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ABSTRACT Uncoordinated and unplanned increases in electricity demand have become
a critical concern in recent times due to growing population and appliance utilization.
Significant focus has been placed on optimizing load patterns for appliances and
capitalizing on the potential for savings in domestic energy management. This paper
develops a low-cost demand-side management system for residential applications through
smart energy meters, combined with non-Intrusive load monitoring (NILM) and machine
learning for accurate load disaggregation. It also presents a real-time consumption-based
dynamic pricing algorithm that exploits the use of deep neural networks (DNN) for
classifying of essential and non-essential loads, utilizing real-time collected datasets. The
system provides live energy monitoring through Modbus RTU and RS485 protocols, with
data stored in Postgre SQL database, enabling data visualization on a Power BI dashboard.
The dashboard highlights real-time advice on energy optimization. The proposed approach
demonstrates an effective demand response (DR) mechanism, shifting electricity
consumption to off-peak hours throughout the day without reducing overall energy use.
This enhances optimizing the load curve metrics and improves energy efficiency.

INDEX TERMS demand side management, deep neural networks, energy efficiency,
NILM, real-time energy monitoring, smart energy meters

L.INTRODUCTION which leads to peak load problems and
higher energy costs for consumers.
Optimization of load patterns and appliance
utilization in domestic environments is
essential for smooth maintenance and cost
savings of the grid. Thus, optimization of
these factors forms the prime focus of
researchers and industry professionals. The
process of improving the load usage
patterns and improving load curves is
commonly known as Demand Side
Management (DSM).

Due to the increased population and
growing  consumption of electrical
appliances, the requirement for electricity
has dramatically escalated, especially in the
countries like Pakistan. Some reports have
shown a notable difference in generation
capacity and demand, leading to blackouts
and load-shedding. This situation poses
formidable challenges both for power grids
as well as for energy suppliers. Moreover,
skewed load utilization patterns among

consumers causes significant economic
challenge due to the difference of
cumulative energy production and installed
capacity. Classic energy management
systems are normally unable to cope up
with the intertemporal variance in demand,

This proposed method was tested to
demonstrate a low-cost, real-time load
identification mechanism for residential
consumers using smart energy meters. The
meters use the exchange of data
communication protocols such as Modbus
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RTU and RS485. Corresponding data is
visualized by an interactive Power BI
dashboard, and stored in a PostgreSQL
database. The database and visualization
are demonstrated to assist the consumer
realize the energy consumption and gives
hints to optimize this load.

Furthermore, the proposed mechanism
classifies the appliances as essential and
non-essential, using Nonintrusive Load
Monitoring (NILM) algorithm and Deep
neural network (DNN). The classification
can be used to define dynamic pricing
algorithms to encourage users to shift non-
essential loads during off-peaking hours,
hence flattening the load curve.

The rest of this paper is organized as
follows: Section II presents a detailed
literature review, comparing the proposed
work with existing solution in area. Section
111 describes the methodology and provides
a step-by-step account towards how the
solution was developed. Section IV
presents the results obtained from the
proposed system. Section V concludes the
paper with highlights of main takeaways
from this work.

II. LITERATURE REVIEW

DSM methods have been well explored for
reducing energy consumptions and
changing demand from peak to off-peak
hours [1]. Latest developments also depict
those intelligent systems with real-time
data inputs for load shifting do indeed result
in a successful automation process. DSM
combined with real-time feedback and
dynamic pricing yields significant energy
savings. The fact, however, is that
traditional DSM still requires human
intervention at times, which lowers the
efficiency.

DSM makes consumers, through real-time

load monitoring, load control and
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incentives/penalties from utility, shift their
levels of energy consumption at the right
time. The major goal is shifting the load
from peak times to off-peak times, while
fulfilling the overall energy demand and
suitably ensuring the consumers’ comfort.
However, the effectiveness of DSM relies
on efficient load patterns detection and
proper mechanism of identifying the nature
of loads [2]. So that shifting of only those
loads can be strategized which does not
disrupt consumers’ necessities. In this
regard, advances in smart metering, and
corresponding learning mechanism of load
natures using machine learning tools can
potentially play a pivotal role [3].

