at higher S 
values. Hence, this research concludes that 
porous finned structures or PFS are suitable 
for a variety of industrial uses, particularly 
in the electronics and biomedical sectors. 
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