NILM breaks up household electrical
consumption into individual appliances
without requiring a sensor for every device,
which reduces costs and complexity. Hart
[4] was the pioneer of NILM in terms of
signal processing techniques applied to
determine appliances by their power
signatures. NILM has been implemented in
a large number of smart energy
management systems in order to gain
detailed insights into residential energy
usage [5]. A survey has shown that NILM
algorithms, indicating that advanced
machine learning models have become
considerably more accurate compared to
early ones in the domain of load
disaggregation. More recent highlights
have shown deep learning algorithms in the
form of convolutional neural networks
(CNN) and Long Short-Term Memory
(LSTM) networks are to enhance the
accuracy of NILM [6]. This combines
NILM with Machine Learning techniques
in real-time classification of the other loads
that would improve feedforward accuracy
and optimize the usage of energy [7].

Machine learning is utilized in the
optimization of energy systems, including
load disaggregation and dynamic pricing. A
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study took into account the role of machine
learning in the residential energy forecast,
where ANNs and SVMs may help in the
enhancement of energy consumption
prediction [8]. DNNSs are currently trending
in load classification and has been applied
for residential appliances classification,
with high accuracy in load disaggregation

[9].

Dynamic pricing forms part of the DSM
systems which comprise incentives and
rewards for the customers to adjust their
energy consumption in direct accordance to
price signals at any time. Dynamic pricing
is acclaimed to reduce peak loads by as
much as 30% depending on pricing model
and consumer involvement [10]. In
addition, Demand Response management
(DRM) is needed for DSM to have
improved efficiencies [11]. This work
utilizes dynamic pricing in the form of a
real-time consumption-based algorithm,
hence prompting users to shift some of their
non-essential loads to off-peak periods. The
proposed system integrates DNN based
load classification with dynamic pricing,
encouraging users to better optimize the
energy consumption levels without losing
the overall consumption.

Real-time consumption monitoring is quite
vital for a good DSM technique. Smart
meters and monitoring systems are handled
in such a manner that they can contribute to
helpful data towards developing the
consumption pattern and  adjusting
appliance use [12]. Real-time data is of
paramount importance for optimizing
consumption, most specifically in the
residential ~ sector, where consumer
behavior varies greatly [13]. Integration of
real-time visualization tools along with
dynamic pricing have a considerable effect
on the behavior of the consumers, saving
20% of the consumed energy. Based on
these, this paper extends previous works in

the literature on demand side management
(DSM), non-intrusive load monitoring
(NILM), and load disaggregation using
machine learning with various
contributions that distinguish it [14], [15].
Rather than classic DSM schemes that need
human help for solutions, an intense DNN
system employed for the real-time
differentiation between essential and non-
essential loads to carry out proficient load
disaggregation [16]. Moreover, the real-
time dynamic pricing algorithm, which is
integrated into a Power BI dashboard to
offer instantaneous feedback through the
trained model, convinces users to move non
critical loads towards off-peak times. This
real-time approach enhances energy
efficiency and  demand  response
capabilities that optimize the load curves
without compromising the user comfort.

III. METHODOLOGY

The flow of steps in this work comprises of
systematized installation of smart meters in
residential facilities, their data collection,
and corresponding energy consumption
analysis. Installed Smart meters installation
communicated the load parameters in the
MODBUS RTU protocol. This data is
collected, processed and fed into machine
learning models for disaggregation of load
use. The learning outcome is then used to
detect the number and nature of appliances
in runtime data and its display on
dashboard. The detailed steps are as
follows:

1. The SME 104D Smart Meter was
installed to measure voltage, current,
power and energy levels inside the
residence.

2. USB to RS-485 converter was used to
transmit real-time data using the
MODBUS RTU protocol. The
parameters  for  reliable  data
communication were also configured.
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The data employed in this research are

divided into two categories:

e Publicly accessible online NILM
datasets, and

e The data gathered with the new
hardware system. The hardware
was implemented in a home
setting to record various home
appliances mentioned in Figure 2
over a minimum period of three
months.

e The system was modeled to
capture appliance-level power
consumption profiles via smart
meters with Modbus RTU/RS485
communication, with the captured
data stored in a PostgreSQL
database for subsequent analysis
and training of the DNN-based
NILM model.

The captured data was stored in the

HMI memory and then in the

PostgreSQL  database. The pre-

processing Steps are

e Data Cleaning: This includes
correcting the erroneous entries.
Errors or missing values because
of communication latency or
sensor noise were identified and
corrected. Outliers and spurious
peaks in the data were smoothed
out with a moving average filter,
while missing values were
interpolated with linear
interpolation to maintain
continuity within the time series.

e Normalization:  Scaling the
numerical data to improve the
performance of the model. To
bring all numerical features to the
same level of scale and improve
model convergence,
normalization techniques were
employed. Namely, Z-score
normalization was wused to
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normalize values such that they
are centered at zero mean and unit
variance. For certain bounded
features, min—-max scaling was
employed to rescale data to the
[0,1] range.

e Feature Extraction: Meaningful
features to be extracted, such as
mean power, peak load time.
Significant features were
extracted from  preprocessed
signals  to  facilitate  the
classification process. They are
statistical and temporal features
such as mean and variance of
power usage, peak load time, load
duration, and switching event rate.
They contain discriminative
information on appliance usage
patterns that facilitate effective
appliance classification through
NILM and DNN models.

Classification of the usage data, using
a wide variety of machine learning
algorithms with a focus on Deep
Neural Networks Training Process

e Dataset Split: Training 70% and
validation/testing 15% each

e Loss Function and Optimizer:
Categorical cross-entropy and
Adam optimizer.

e  Performance Metrics: Accuracy,
predicted class probabilities,
confusion matrix.

Real-time dynamic pricing model

based on live data from PostgreSQL.

e DNN to distinguish between
critical and non-critical loads.

e System recommendation to shut
down the loads that are not critical
during peak pricing.

A
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e Possible savings with the loads'
reduction
7. Provides an energy consumption
Power BI dashboard in real-time and
costs. It reflects current usage and
gives an estimate of what the future
costs will be.

IV.RESULTS AND DISCUSSIONS

A. SMART METER INSTALLATION
AND COMMUNICATION

The SME 104D smart energy meter was
installed as shown in Figure 1, and used to
measure the key electrical parameters,
namely, voltage, current, power, and

energy, in a residential setting. Figure 3
shows an HMI that captures all the required
parameters. Various home appliances, such
as an air conditioner (AC), personal
computer (PC), resistive bulb, and washing
machine, were used as test loads. Data
communication between the meter and a
PC was achieved via a USB to RS-485
converter, which transmitted data in

real-time through the MODBUS RTU
protocol. The configuration of the
communications parameters, including the
device address, baud rate, stop bits, and
parity, on the meter helps establish reliable
and efficient data transfer.

FIGURE 1. SME 104 smart meter collecting data

Data Collected for One Month (August)
Using SME 104 D Smart Meter and RS485 to USB Converter

Appliance Power (W) Weekly Usage (Hours)
Air Conditioner (AC) 1300 2
Washing Machine 3500 3
Bulb 100 119
PC 400 2

FIGURE 2. Real-Time data collection duration
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parameters
voltage 227 current  0.0560
power 1.23 reactive power  ©795

power factor o.ee8

frequency

active power

11.254

50.000

FIGURE 3. Collected features of appliances

B. MACHINE LEARNING FOR LOAD
DISAGGREGATION

The energy usage data acquired from the
SME 104D smart energy meter was
classified and analyzed using a variety of
machine learning algorithms. Since DNNs
are adept at capturing complex data
patterns and yielding high classification
accuracy, most attention was given to these.
The DNN model was trained on a labeled
dataset; each entry of data was tagged with
either being an essential load or not.
Training was primarily divided into
following

1) DATASET SPLITTING

The dataset was divided into training,

validation, and testing subsets to test the
performance of the model. In normal cases,
70 percent of the data would be used for
training, 15 percent for validation, and 15
percent for testing.

2) EPOCHS AND BATCH SIZE

Training the model was done by running it
on several epochs, an epoch being simply
one run through the training dataset. The
batch size was decided to keep track of
samples processed before the model
updated its weights. The DNN was tested
on the test dataset after it has been trained
to evaluate its performance given in Figure
4 that shows the model losses and how well
it handles data in each epoch.

Model Accuracy vs. Data Size
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FIGURE 4 . Model error losses while handling dataset
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This is the accuracy rate of number of
correct predictions made by the model out
of the total number of predictions.
Similarly, the appropriate loss function

performance. In Figure 5 that shows model
accuracy vs loss over the given data. The
Adam optimizer was used to update the
weights of the model according to the

which is categorical cross entropy is used computed  gradients  during  back-
for the training of the model. That has been  propagation.
deployed for evaluation of model
Model Accuracy Model Loss
100 w— Train — s Train
—— Validation 04 ——— Validation
0.98
03
0.96
§ ”
é 094 § 0.2
B
0.92
01
0.90
0.0
o 10 20 30 40 50 o 10 20 30 40 50

Fpoch

FIGURE 5. Model Loss and Accuracy

The model's predicted class probabilities
shown in Figure 6 for every class illustrate
the confidence of classifying essential and
non-essential loads.

The confusion matrix provides detailed
classification result for each class as shown
in Figure 7, and it depicts the true positive
and false positive rate for every class.

Accuracy of Appliance Power Predictions
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FIGURE 6. Probability and acuuracy for predicting appliances
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Figure 7. Confusion matrix

First, the DNN was trained on the pattern of
signatures of individual appliances. The
different  appliances  had  different
characteristics with regard to energy
consumption, thus allowing for learning
and accurate recognition of their specific

Total Power Consumption

operating patterns. Figure 8 shows the
individual appliance disaggregation among
total power consumed. In this training, a
labeled set had to be made to indicate when
each appliance in a dataset was in use.
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FIGURE 8. Individual appliance contribution of power predicted vs true power
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The trained DNN was tested under test
scenarios where all appliances were
running in sequence. This is necessary as
the model would thus estimate the total
energy usage in terms of aggregate usage of
multiple appliances. Leverage on the
knowledge sourced individually from
training, DNN ensured a clear distinction of
each appliance contribution even when
running in tandem, showing the efficiency
in load disaggregation. The application of
DNN:ss is of extreme importance to provide
a detailed insight into the usage of energy
in residential settings. As shown in Figure

9 DNN model successfully disasggregates
total house hold power consumption into
individual appliance contribution.This
enables identification of which appliance
are responsible for the majority of energy
usage at any given time.It is visible that AC
(Air conditioner) is highest contributor in
power consumed by house hold. Figure 10
shows quantufying share of each appliance,
the system provides consumers with
actionable insights for shifting non-
essential loads, therby supporting DSM and
optimizing overall energy efficiency.

Power Consumption with DNN Predictions

Total Power €

tion

P

Total Power
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FIGURE 9. DNN predicted each appliance contribution from total power
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FIGURE 10. DNN predictions based on total power
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The architecture of the DNN is a kind of
arrangement in the form of a layer of
interconnected neurons, functions similarly
to that of biological neurons. It processes
incoming inputs with the weighted sum and
transmits it to an activation function. As
shown in Figure 9 the predictions based on

the total power and the features which were
used to specify trend curve of each
appliance. The output layer finally
generates predictions telling how likely
each appliance will be active at any given
time.

Appliance Power Consumption and Predictions
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FIGURE 11. DNN predictions based on total power for each appliance

C. DASHBOARD FOR USER
ENGAGEMENT

This Power BI dashboard gives real-time
data visualization through the monitoring
of energy consumption. It fetches its data in
real-time from PostgreSQL, reflecting the
current voltage and power consumption and
the total energy usage shown in Figure 12.
In addition, it reflects the current bill and
also indicates the estimated charge for
electricity for the rest of half an hour based
on the consumption pattern as observed at
this point in time. Based on this, users can
predict their costs and hence avoid
unnecessary expenses and ensure efficient
management of electricity consumption.

The solution shows these
recommendations generated by the DNN
model on the dashboard to the users

depending on their type: essential and non-
essential loads. Hence, the Dashboard
prompts users to turn off those devices that
they considered non-essential to save
energy, thus minimize energy costs. More
so, the dashboard provides a list of non-
essential loads in operation to allow users
to identify which non-essential devices are
in operation at a given time shown in Figure
12 is the first page that provides real-time
insights of energy consumption through
Power BI dashboard where we have added
feature for calculating cost against energy
consumed by each appliance for user to
take actionable decisions based on real data
and suggestions .The combination of
insights generated from machine learning
along with database-driven metrics allows
the consumer to be equipped with
information to make intelligent use of
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energy. Dashboard contains a second page
shown in Figure 13 which captures running
non-essential appliances and if user kept
running at this rate how much power
consumed and billing cost against it is

Voltage w

230

0.00
10000

Time

20000

Total Power Consumption_ W

7.58

390.66 (W)
Total_Power

395.87 W)
Total_Power

Average Voltage Vrms

predicted for user to have clear idea about
reduction in cost and user can monitor for
how long it is feasible to run a specific
appliance.

Appliance consumption details

4
58 m

250,00

Total EnergyConsumption KWh

™
AC Conditionen)
Bulb

PC

Total Bill
151.68

Bill Management

FIGURE 12. Real-Time Power Consumption Visualization

Power Consumption Forecast

Projected Bill for the Next 30 Minutes

468.69 =

Projected Bill for the Next 6 Hours with AC
(Air-Conditioner) Turned Off
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Estimated Energy Consumption in
next 30 minutes

15.85

Running Non Essential Appliances
|_\( " (Air-Conditioner)

0.00 100.00

| P(C (Personal Computer)

Projected Bill for the Next 6 Hours with AC
and PC Turned Off

199.17 =
©

FIGURE 13. Forecasted Bill and list of Non-Essential Loads

D. CONCLUSION

The framework proposed
mechanism for residential

a DSM
loads by

integrating smart energy meters, NILM and
DNN for identification of shiftable loads in
terms of appliances for better energy
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consumption. The work successfully
displayed the monitoring and real-time
classification of energy usage. This work
also  introduces the concept of
categorization of essential and non-
essential appliances using machine learning
so that dynamic pricing strategies are made
possible, thus enhancing the potential
strategy making for energy efficiency. The
methodological approach demonstrates the
strength of the DNN in potentially
disaggregating load signatures from
individual appliances, even if several
appliances are running at the same time,
and makes an accurate prediction about
energy usage. A user-friendly dashboard is
also demonstrated to provide real-time
insights to the consumers about their
energy consumption decisions. This can
eventually help reducing electricity costs
while maintaining comfort. The framework
will encourage proactive practices in
energy consumption and ensure stability for
the power grid while facilitating the move
toward sustainable energy practices.

Future research will focus on expanding the
framework through the exploration of
larger datasets and extended model
training. Particular attention will be given
to accommodating appliance energy
consumption under varying tolerance
levels, addressing nonlinear load behaviors,
and improving the practicality of the
proposed system for real-world
deployment. Furthermore, efforts will be
directed toward enhancing scalability,
integrating the framework with IoT-
enabled smart homes, smart grid platforms
and validating its performance across

diverse  consumer environments to
strengthen both robustness and
generalizability.

CONFLICT OF INTEREST

The author of the manuscript has no

School of Systems and Technology

financial or non-financial conflict of
interest in the subject matter or materials
discussed in this manuscript.

DATA AVALIABILITY STATEMENT

The data associated with this study will be
provided by the corresponding author upon
request.

FUNDING DETAILS

No funding has been received for this
article.

REFERENCES

[1] P. Palensky and D. Dietrich, “Demand
side management: Demand response,
intelligent energy systems, and smart
loads,” IEEE Trans. Indust. Info., vol.
7, no. 3, pp. 381-388, Aug. 2011, doi:
https://doi.org/10.1109/tii.2011.21588
41.

[2] M. A. Bhaagat, N. H. Mirjat, S. A.
Khatri, A. Mahar, and M. A. Raza,
“Demand side management for the
energy-efficient future of Pakistan
using a low emission analysis
platform,” Eng. Proc., vol. 46, no. 1, p.
28, 2023, doi: https://doi.org/10.
3390/engproc2023046028.

[3] G. Clark, The Smart Grid: Enabling
Energy  Efficiency and Demand
Response. River Publishers, 2025.

[4] G. W. Hart, “Nonintrusive appliance
load monitoring,” Proc. IEEE, vol. 80,
no. 12, pp. 1870-1891, 1992, doi:
https://doi.org/10.1109/5.192069.

[5] M. 1. Azad, R. Rajabi, and A.
Estebsari, “Nonintrusive Load
Monitoring (NILM) using a deep
learning model with a transformer-
based attention mechanism and
temporal pooling,” Electronics, vol.
13, no. 2, Art. no. 407, Jan. 2024, doi:
https://doi.org/10.3390/electronics130

Volume 4 Issue 2, Fall 2024

& UMT— 67


https://doi.org/10.1109/tii.2011.2158841
https://doi.org/10.1109/tii.2011.2158841
https://doi.org/10.%203390/engproc2023046028
https://doi.org/10.%203390/engproc2023046028
https://doi.org/10.1109/5.192069
https://doi.org/10.3390/electronics13020407

A Load Classification Strategy using NILM...

(6]

(7]

(8]

(9]

20407.

J. Kelly and W. Knottenbelt, “Neural
NILM,” in Proc. 2nd ACM Int. Conf-
Embed. Syst. Energy-Efficient Built
Environ., 2015, pp. 55-64, doi:
https://doi.org/10.1145/2821650.2821
672.

Y. Chen, W. Gong, C. Obrecht, and F.
Kuznik, “A review of machine
learning techniques for building
electrical energy consumption
prediction,” Energy Al, vol. 21, May
2025, Art. no. 100518, doi: https:/
doi.org/10.1016/j.egyai.2025.100518.

A. Shahcheraghian and A. Ilinca,
“Advanced machine learning
techniques for energy consumption
analysis and optimization at UBC
campus: Correlations with
meteorological variables,” FEnergies,
vol. 17, no. 18, Sep. 2024, Art. no.

4714, doi: https://doi.org/10.
3390/en17184714.

A. Abdelaziz, V. Santos, and M. S.
Dias, “Machine learning techniques in
the energy consumption of buildings:
A systematic literature review using
text mining and bibliometric analysis,”
Energies, vol. 14, no. 22, Nov. 2021,
Art. no. 7810, doi:
https://doi.org/10.3390/en14227810.

[10]L. R. Chandran, N. Jayagopal, L. S.

Lal, C. Narayanan, S. Deepak, and V.
Harikrishnan, “Impact of dynamic
pricing in residential load scheduling
and energy management,” Presented at
the 2nd Global Conference for
Advancement in Technology (GCAT),
Bangalore, India, Oct. 1-3, 2021, doi:
https://doi.org/10.1109/gcat52182.202
1.9587619.

[11]M. H. Albadi and E. F. El-Saadany,

«—ICR

“Demand response in electricity

markets: An overview,” Presented at
IEEE Power Engineering Society
General Meeting, Tampa, FL, USA,
June 42-28, 2007, doi: https://doi.
org/10.1109/pes.2007.385728.

[12]Q. H. Badar and A. Anvari-
Moghaddam, “Smart home energy
management system — a review,” Adv.
Build. Energy Res., vol. 16, no. 1, pp.
1-26, Aug. 2020, doi: https://doi.
org/10.1080/17512549.2020.1806925.

[13]T. Nguyen, K. Shimada, Y. Ochi, T.
Matsumoto, H. Matsugi, and T. Awata,
“An experimental study of the impact
of dynamic electricity pricing on
consumer behavior: An analysis for a
remote Island in Japan,” Energies, vol.
9, no. 12, Dec. 2016, Art. no. 1093,
doi:https://doi.org/10.3390/en9121093

[14]R. Mathumitha, P. Rathika, and K.
Manimala, “Intelligent deep learning
techniques for energy consumption
forecasting in smart buildings: a
review,” Artif. Intell. Rev., vol. 57, no.
2, Feb. 2024, Art. no. 35, doi:
https://doi.org/10.1007/s10462-023-
10660-8.

[15]B. Gowrienanthan, N. Kiruthihan, K.
D. I. S. Rathnayake, S. Kumarawadu,
and V. Logeeshan, “Low-cost
ensembling for deep neural network
based non-intrusive load monitoring,”
Presented at the IEEE World AI IoT
Congress (AlloT), Seattle, WA, US,
June 6-9, 2022, doi: https://doi.
org/10.1109/aiiot54504.2022.9817165

[16]M. AL-Ghamdi, A. A.-M. AL-
Ghamdi, and M. Ragab, “A Hybrid
DNN multilayered LSTM model for
energy consumption prediction,” Appl.
Sci., vol. 13, no. 20, Art. no. 11408,
Jan. 2023, doi:
https://doi.org/10.3390/app132011408

Innovative Computing Review

Volume 4 Issue 2, Fall 2024


https://ojs.umt.edu.pk/index.php/jmr
https://ojs.umt.edu.pk/index.php/jmr
https://doi.org/10.3390/electronics13020407
https://doi.org/10.1145/2821650.2821672
https://doi.org/10.1145/2821650.2821672
https://doi.org/10.%203390/en17184714
https://doi.org/10.%203390/en17184714
https://doi.org/10.3390/en14227810
https://doi.org/10.1109/gcat52182.2021.9587619
https://doi.org/10.1109/gcat52182.2021.9587619
https://doi.org/10.3390/en9121093
https://doi.org/10.1007/s10462-023-10660-8
https://doi.org/10.1007/s10462-023-10660-8
https://doi.org/10.3390/app132011408

